SlideShare a Scribd company logo
Best	
  Prac*ces:	
  	
  
Reference	
  Data	
  Management	
  on	
  a	
  
Global	
  Scale	
  
	
  
Sridhar	
  Govindarajan	
  
Director,	
  Investment	
  Bank	
  Reference	
  Data	
  
Credit	
  Suisse	
  
	
  
Reference	
  Data	
  Overview	
  (Chief	
  Data	
  Officer’s	
  perspecAve)	
  
• 

Reference	
  Data	
  (from	
  Chief	
  Data	
  Officer	
  perspecAve)	
  is	
  all	
  of	
  the	
  data	
  that	
  does	
  not	
  change	
  
throughout	
  the	
  lifecycle	
  of	
  a	
  trade.	
  	
  It	
  is:	
  
–  the	
  legal	
  idenAfiers	
  for	
  our	
  counterparAes	
  and	
  our	
  legal	
  enAAes	
  	
  
–  the	
  descripAve	
  data	
  of	
  a	
  product	
  	
  
–  the	
  method	
  and	
  hierarchy	
  by	
  which	
  data	
  is	
  aggregated	
  and	
  reported	
  	
  
–  the	
  legal	
  contracts	
  
–  the	
  book	
  data	
  

• 

Reference	
  Data	
  is	
  not	
  transacAonal	
  data	
  that	
  changes	
  with	
  changes	
  in	
  the	
  market,	
  for	
  example:	
  
–  trading	
  volumes	
  
–  prices	
  (current	
  and	
  historic)	
  

• 

Reference	
  Data	
  comes	
  from	
  many	
  sources	
  both	
  internally	
  and	
  externally	
  
–  internally	
  from	
  business’	
  issuing	
  securiAes	
  e.g.	
  Credit	
  Suisse	
  Issued	
  SecuriAes	
  
–  externally	
  from	
  sources	
  such	
  as	
  exchanges	
  and	
  S&P,	
  from	
  aggregators	
  such	
  as	
  Bloomberg	
  
and	
  Reuters,	
  and	
  from	
  data	
  cleanse	
  providers	
  such	
  as	
  Avox	
  (owned	
  by	
  the	
  DTCC)	
  

	
  
Reference	
  Data	
  Service:	
  Mission,	
  Goals	
  &	
  Objec*ves	
  

To	
  realise	
  a	
  compeAAve	
  advantage	
  through	
  the	
  strategic	
  delivery	
  of	
  consistent,	
  accurate,	
  
Amely	
  and	
  complete	
  reference	
  data,	
  front	
  to	
  back	
  across	
  the	
  Investment	
  Bank	
  
Drive	
  bo;om-­‐line	
  growth	
  

Prompt	
  and	
  accurate	
  responses	
  to	
  regulatory	
  
requests	
  

Mission	
  

Improved	
  client	
  service	
  
Increased	
  business	
  intelligence	
  

Goals	
  

Centralised	
  reference	
  data	
  service	
  managed	
  by	
  the	
  Chief	
  Data	
  Officer	
  
Single	
  Golden	
  Copy	
  of	
  reference	
  data	
  

Workflow	
  routes	
  updates	
  to	
  owning	
  funcAon	
  for	
  approval	
  
Unique	
  front-­‐to-­‐back	
  internal	
  data	
  idenAfiers	
  	
  
ProacAve	
  legacy	
  systems	
  decommissioning	
  

ObjecAves	
  

Automated,	
  real	
  Ame	
  data	
  distribuAon	
  from	
  Golden	
  Copy	
  to	
  all	
  consumers	
  
Business	
  and	
  Technology	
  RelaAonship	
  (1)	
  
§  There	
  is	
  an	
  “Implied”	
  relaAonship	
  between	
  business	
  and	
  technology	
  building	
  blocks	
  

§  Capturing	
  the	
  business	
  process	
  and	
  business	
  strategy	
  enables	
  translaAon	
  into	
  acAonable	
  
technology	
  programs/projects	
  
(1) Source: TDWI Institute
Strategic
Direction

Business
Architecture

Application
Architecture

Infrastructure
Architecture

Business	
  Architecture	
  links	
  Business	
  
Strategy	
  with	
  execuAon	
  (iteraAve	
  
process)
	
  
The	
  TOM	
  Framework	
  provides	
  the	
  components	
  that	
  can	
  be	
  used	
  by	
  any	
  organizaAon	
  to	
  
systemaAcally	
  define	
  and	
  deliver	
  the	
  TOM	
  in	
  a	
  structured	
  manner	
  
3	
  
4	
  
The	
  Target	
  OperaAng	
  Model	
  is	
  comprised	
  of	
  six	
  components	
  which	
  are:	
  	
  	
  	
  1	
  	
  Business	
  Partners,	
  	
  	
  	
  	
  	
  2	
   ata,	
  	
  	
  	
  	
  Process,	
  	
  	
  	
  	
  	
  	
  OrganizaAon	
  and	
  People,	
  
	
  	
  
	
  D
	
  	
  5	
  	
  	
  ApplicaAons	
  and	
  Technology	
  and	
  	
  	
  	
  	
  6	
  Provider.	
  
	
  	
  
	
  	
  
Business	
  	
  
Partner	
  
6)  The Provider Model
defines the suppliers of the data
to the Organization including
where the data is sourced from

1	
  

1)  The Business Partner Model describes the
immediate clients of the Organization

6	
  

2	
  

Provider	
  

Data	
  
Target
	
  
Opera*ng
	
  
Model
	
  

5	
  
ApplicaAons	
  	
  
and	
  Technology	
  
5)  The Applications and Technology Model
is the target infrastructure and technology
landscape that supports how the
Organization can conduct its activities
efficiently, cost effectively, and is a model
that is sustainable to support growth for the
Organization

3	
  
Process
	
  
4	
  
OrganizaAon	
  	
  
and	
  People	
  

2)  The Data Model captures the
semantic meaning of the data
that is managed by the
Organization

3)  The	
  Process	
  Model	
  describes	
  	
  
all	
  	
  acAviAes	
  of	
  the	
  OrganizaAon	
  
including	
  how	
  they	
  govern	
  the	
  data	
  
that	
  they	
  manage.	
  

4)  The Organization and People Model
defines roles and responsibilities of the Organization
including the engagement model the organization has with
its business partners, providers, IT, and external bodies
Why	
  focus	
  on	
  the	
  TOM?
	
  
! 90%	
  of	
  our	
  Change	
  teams	
  (business	
  and	
  IT)	
  focus	
  on	
  delivering	
  the	
  ApplicaAons	
  and	
  
Technology	
  component	
  of	
  the	
  TOM	
  as	
  their	
  skills,	
  cerAficaAons	
  and	
  implementaAon	
  
experiences	
  have	
  been	
  in	
  sodware	
  development	
  lifecycles	
  
! Given	
  our	
  limited	
  investment	
  dollars	
  in	
  large-­‐scale	
  strategic	
  programs	
  and	
  the	
  
aggressive	
  Amelines	
  we	
  are	
  oden	
  under	
  to	
  deliver	
  the	
  soluAon	
  to	
  our	
  user	
  and	
  meet	
  
regulatory	
  deadlines,	
  we	
  all	
  need	
  to	
  be	
  mindful	
  of	
  ensuring	
  that	
  the	
  deliveries	
  we	
  are	
  
accountable	
  for	
  fit	
  into	
  the	
  overall	
  TOM	
  design	
  
! We	
  need	
  to	
  ensure	
  that	
  we	
  include	
  the	
  TOM	
  components	
  in	
  our	
  delivery	
  plans	
  so	
  that	
  
appropriate	
  tollgates	
  are	
  accounted	
  for	
  and	
  proper	
  design	
  can	
  be	
  achieved.	
  	
  We	
  can	
  
accomplish	
  more	
  if	
  each	
  individual	
  understands	
  that	
  what	
  they	
  are	
  delivering	
  aligns	
  
with	
  the	
  TOM	
  components	
  
CDU	
  –	
  Target	
  OperaAng	
  Model	
  
1) Customers / Business Partners
Customers:
§  CCRM

Business Partners:
§  LCD (General Council)
§  Collateral Management Unit
§  Credit Risk Management
§  Information Technology
§  Reference Data Services

Vendors:
§  Adsensa
§  Orchestra
Networks
§  United Lex

2) Data
§  Contract Reference Data
§  Master Agreements
§  Schedules
§  Annexes
§  Agreement Party
§  Collateral Agreement

§  Other reference data (e.g. counterparty, product,
calendar, rating agency, clause library, data capture
rules, etc..)

3) Processes
§  Physical legal document OCR scanning, OCR
correction, clause matching, and contract data
capture
§  Acquisition of legacy agreement data and reference
data (client, product, etc.) from providers
§  Validation and maintenance of contract data including
event management (e.g. amendments)
§  Maintenance of data quality rules and clause library

Suppliers

4) Organization and People

DMMS

Framesoft

Algo

Insight

Inputs
Counterpart
y List

Legal
Contracts

Clause
Library

Other Ref
Data

Processes
OCR
Scanning,
Correction,
Matching,
Capture

Contract
Data
Validation,
Enrichment,
Capture

Agreement
Event
Managemen
t and
Exceptions

! CDU Data Quality Unit
−  3rd party provider (~24 FTEs) for OCR
document scanning and data capture,
mastering and ongoing maintenance of the
agreement data
−  3 FTEs to manage 3rd party provider

5) Applications and Technology
! DMMS for sourcing and storage of legal
documents
! WordSensa (Adsensa) for legal agreement OCR
scanning, clause matching, and data capture
! EBX5 (Orchestra Networks) for Master Data
Management of contract data (acquisition,
maintenance, distribution)

Agreement
Master Data
Governance

6) Provider/Supplier

Outputs
Mastered
Agreement
Data

Customers
CCRM

Quality/Perf.
Reports

! Legal Contracts from DMMS
! Legacy Agreement data from Framesoft
! Legacy Collateral data from Algo
! Counterparty Reference Data from Insight
CDU	
  –	
  ApplicaAon	
  Architecture	
  
DMMS	
  
Adsensa	
  Doc	
  Manipulator	
  
Split,	
  Group,	
  Rename	
  

Contract	
  Scans	
  
&	
  Metadata	
  

Bulk	
  Upload	
  Tool	
  

Reference	
  Data	
  Hub	
  
Orchestra	
  
Networks	
  

Clause	
  Matching	
  
Auto	
  Match	
  
User	
  Review	
  &	
  
Correc*on	
  

Data	
  Capture	
  

Rules	
  Manager	
  

Clause	
  Library	
  

User	
  Review	
  and	
  
Update	
  

Amber	
  Document	
  
(PDF)	
  
	
  

	
  
EBX	
  UI	
  
Comparison,	
  Enrichment,	
  	
  
Approvals,	
  Overrides,	
  Status	
  	
  

Distribu*on	
  	
  

User	
  Review	
  &	
  
Correc*on	
  

Expert	
  
Dic*onary	
  

XML	
  Load	
  &	
  Transforma*on	
  Service	
  

Auto	
  load	
  

Contract	
  txtXML	
  Document	
  

OCR	
  

Mul*-­‐En*ty	
  and	
  Amendments	
  

Adsensa	
  Product	
  Suite	
  

Wordsensa	
  Vision	
  

CDU	
  DB	
  

Reference	
  Data	
  

Auto	
  Extract	
  
User	
  Review	
  &	
  
Correc*on	
  

Data	
  Extract	
  
Rules	
  
Counterparty	
  

FrameSo	
  

Legal	
  En*ty	
  

Product	
  

ALGO	
  

Other	
  

9	
  
CDU	
  –	
  Process	
  Model	
  
Ad

More Related Content

What's hot (20)

A Reference Process Model for Master Data Management
A Reference Process Model for Master Data ManagementA Reference Process Model for Master Data Management
A Reference Process Model for Master Data Management
Boris Otto
 
Data Architecture Strategies
Data Architecture StrategiesData Architecture Strategies
Data Architecture Strategies
DATAVERSITY
 
Data Governance and Metadata Management
Data Governance and Metadata ManagementData Governance and Metadata Management
Data Governance and Metadata Management
DATAVERSITY
 
Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?
DATAVERSITY
 
3 Keys To Successful Master Data Management - Final Presentation
3 Keys To Successful Master Data Management - Final Presentation3 Keys To Successful Master Data Management - Final Presentation
3 Keys To Successful Master Data Management - Final Presentation
James Chi
 
Reference master data management
Reference master data managementReference master data management
Reference master data management
Dr. Hamdan Al-Sabri
 
The Importance of MDM - Eternal Management of the Data Mind
The Importance of MDM - Eternal Management of the Data MindThe Importance of MDM - Eternal Management of the Data Mind
The Importance of MDM - Eternal Management of the Data Mind
DATAVERSITY
 
03. Business Information Requirements Template
03. Business Information Requirements Template03. Business Information Requirements Template
03. Business Information Requirements Template
Alan D. Duncan
 
Data Quality for Non-Data People
Data Quality for Non-Data PeopleData Quality for Non-Data People
Data Quality for Non-Data People
DATAVERSITY
 
Data Modeling & Metadata Management
Data Modeling & Metadata ManagementData Modeling & Metadata Management
Data Modeling & Metadata Management
DATAVERSITY
 
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
DATAVERSITY
 
Essential Reference and Master Data Management
Essential Reference and Master Data ManagementEssential Reference and Master Data Management
Essential Reference and Master Data Management
DATAVERSITY
 
Data Governance
Data GovernanceData Governance
Data Governance
SambaSoup
 
Master Data Management - Aligning Data, Process, and Governance
Master Data Management - Aligning Data, Process, and GovernanceMaster Data Management - Aligning Data, Process, and Governance
Master Data Management - Aligning Data, Process, and Governance
DATAVERSITY
 
Data Quality
Data QualityData Quality
Data Quality
jerdeb
 
Achieving a Single View of Business – Critical Data with Master Data Management
Achieving a Single View of Business – Critical Data with Master Data ManagementAchieving a Single View of Business – Critical Data with Master Data Management
Achieving a Single View of Business – Critical Data with Master Data Management
DATAVERSITY
 
Strategic Business Requirements for Master Data Management Systems
Strategic Business Requirements for Master Data Management SystemsStrategic Business Requirements for Master Data Management Systems
Strategic Business Requirements for Master Data Management Systems
Boris Otto
 
The Importance of Metadata
The Importance of MetadataThe Importance of Metadata
The Importance of Metadata
DATAVERSITY
 
MDM & BI Strategy For Large Enterprises
MDM & BI Strategy For Large EnterprisesMDM & BI Strategy For Large Enterprises
MDM & BI Strategy For Large Enterprises
Mark Schoeppel
 
Data Governance Powerpoint Presentation Slides
Data Governance Powerpoint Presentation SlidesData Governance Powerpoint Presentation Slides
Data Governance Powerpoint Presentation Slides
SlideTeam
 
A Reference Process Model for Master Data Management
A Reference Process Model for Master Data ManagementA Reference Process Model for Master Data Management
A Reference Process Model for Master Data Management
Boris Otto
 
Data Architecture Strategies
Data Architecture StrategiesData Architecture Strategies
Data Architecture Strategies
DATAVERSITY
 
Data Governance and Metadata Management
Data Governance and Metadata ManagementData Governance and Metadata Management
Data Governance and Metadata Management
DATAVERSITY
 
Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?
DATAVERSITY
 
3 Keys To Successful Master Data Management - Final Presentation
3 Keys To Successful Master Data Management - Final Presentation3 Keys To Successful Master Data Management - Final Presentation
3 Keys To Successful Master Data Management - Final Presentation
James Chi
 
Reference master data management
Reference master data managementReference master data management
Reference master data management
Dr. Hamdan Al-Sabri
 
The Importance of MDM - Eternal Management of the Data Mind
The Importance of MDM - Eternal Management of the Data MindThe Importance of MDM - Eternal Management of the Data Mind
The Importance of MDM - Eternal Management of the Data Mind
DATAVERSITY
 
03. Business Information Requirements Template
03. Business Information Requirements Template03. Business Information Requirements Template
03. Business Information Requirements Template
Alan D. Duncan
 
Data Quality for Non-Data People
Data Quality for Non-Data PeopleData Quality for Non-Data People
Data Quality for Non-Data People
DATAVERSITY
 
Data Modeling & Metadata Management
Data Modeling & Metadata ManagementData Modeling & Metadata Management
Data Modeling & Metadata Management
DATAVERSITY
 
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
DATAVERSITY
 
Essential Reference and Master Data Management
Essential Reference and Master Data ManagementEssential Reference and Master Data Management
Essential Reference and Master Data Management
DATAVERSITY
 
Data Governance
Data GovernanceData Governance
Data Governance
SambaSoup
 
Master Data Management - Aligning Data, Process, and Governance
Master Data Management - Aligning Data, Process, and GovernanceMaster Data Management - Aligning Data, Process, and Governance
Master Data Management - Aligning Data, Process, and Governance
DATAVERSITY
 
Data Quality
Data QualityData Quality
Data Quality
jerdeb
 
Achieving a Single View of Business – Critical Data with Master Data Management
Achieving a Single View of Business – Critical Data with Master Data ManagementAchieving a Single View of Business – Critical Data with Master Data Management
Achieving a Single View of Business – Critical Data with Master Data Management
DATAVERSITY
 
Strategic Business Requirements for Master Data Management Systems
Strategic Business Requirements for Master Data Management SystemsStrategic Business Requirements for Master Data Management Systems
Strategic Business Requirements for Master Data Management Systems
Boris Otto
 
The Importance of Metadata
The Importance of MetadataThe Importance of Metadata
The Importance of Metadata
DATAVERSITY
 
MDM & BI Strategy For Large Enterprises
MDM & BI Strategy For Large EnterprisesMDM & BI Strategy For Large Enterprises
MDM & BI Strategy For Large Enterprises
Mark Schoeppel
 
Data Governance Powerpoint Presentation Slides
Data Governance Powerpoint Presentation SlidesData Governance Powerpoint Presentation Slides
Data Governance Powerpoint Presentation Slides
SlideTeam
 

Viewers also liked (9)

Acolyance: Applying MDM to Drive ERP Success & ROI
Acolyance: Applying MDM to Drive ERP Success & ROIAcolyance: Applying MDM to Drive ERP Success & ROI
Acolyance: Applying MDM to Drive ERP Success & ROI
Orchestra Networks
 
Multidomain MDM at Amadeus
Multidomain MDM at AmadeusMultidomain MDM at Amadeus
Multidomain MDM at Amadeus
Orchestra Networks
 
6 Steps to Bringing a Security Offering to Market
6 Steps to Bringing a Security Offering to Market6 Steps to Bringing a Security Offering to Market
6 Steps to Bringing a Security Offering to Market
Continuum
 
Filling the Construction Labor Gap
Filling the Construction Labor GapFilling the Construction Labor Gap
Filling the Construction Labor Gap
Procore Technologies
 
HelloWorld: Avoiding the Penalty
HelloWorld: Avoiding the PenaltyHelloWorld: Avoiding the Penalty
HelloWorld: Avoiding the Penalty
HelloWorld
 
The Coming of Age for Artificial Intelligence
The Coming of Age for Artificial Intelligence The Coming of Age for Artificial Intelligence
The Coming of Age for Artificial Intelligence
Accenture Technology
 
Alteryx investor presentation
Alteryx investor presentationAlteryx investor presentation
Alteryx investor presentation
alteryxinvestor
 
AI Boosts Industry Profits - Research
AI Boosts Industry Profits - ResearchAI Boosts Industry Profits - Research
AI Boosts Industry Profits - Research
Accenture Technology
 
Platform Economy - Tech Vision 2016 Trend 3
Platform Economy - Tech Vision 2016 Trend 3Platform Economy - Tech Vision 2016 Trend 3
Platform Economy - Tech Vision 2016 Trend 3
Accenture Technology
 
Acolyance: Applying MDM to Drive ERP Success & ROI
Acolyance: Applying MDM to Drive ERP Success & ROIAcolyance: Applying MDM to Drive ERP Success & ROI
Acolyance: Applying MDM to Drive ERP Success & ROI
Orchestra Networks
 
6 Steps to Bringing a Security Offering to Market
6 Steps to Bringing a Security Offering to Market6 Steps to Bringing a Security Offering to Market
6 Steps to Bringing a Security Offering to Market
Continuum
 
Filling the Construction Labor Gap
Filling the Construction Labor GapFilling the Construction Labor Gap
Filling the Construction Labor Gap
Procore Technologies
 
HelloWorld: Avoiding the Penalty
HelloWorld: Avoiding the PenaltyHelloWorld: Avoiding the Penalty
HelloWorld: Avoiding the Penalty
HelloWorld
 
The Coming of Age for Artificial Intelligence
The Coming of Age for Artificial Intelligence The Coming of Age for Artificial Intelligence
The Coming of Age for Artificial Intelligence
Accenture Technology
 
Alteryx investor presentation
Alteryx investor presentationAlteryx investor presentation
Alteryx investor presentation
alteryxinvestor
 
AI Boosts Industry Profits - Research
AI Boosts Industry Profits - ResearchAI Boosts Industry Profits - Research
AI Boosts Industry Profits - Research
Accenture Technology
 
Platform Economy - Tech Vision 2016 Trend 3
Platform Economy - Tech Vision 2016 Trend 3Platform Economy - Tech Vision 2016 Trend 3
Platform Economy - Tech Vision 2016 Trend 3
Accenture Technology
 
Ad

Similar to Credit Suisse, Reference Data Management on a Global Scale (20)

Workable Enteprise Data Governance
Workable Enteprise Data GovernanceWorkable Enteprise Data Governance
Workable Enteprise Data Governance
Bhavendra Chavan
 
Vivek cv
Vivek cvVivek cv
Vivek cv
Vivek Cholera
 
Vivek C CV
Vivek C CVVivek C CV
Vivek C CV
Vivek Cholera
 
Legal Transformation and Contract Remediation
Legal Transformation and Contract RemediationLegal Transformation and Contract Remediation
Legal Transformation and Contract Remediation
accenture
 
Technology for HR Shared Services
Technology for HR Shared ServicesTechnology for HR Shared Services
Technology for HR Shared Services
ScottMadden, Inc.
 
IT Software Category
IT Software CategoryIT Software Category
IT Software Category
Mehul Vora
 
Bhawani prasad mdm-cdh-methodology
Bhawani prasad mdm-cdh-methodologyBhawani prasad mdm-cdh-methodology
Bhawani prasad mdm-cdh-methodology
Bhawani N Prasad
 
Fuel your Data-Driven Ambitions with Data Governance
Fuel your Data-Driven Ambitions with Data GovernanceFuel your Data-Driven Ambitions with Data Governance
Fuel your Data-Driven Ambitions with Data Governance
Pedro Martins
 
Goldman sachs us fincl services conf panel discussion dec 2015
Goldman sachs us fincl services conf panel discussion dec 2015Goldman sachs us fincl services conf panel discussion dec 2015
Goldman sachs us fincl services conf panel discussion dec 2015
InvestorMarkit
 
System Analysis And Design_FinalPPT_NirmishaK
System Analysis And Design_FinalPPT_NirmishaKSystem Analysis And Design_FinalPPT_NirmishaK
System Analysis And Design_FinalPPT_NirmishaK
Shehla Ghori
 
Sample audit plan
Sample audit planSample audit plan
Sample audit plan
Maher Manan
 
Cloud cpmputing and busness processes
Cloud cpmputing and busness processesCloud cpmputing and busness processes
Cloud cpmputing and busness processes
Minka Fudulova
 
data collection, data integration, data management, data modeling.pptx
data collection, data integration, data management, data modeling.pptxdata collection, data integration, data management, data modeling.pptx
data collection, data integration, data management, data modeling.pptx
Sourabhkumar729579
 
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Element22
 
Capabilities Overview 20100414 V1
Capabilities Overview 20100414 V1Capabilities Overview 20100414 V1
Capabilities Overview 20100414 V1
nbcoenen
 
Ali Motallebi (Executive Summary)
Ali Motallebi (Executive Summary)Ali Motallebi (Executive Summary)
Ali Motallebi (Executive Summary)
Ali Motallebi
 
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your TechnologyStrategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Paul Osterberg
 
PowerPoint presentation
PowerPoint presentationPowerPoint presentation
PowerPoint presentation
webhostingguy
 
How do you find the perfect outsourcing partner in the IT industry? Tips from...
How do you find the perfect outsourcing partner in the IT industry? Tips from...How do you find the perfect outsourcing partner in the IT industry? Tips from...
How do you find the perfect outsourcing partner in the IT industry? Tips from...
Daria Anioł
 
Implementing Advanced Analytics Platform
Implementing Advanced Analytics PlatformImplementing Advanced Analytics Platform
Implementing Advanced Analytics Platform
Arvind Sathi
 
Workable Enteprise Data Governance
Workable Enteprise Data GovernanceWorkable Enteprise Data Governance
Workable Enteprise Data Governance
Bhavendra Chavan
 
Legal Transformation and Contract Remediation
Legal Transformation and Contract RemediationLegal Transformation and Contract Remediation
Legal Transformation and Contract Remediation
accenture
 
Technology for HR Shared Services
Technology for HR Shared ServicesTechnology for HR Shared Services
Technology for HR Shared Services
ScottMadden, Inc.
 
IT Software Category
IT Software CategoryIT Software Category
IT Software Category
Mehul Vora
 
Bhawani prasad mdm-cdh-methodology
Bhawani prasad mdm-cdh-methodologyBhawani prasad mdm-cdh-methodology
Bhawani prasad mdm-cdh-methodology
Bhawani N Prasad
 
Fuel your Data-Driven Ambitions with Data Governance
Fuel your Data-Driven Ambitions with Data GovernanceFuel your Data-Driven Ambitions with Data Governance
Fuel your Data-Driven Ambitions with Data Governance
Pedro Martins
 
Goldman sachs us fincl services conf panel discussion dec 2015
Goldman sachs us fincl services conf panel discussion dec 2015Goldman sachs us fincl services conf panel discussion dec 2015
Goldman sachs us fincl services conf panel discussion dec 2015
InvestorMarkit
 
System Analysis And Design_FinalPPT_NirmishaK
System Analysis And Design_FinalPPT_NirmishaKSystem Analysis And Design_FinalPPT_NirmishaK
System Analysis And Design_FinalPPT_NirmishaK
Shehla Ghori
 
Sample audit plan
Sample audit planSample audit plan
Sample audit plan
Maher Manan
 
Cloud cpmputing and busness processes
Cloud cpmputing and busness processesCloud cpmputing and busness processes
Cloud cpmputing and busness processes
Minka Fudulova
 
data collection, data integration, data management, data modeling.pptx
data collection, data integration, data management, data modeling.pptxdata collection, data integration, data management, data modeling.pptx
data collection, data integration, data management, data modeling.pptx
Sourabhkumar729579
 
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Introduction to DCAM, the Data Management Capability Assessment Model - Editi...
Element22
 
Capabilities Overview 20100414 V1
Capabilities Overview 20100414 V1Capabilities Overview 20100414 V1
Capabilities Overview 20100414 V1
nbcoenen
 
Ali Motallebi (Executive Summary)
Ali Motallebi (Executive Summary)Ali Motallebi (Executive Summary)
Ali Motallebi (Executive Summary)
Ali Motallebi
 
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your TechnologyStrategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Strategy Basecamp's IT Diagnostic - Six Steps to Improving Your Technology
Paul Osterberg
 
PowerPoint presentation
PowerPoint presentationPowerPoint presentation
PowerPoint presentation
webhostingguy
 
How do you find the perfect outsourcing partner in the IT industry? Tips from...
How do you find the perfect outsourcing partner in the IT industry? Tips from...How do you find the perfect outsourcing partner in the IT industry? Tips from...
How do you find the perfect outsourcing partner in the IT industry? Tips from...
Daria Anioł
 
Implementing Advanced Analytics Platform
Implementing Advanced Analytics PlatformImplementing Advanced Analytics Platform
Implementing Advanced Analytics Platform
Arvind Sathi
 
Ad

More from Orchestra Networks (20)

Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Sabre: Mastering a strong foundation for operational excellence and enhanced ...Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Orchestra Networks
 
Plateforme du Bâtiment: Product Master Data Management
Plateforme du Bâtiment: Product Master Data ManagementPlateforme du Bâtiment: Product Master Data Management
Plateforme du Bâtiment: Product Master Data Management
Orchestra Networks
 
Netspend: Maintaining "High Operations Tempo" via Multidomain MDM
Netspend: Maintaining "High Operations Tempo" via Multidomain MDMNetspend: Maintaining "High Operations Tempo" via Multidomain MDM
Netspend: Maintaining "High Operations Tempo" via Multidomain MDM
Orchestra Networks
 
Amadeus: Multidomain MDM
Amadeus: Multidomain MDMAmadeus: Multidomain MDM
Amadeus: Multidomain MDM
Orchestra Networks
 
Axpo Trading: Master Data Management in the Energy Sector
Axpo Trading: Master Data Management in the Energy SectorAxpo Trading: Master Data Management in the Energy Sector
Axpo Trading: Master Data Management in the Energy Sector
Orchestra Networks
 
SBM Offshore: How MDM is changing our way of working
SBM Offshore: How MDM is changing our way of workingSBM Offshore: How MDM is changing our way of working
SBM Offshore: How MDM is changing our way of working
Orchestra Networks
 
Vaasan: Product master data consolidation
Vaasan: Product master data consolidationVaasan: Product master data consolidation
Vaasan: Product master data consolidation
Orchestra Networks
 
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized EnvironmentMDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
Orchestra Networks
 
Beyond Oracle EPM metadata synchronization
Beyond Oracle EPM metadata synchronizationBeyond Oracle EPM metadata synchronization
Beyond Oracle EPM metadata synchronization
Orchestra Networks
 
Médecins Sans Frontières/Doctors Without Borders: The Codification Project
Médecins Sans Frontières/Doctors Without Borders: The Codification ProjectMédecins Sans Frontières/Doctors Without Borders: The Codification Project
Médecins Sans Frontières/Doctors Without Borders: The Codification Project
Orchestra Networks
 
Sabre: Master Reference Data in the Large Enterprise
Sabre: Master Reference Data in the Large EnterpriseSabre: Master Reference Data in the Large Enterprise
Sabre: Master Reference Data in the Large Enterprise
Orchestra Networks
 
Mastering Oracle® Hyperion EPM Metadata in a distributed organization
Mastering Oracle® Hyperion EPM Metadata in a distributed organizationMastering Oracle® Hyperion EPM Metadata in a distributed organization
Mastering Oracle® Hyperion EPM Metadata in a distributed organization
Orchestra Networks
 
Accurate BI &MDM Lead to successful Project Execution!
Accurate BI &MDM Lead to successful Project Execution!Accurate BI &MDM Lead to successful Project Execution!
Accurate BI &MDM Lead to successful Project Execution!
Orchestra Networks
 
Taming the Raving Rabbids: The Ubisoft MDM Journey
Taming the Raving Rabbids: The Ubisoft MDM JourneyTaming the Raving Rabbids: The Ubisoft MDM Journey
Taming the Raving Rabbids: The Ubisoft MDM Journey
Orchestra Networks
 
United Technologies, Hands On Reference Data Management For Corporate Finance...
United Technologies, Hands On Reference Data Management For Corporate Finance...United Technologies, Hands On Reference Data Management For Corporate Finance...
United Technologies, Hands On Reference Data Management For Corporate Finance...
Orchestra Networks
 
Technip Multidomain MDM Journey
Technip Multidomain MDM JourneyTechnip Multidomain MDM Journey
Technip Multidomain MDM Journey
Orchestra Networks
 
Driving Multidomain MDM simultaneously to ERP harmonization
Driving Multidomain MDM simultaneously to ERP harmonizationDriving Multidomain MDM simultaneously to ERP harmonization
Driving Multidomain MDM simultaneously to ERP harmonization
Orchestra Networks
 
Understanding Reference Data with Aaron Zornes
Understanding Reference Data with Aaron ZornesUnderstanding Reference Data with Aaron Zornes
Understanding Reference Data with Aaron Zornes
Orchestra Networks
 
UKOUG 2012 Metadata Management for Oracle Hyperion EPM
UKOUG 2012 Metadata Management for Oracle Hyperion EPMUKOUG 2012 Metadata Management for Oracle Hyperion EPM
UKOUG 2012 Metadata Management for Oracle Hyperion EPM
Orchestra Networks
 
MDM for Oracle Hyperion EPM
MDM for Oracle Hyperion EPMMDM for Oracle Hyperion EPM
MDM for Oracle Hyperion EPM
Orchestra Networks
 
Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Sabre: Mastering a strong foundation for operational excellence and enhanced ...Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Sabre: Mastering a strong foundation for operational excellence and enhanced ...
Orchestra Networks
 
Plateforme du Bâtiment: Product Master Data Management
Plateforme du Bâtiment: Product Master Data ManagementPlateforme du Bâtiment: Product Master Data Management
Plateforme du Bâtiment: Product Master Data Management
Orchestra Networks
 
Netspend: Maintaining "High Operations Tempo" via Multidomain MDM
Netspend: Maintaining "High Operations Tempo" via Multidomain MDMNetspend: Maintaining "High Operations Tempo" via Multidomain MDM
Netspend: Maintaining "High Operations Tempo" via Multidomain MDM
Orchestra Networks
 
Axpo Trading: Master Data Management in the Energy Sector
Axpo Trading: Master Data Management in the Energy SectorAxpo Trading: Master Data Management in the Energy Sector
Axpo Trading: Master Data Management in the Energy Sector
Orchestra Networks
 
SBM Offshore: How MDM is changing our way of working
SBM Offshore: How MDM is changing our way of workingSBM Offshore: How MDM is changing our way of working
SBM Offshore: How MDM is changing our way of working
Orchestra Networks
 
Vaasan: Product master data consolidation
Vaasan: Product master data consolidationVaasan: Product master data consolidation
Vaasan: Product master data consolidation
Orchestra Networks
 
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized EnvironmentMDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
MDM & RDM: Enabling a One Company Supply Chain in a Decentralized Environment
Orchestra Networks
 
Beyond Oracle EPM metadata synchronization
Beyond Oracle EPM metadata synchronizationBeyond Oracle EPM metadata synchronization
Beyond Oracle EPM metadata synchronization
Orchestra Networks
 
Médecins Sans Frontières/Doctors Without Borders: The Codification Project
Médecins Sans Frontières/Doctors Without Borders: The Codification ProjectMédecins Sans Frontières/Doctors Without Borders: The Codification Project
Médecins Sans Frontières/Doctors Without Borders: The Codification Project
Orchestra Networks
 
Sabre: Master Reference Data in the Large Enterprise
Sabre: Master Reference Data in the Large EnterpriseSabre: Master Reference Data in the Large Enterprise
Sabre: Master Reference Data in the Large Enterprise
Orchestra Networks
 
Mastering Oracle® Hyperion EPM Metadata in a distributed organization
Mastering Oracle® Hyperion EPM Metadata in a distributed organizationMastering Oracle® Hyperion EPM Metadata in a distributed organization
Mastering Oracle® Hyperion EPM Metadata in a distributed organization
Orchestra Networks
 
Accurate BI &MDM Lead to successful Project Execution!
Accurate BI &MDM Lead to successful Project Execution!Accurate BI &MDM Lead to successful Project Execution!
Accurate BI &MDM Lead to successful Project Execution!
Orchestra Networks
 
Taming the Raving Rabbids: The Ubisoft MDM Journey
Taming the Raving Rabbids: The Ubisoft MDM JourneyTaming the Raving Rabbids: The Ubisoft MDM Journey
Taming the Raving Rabbids: The Ubisoft MDM Journey
Orchestra Networks
 
United Technologies, Hands On Reference Data Management For Corporate Finance...
United Technologies, Hands On Reference Data Management For Corporate Finance...United Technologies, Hands On Reference Data Management For Corporate Finance...
United Technologies, Hands On Reference Data Management For Corporate Finance...
Orchestra Networks
 
Technip Multidomain MDM Journey
Technip Multidomain MDM JourneyTechnip Multidomain MDM Journey
Technip Multidomain MDM Journey
Orchestra Networks
 
Driving Multidomain MDM simultaneously to ERP harmonization
Driving Multidomain MDM simultaneously to ERP harmonizationDriving Multidomain MDM simultaneously to ERP harmonization
Driving Multidomain MDM simultaneously to ERP harmonization
Orchestra Networks
 
Understanding Reference Data with Aaron Zornes
Understanding Reference Data with Aaron ZornesUnderstanding Reference Data with Aaron Zornes
Understanding Reference Data with Aaron Zornes
Orchestra Networks
 
UKOUG 2012 Metadata Management for Oracle Hyperion EPM
UKOUG 2012 Metadata Management for Oracle Hyperion EPMUKOUG 2012 Metadata Management for Oracle Hyperion EPM
UKOUG 2012 Metadata Management for Oracle Hyperion EPM
Orchestra Networks
 

Recently uploaded (20)

Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 

Credit Suisse, Reference Data Management on a Global Scale

  • 1. Best  Prac*ces:     Reference  Data  Management  on  a   Global  Scale     Sridhar  Govindarajan   Director,  Investment  Bank  Reference  Data   Credit  Suisse    
  • 2. Reference  Data  Overview  (Chief  Data  Officer’s  perspecAve)   •  Reference  Data  (from  Chief  Data  Officer  perspecAve)  is  all  of  the  data  that  does  not  change   throughout  the  lifecycle  of  a  trade.    It  is:   –  the  legal  idenAfiers  for  our  counterparAes  and  our  legal  enAAes     –  the  descripAve  data  of  a  product     –  the  method  and  hierarchy  by  which  data  is  aggregated  and  reported     –  the  legal  contracts   –  the  book  data   •  Reference  Data  is  not  transacAonal  data  that  changes  with  changes  in  the  market,  for  example:   –  trading  volumes   –  prices  (current  and  historic)   •  Reference  Data  comes  from  many  sources  both  internally  and  externally   –  internally  from  business’  issuing  securiAes  e.g.  Credit  Suisse  Issued  SecuriAes   –  externally  from  sources  such  as  exchanges  and  S&P,  from  aggregators  such  as  Bloomberg   and  Reuters,  and  from  data  cleanse  providers  such  as  Avox  (owned  by  the  DTCC)    
  • 3. Reference  Data  Service:  Mission,  Goals  &  Objec*ves   To  realise  a  compeAAve  advantage  through  the  strategic  delivery  of  consistent,  accurate,   Amely  and  complete  reference  data,  front  to  back  across  the  Investment  Bank   Drive  bo;om-­‐line  growth   Prompt  and  accurate  responses  to  regulatory   requests   Mission   Improved  client  service   Increased  business  intelligence   Goals   Centralised  reference  data  service  managed  by  the  Chief  Data  Officer   Single  Golden  Copy  of  reference  data   Workflow  routes  updates  to  owning  funcAon  for  approval   Unique  front-­‐to-­‐back  internal  data  idenAfiers     ProacAve  legacy  systems  decommissioning   ObjecAves   Automated,  real  Ame  data  distribuAon  from  Golden  Copy  to  all  consumers  
  • 4. Business  and  Technology  RelaAonship  (1)   §  There  is  an  “Implied”  relaAonship  between  business  and  technology  building  blocks   §  Capturing  the  business  process  and  business  strategy  enables  translaAon  into  acAonable   technology  programs/projects   (1) Source: TDWI Institute
  • 6. The  TOM  Framework  provides  the  components  that  can  be  used  by  any  organizaAon  to   systemaAcally  define  and  deliver  the  TOM  in  a  structured  manner   3   4   The  Target  OperaAng  Model  is  comprised  of  six  components  which  are:        1    Business  Partners,            2   ata,          Process,              OrganizaAon  and  People,        D    5      ApplicaAons  and  Technology  and          6  Provider.           Business     Partner   6)  The Provider Model defines the suppliers of the data to the Organization including where the data is sourced from 1   1)  The Business Partner Model describes the immediate clients of the Organization 6   2   Provider   Data   Target   Opera*ng   Model   5   ApplicaAons     and  Technology   5)  The Applications and Technology Model is the target infrastructure and technology landscape that supports how the Organization can conduct its activities efficiently, cost effectively, and is a model that is sustainable to support growth for the Organization 3   Process   4   OrganizaAon     and  People   2)  The Data Model captures the semantic meaning of the data that is managed by the Organization 3)  The  Process  Model  describes     all    acAviAes  of  the  OrganizaAon   including  how  they  govern  the  data   that  they  manage.   4)  The Organization and People Model defines roles and responsibilities of the Organization including the engagement model the organization has with its business partners, providers, IT, and external bodies
  • 7. Why  focus  on  the  TOM?   ! 90%  of  our  Change  teams  (business  and  IT)  focus  on  delivering  the  ApplicaAons  and   Technology  component  of  the  TOM  as  their  skills,  cerAficaAons  and  implementaAon   experiences  have  been  in  sodware  development  lifecycles   ! Given  our  limited  investment  dollars  in  large-­‐scale  strategic  programs  and  the   aggressive  Amelines  we  are  oden  under  to  deliver  the  soluAon  to  our  user  and  meet   regulatory  deadlines,  we  all  need  to  be  mindful  of  ensuring  that  the  deliveries  we  are   accountable  for  fit  into  the  overall  TOM  design   ! We  need  to  ensure  that  we  include  the  TOM  components  in  our  delivery  plans  so  that   appropriate  tollgates  are  accounted  for  and  proper  design  can  be  achieved.    We  can   accomplish  more  if  each  individual  understands  that  what  they  are  delivering  aligns   with  the  TOM  components  
  • 8. CDU  –  Target  OperaAng  Model   1) Customers / Business Partners Customers: §  CCRM Business Partners: §  LCD (General Council) §  Collateral Management Unit §  Credit Risk Management §  Information Technology §  Reference Data Services Vendors: §  Adsensa §  Orchestra Networks §  United Lex 2) Data §  Contract Reference Data §  Master Agreements §  Schedules §  Annexes §  Agreement Party §  Collateral Agreement §  Other reference data (e.g. counterparty, product, calendar, rating agency, clause library, data capture rules, etc..) 3) Processes §  Physical legal document OCR scanning, OCR correction, clause matching, and contract data capture §  Acquisition of legacy agreement data and reference data (client, product, etc.) from providers §  Validation and maintenance of contract data including event management (e.g. amendments) §  Maintenance of data quality rules and clause library Suppliers 4) Organization and People DMMS Framesoft Algo Insight Inputs Counterpart y List Legal Contracts Clause Library Other Ref Data Processes OCR Scanning, Correction, Matching, Capture Contract Data Validation, Enrichment, Capture Agreement Event Managemen t and Exceptions ! CDU Data Quality Unit −  3rd party provider (~24 FTEs) for OCR document scanning and data capture, mastering and ongoing maintenance of the agreement data −  3 FTEs to manage 3rd party provider 5) Applications and Technology ! DMMS for sourcing and storage of legal documents ! WordSensa (Adsensa) for legal agreement OCR scanning, clause matching, and data capture ! EBX5 (Orchestra Networks) for Master Data Management of contract data (acquisition, maintenance, distribution) Agreement Master Data Governance 6) Provider/Supplier Outputs Mastered Agreement Data Customers CCRM Quality/Perf. Reports ! Legal Contracts from DMMS ! Legacy Agreement data from Framesoft ! Legacy Collateral data from Algo ! Counterparty Reference Data from Insight
  • 9. CDU  –  ApplicaAon  Architecture   DMMS   Adsensa  Doc  Manipulator   Split,  Group,  Rename   Contract  Scans   &  Metadata   Bulk  Upload  Tool   Reference  Data  Hub   Orchestra   Networks   Clause  Matching   Auto  Match   User  Review  &   Correc*on   Data  Capture   Rules  Manager   Clause  Library   User  Review  and   Update   Amber  Document   (PDF)       EBX  UI   Comparison,  Enrichment,     Approvals,  Overrides,  Status     Distribu*on     User  Review  &   Correc*on   Expert   Dic*onary   XML  Load  &  Transforma*on  Service   Auto  load   Contract  txtXML  Document   OCR   Mul*-­‐En*ty  and  Amendments   Adsensa  Product  Suite   Wordsensa  Vision   CDU  DB   Reference  Data   Auto  Extract   User  Review  &   Correc*on   Data  Extract   Rules   Counterparty   FrameSo   Legal  En*ty   Product   ALGO   Other   9  
  • 10. CDU  –  Process  Model