SlideShare a Scribd company logo
CRISP-DM
Agile Approach to Data Mining Projects
Michał Łopuszyński
Warsaw Data Science Meetup, 2016.06.07
About me
I work at ICM UW•
Our group = Applied Data Analysis Lab•
Supercomputing centre, weather forecast , virtual library,
open science platform, visualization solutions, ...
•
Involved in modelling and data analysis projects from cosmology, medicine,
bioinformatics, quantum chemistry, biophysics, fluid dynamics, materials
science, social network analysis ...
•
Automatic information extraction from PDFs•
Text-mining in scientific literature•
Variety of application projects (analysis of court judgments, aviation,
deploying solutions on the big data stack Spark/Hadoop, trainings)
•
About me
adalab.icm.edu.pl
What is CRISP-DM?
Cross Industry Standard Process
for Data Mining
•
SPSS, Teradata, Daimler, OCHRA, NCR
Developed in 1996 by big players
in data analysis
•
•
I follow "CRISP-DM 1.0 Step-by-step data mining guide"•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Most popular methodology
for data-centric projects
See KDNuggets Polls•
Runner-up SEMMA•
I find it agile•
Introduces almost no overhead•
Emphasizes adaptive transitions
between project phases
•
2007, 2014
Business Understanding
Determine business objectives•
Resources (data!), risks, costs & benefits
Assess situation•
Ideally with quantitative success criteria
Determine data mining goals•
Estimate time line, budget, but also tools and
techniques
Develop project plan•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Business Understanding
Difficult!•
Often, you have to enter a new field•
You have to explain data science
limitations to non-experts
•
Source: http://xkcd.com/1425
No, performance will not be 100%•
We need much more data to train
an accurate model
•
For tomorrow, it is impossible•
Business Understanding – my DOs and DON'Ts
Have a lot of patience for vaguely defined problems•
Do not waste your time on ill-defined, unrealistic projects•
Learn to concretize or even reduce the scope of the initial idea•
Data sample•
Real-life use cases•
Quantitative success metrics•
Data Understanding
Collect initial data•
Persist results
Describe data•
Persist results
Explore data•
Carefully document problems and issues found!
Verify data quality•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Data Understanding – Validate Everything
<judgement id="...">
<date>3013-12-04 00:00:00.0 CET</date>
<publicationDate>2014-07-23 02:52:17.0 CEST</publicationDate>
<courtId>15250000</courtId>
<departmentId>503</departmentId>
<chairman>Małgorzata ...</chairman>
<judges>
<judge>Małgorzata ...</judge>
</judges>
...
</judgement>
<judgement id="...">
<date>2012-10-01 00:00:00.0 CEST</date>
<publicationDate>2014-12-31 18:15:05.0 CET</publicationDate>
<courtId>15450500</courtId>
<departmentId>6027</departmentId>
<judges>
<judge>Piotr ...</judge>
<judge>wskazał</judge>
<judge>czego wymaga art. 17a ust. 2 ustawy</judge>
...
</judges>
</judgement>
Data Understanding – Spot Anomalies
Histogram of certain smooth quantity measured using "precise equipment"
Explanation – effect of human interface between precise equipment & db
Data Understanding – Spot Anomalies
Secondary school examination (Matura) score distribution from Polish
Exploratory data analysis can reveal imperfections of conducted
experiment
Source: CKE Materials, Matura 2012
Data Understanding – my DOs and DON'Ts
Do not trust data quality estimates provided by your customer•
Verify as far as you can, if your data is correct, complete, coherent,
deduplicated, representative, independent, up-to-date, stationary
•
Understand anomalies and outliers•
Do not economize on this phase•
The earlier you discover issues with your data the better (yes, your data will
have issues!)
•
Data understanding leads to domain understanding, it will pay off in
the modelling phase
•
Investigate what sort of processing was applied to the raw data•
Data Preparation
Select data•
Clean data•
Generate derived attributes
Construct data•
Merge information from different sources
Integrate data•
Convert to format convenient for modelling
Format data•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Data Preparation
Tedious!•
Make, Drake
Use workflow tools to document, automate & parallelize data prep.•
classification-jsonl
data-aux/class-riffle
data-clean/joind-jsonl
data-aux/metad-riffle data-aux/priis-json data-aux/prinf-json
stat/basic stat/basic-fp7 stat/collab
metadata-jsonl projects-from-iis-jsonl projects-from-infspace-jsonlmetadata-extracted-jsonl
Oozie, Azkaban, Luigi, Airflow, ...
Data Preparation
Data understanding and preparation will usually consume half or
more of your project time!
•
20% 20%
14%
10% 10%10%
What % of time in your data mining project(s) is
spent on data cleaning and preparation?
8%
4%
25%
25%
39%
Percentage of responses
Percentageoftime
Source: M.A.Munson, A Study on the Importance of
and Time Spent Different Modeling Steps,
ACM SIGKDD Explorations Newsletter
13, 65-71 (2011)
Source: KDNuggets Poll 2003
Data Preparation – my DOs and DON'Ts
Use workflow tools to help you with the above•
Prepare your customer that data understanding and preparation
take considerable amount of time
•
Automate this phase as far as possible•
When merging multiple sources, track provenance of your data•
Modelling
Generate test design•
Feature eng., optimize model parameters
Build model•
Iterate the above
Assess model•
Assumptions, measure of accuracy
Select modelling technique•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Modelling – Tooling Selection
Where your model will be deployed?•
Do you need to distribute your
computations? (avoid!)
•
Breadth = performance, lots of general
purpose libraries and tooling, easy creation
of web services
Should I use general purpose language?•
C++
Java
C#
R
Matlab
Mathematica
Python
Scala
ClojureF#
BreadthDepth
(quality of general purpose tooling)
(qualityofdataanalysistooling)
Depth = easy data manipulation, latest
models and statistical techniques available
Should I use data analysis language?•
Can I afford a prototype?•
Modelling – my DOs and DON'Ts
Develop your model with deployment conditions in mind•
Allocate time for hyperparameter optimization•
• Whenever possible, peek inside your model and consult it with
domain expert
Assess feature importance•
Run your model on simulated data•
Be creative with your features (feature engineering)•
Esp. from textual data or time-series you can generate a lot of std. features•
Make conscious decision about missing data (NAs) and outliers (regression!)•
Evaluation
Review process•
To deploy or not to deploy?
Determine next steps• Determine next steps
Business success criteria fulfilled?
Evaluate results•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Evaluation – my DOs and DON'Ts
Work with the performance criteria dictated by your customer's
business model
•
Assess not only performance, but also practical aspects, related to
deployment, for example:
•
Training and prediction speed•
Robustness and maintainability
(tooling, dependence on other subsystems, library vs. homegrown code)
•
Watch out for data leakage, for example:•
Time series – mixing past and future•
Meaningful identifiers•
Other nasty ways of artificially introducing extra information, not available
in production
•
Deployment
Plan monitoring and maintenance•
Produce final report•
Plan deployment•
Collect lessons learned!
Review project•
01001110010101
011100100111000110
100101110101
100010011101001
10000000111000001
10000110110110
110000110010010001
DATA
Business
Understanding
Data
Understanding
Data
Preparation
Modelling
Evaluation
Deployment
Deployment – my DOs and DON'Ts
Read this paper, for excellent insights!
Thank you!
Questions?
@lopusz
Ad

More Related Content

What's hot (20)

Data Mining Technique - SEMMA
Data Mining Technique - SEMMAData Mining Technique - SEMMA
Data Mining Technique - SEMMA
Ashish Chandra Jha
 
Foundational Methodology for Data Science
Foundational Methodology for Data ScienceFoundational Methodology for Data Science
Foundational Methodology for Data Science
John B. Rollins, Ph.D.
 
Exploring the Data science Process
Exploring the Data science ProcessExploring the Data science Process
Exploring the Data science Process
Vishal Patel
 
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Edureka!
 
Predictive Analytics Project in Automotive Industry
Predictive Analytics Project in Automotive IndustryPredictive Analytics Project in Automotive Industry
Predictive Analytics Project in Automotive Industry
Matouš Havlena
 
A Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data ScienceA Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data Science
Mark West
 
H2O World - Top 10 Data Science Pitfalls - Mark Landry
H2O World - Top 10 Data Science Pitfalls - Mark LandryH2O World - Top 10 Data Science Pitfalls - Mark Landry
H2O World - Top 10 Data Science Pitfalls - Mark Landry
Sri Ambati
 
Data Visualization: Sales forecasting
Data Visualization: Sales forecastingData Visualization: Sales forecasting
Data Visualization: Sales forecasting
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Machine learning in action at Pipedrive
Machine learning in action at PipedriveMachine learning in action at Pipedrive
Machine learning in action at Pipedrive
André Karpištšenko
 
1. introduction to data science —
1. introduction to data science —1. introduction to data science —
1. introduction to data science —
swethaT16
 
Text Analytics for Legal work
Text Analytics for Legal workText Analytics for Legal work
Text Analytics for Legal work
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Data analysis
Data analysisData analysis
Data analysis
HarisRiaz25
 
840 plenary elder_using his laptop
840 plenary elder_using his laptop840 plenary elder_using his laptop
840 plenary elder_using his laptop
Rising Media, Inc.
 
Image Analytics In Healthcare
Image Analytics In HealthcareImage Analytics In Healthcare
Image Analytics In Healthcare
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Image Analytics: Caption Generation/Image Descriptions
Image Analytics: Caption Generation/Image DescriptionsImage Analytics: Caption Generation/Image Descriptions
Image Analytics: Caption Generation/Image Descriptions
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Machine Learning in Healthcare: A Case Study
Machine Learning in Healthcare: A Case StudyMachine Learning in Healthcare: A Case Study
Machine Learning in Healthcare: A Case Study
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Predictive Analytics: Advanced techniques in data mining
Predictive Analytics: Advanced techniques in data miningPredictive Analytics: Advanced techniques in data mining
Predictive Analytics: Advanced techniques in data mining
SAS Asia Pacific
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
Edureka!
 
1030 track 2 barrett_using our laptop
1030 track 2 barrett_using our laptop1030 track 2 barrett_using our laptop
1030 track 2 barrett_using our laptop
Rising Media, Inc.
 
Chatbots: Automated Conversational Model using Machine Learning
Chatbots: Automated Conversational Model using Machine LearningChatbots: Automated Conversational Model using Machine Learning
Chatbots: Automated Conversational Model using Machine Learning
AlgoAnalytics Financial Consultancy Pvt. Ltd.
 
Foundational Methodology for Data Science
Foundational Methodology for Data ScienceFoundational Methodology for Data Science
Foundational Methodology for Data Science
John B. Rollins, Ph.D.
 
Exploring the Data science Process
Exploring the Data science ProcessExploring the Data science Process
Exploring the Data science Process
Vishal Patel
 
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Data Analytics For Beginners | Introduction To Data Analytics | Data Analytic...
Edureka!
 
Predictive Analytics Project in Automotive Industry
Predictive Analytics Project in Automotive IndustryPredictive Analytics Project in Automotive Industry
Predictive Analytics Project in Automotive Industry
Matouš Havlena
 
A Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data ScienceA Practical-ish Introduction to Data Science
A Practical-ish Introduction to Data Science
Mark West
 
H2O World - Top 10 Data Science Pitfalls - Mark Landry
H2O World - Top 10 Data Science Pitfalls - Mark LandryH2O World - Top 10 Data Science Pitfalls - Mark Landry
H2O World - Top 10 Data Science Pitfalls - Mark Landry
Sri Ambati
 
Machine learning in action at Pipedrive
Machine learning in action at PipedriveMachine learning in action at Pipedrive
Machine learning in action at Pipedrive
André Karpištšenko
 
1. introduction to data science —
1. introduction to data science —1. introduction to data science —
1. introduction to data science —
swethaT16
 
840 plenary elder_using his laptop
840 plenary elder_using his laptop840 plenary elder_using his laptop
840 plenary elder_using his laptop
Rising Media, Inc.
 
Predictive Analytics: Advanced techniques in data mining
Predictive Analytics: Advanced techniques in data miningPredictive Analytics: Advanced techniques in data mining
Predictive Analytics: Advanced techniques in data mining
SAS Asia Pacific
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
Edureka!
 
1030 track 2 barrett_using our laptop
1030 track 2 barrett_using our laptop1030 track 2 barrett_using our laptop
1030 track 2 barrett_using our laptop
Rising Media, Inc.
 

Similar to CRISP-DM Agile Approach to Data Mining Projects (20)

WWV2015: Jibes Paul van der Hulst big data
WWV2015: Jibes Paul van der Hulst big dataWWV2015: Jibes Paul van der Hulst big data
WWV2015: Jibes Paul van der Hulst big data
webwinkelvakdag
 
Breed data scientists_ A Presentation.pptx
Breed data scientists_ A Presentation.pptxBreed data scientists_ A Presentation.pptx
Breed data scientists_ A Presentation.pptx
GautamPopli1
 
351315535-Module-1-Intro-to-Data-Science-pptx.pptx
351315535-Module-1-Intro-to-Data-Science-pptx.pptx351315535-Module-1-Intro-to-Data-Science-pptx.pptx
351315535-Module-1-Intro-to-Data-Science-pptx.pptx
XanGwaps
 
Data Science Introduction: Concepts, lifecycle, applications.pptx
Data Science Introduction: Concepts, lifecycle, applications.pptxData Science Introduction: Concepts, lifecycle, applications.pptx
Data Science Introduction: Concepts, lifecycle, applications.pptx
sumitkumar600840
 
OpenML data@Sheffield
OpenML data@SheffieldOpenML data@Sheffield
OpenML data@Sheffield
Joaquin Vanschoren
 
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
Ilkay Altintas, Ph.D.
 
Intro to Data Science for Non-Data Scientists
Intro to Data Science for Non-Data ScientistsIntro to Data Science for Non-Data Scientists
Intro to Data Science for Non-Data Scientists
Sri Ambati
 
Bridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable WorkflowsBridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable Workflows
Ilkay Altintas, Ph.D.
 
Data science 101 Masterclass
Data science 101 MasterclassData science 101 Masterclass
Data science 101 Masterclass
Ben Keen
 
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactData Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Dr. Sunil Kr. Pandey
 
Making an impact with data science
Making an impact  with data scienceMaking an impact  with data science
Making an impact with data science
Jordan Engbers
 
Data Scientists
 Data Scientists Data Scientists
Data Scientists
Leonid Zhukov
 
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your DataCloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera, Inc.
 
predictive analysis and usage in procurement ppt 2017
predictive analysis and usage in procurement  ppt 2017predictive analysis and usage in procurement  ppt 2017
predictive analysis and usage in procurement ppt 2017
Prashant Bhatmule
 
Machinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdfMachinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdf
SaketBansal9
 
Advanced Analytics and Data Science Expertise
Advanced Analytics and Data Science ExpertiseAdvanced Analytics and Data Science Expertise
Advanced Analytics and Data Science Expertise
SoftServe
 
Big Data on The Cloud
Big Data on The CloudBig Data on The Cloud
Big Data on The Cloud
Putchong Uthayopas
 
DataScience.pptx
DataScience.pptxDataScience.pptx
DataScience.pptx
M Vishnuvardhan Reddy
 
Harnessing Big Data_UCLA
Harnessing Big Data_UCLAHarnessing Big Data_UCLA
Harnessing Big Data_UCLA
Paul Barsch
 
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Ali Alkan
 
WWV2015: Jibes Paul van der Hulst big data
WWV2015: Jibes Paul van der Hulst big dataWWV2015: Jibes Paul van der Hulst big data
WWV2015: Jibes Paul van der Hulst big data
webwinkelvakdag
 
Breed data scientists_ A Presentation.pptx
Breed data scientists_ A Presentation.pptxBreed data scientists_ A Presentation.pptx
Breed data scientists_ A Presentation.pptx
GautamPopli1
 
351315535-Module-1-Intro-to-Data-Science-pptx.pptx
351315535-Module-1-Intro-to-Data-Science-pptx.pptx351315535-Module-1-Intro-to-Data-Science-pptx.pptx
351315535-Module-1-Intro-to-Data-Science-pptx.pptx
XanGwaps
 
Data Science Introduction: Concepts, lifecycle, applications.pptx
Data Science Introduction: Concepts, lifecycle, applications.pptxData Science Introduction: Concepts, lifecycle, applications.pptx
Data Science Introduction: Concepts, lifecycle, applications.pptx
sumitkumar600840
 
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
A Maturing Role of Workflows in the Presence of Heterogenous Computing Archit...
Ilkay Altintas, Ph.D.
 
Intro to Data Science for Non-Data Scientists
Intro to Data Science for Non-Data ScientistsIntro to Data Science for Non-Data Scientists
Intro to Data Science for Non-Data Scientists
Sri Ambati
 
Bridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable WorkflowsBridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable Workflows
Ilkay Altintas, Ph.D.
 
Data science 101 Masterclass
Data science 101 MasterclassData science 101 Masterclass
Data science 101 Masterclass
Ben Keen
 
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactData Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Dr. Sunil Kr. Pandey
 
Making an impact with data science
Making an impact  with data scienceMaking an impact  with data science
Making an impact with data science
Jordan Engbers
 
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your DataCloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera, Inc.
 
predictive analysis and usage in procurement ppt 2017
predictive analysis and usage in procurement  ppt 2017predictive analysis and usage in procurement  ppt 2017
predictive analysis and usage in procurement ppt 2017
Prashant Bhatmule
 
Machinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdfMachinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdf
SaketBansal9
 
Advanced Analytics and Data Science Expertise
Advanced Analytics and Data Science ExpertiseAdvanced Analytics and Data Science Expertise
Advanced Analytics and Data Science Expertise
SoftServe
 
Harnessing Big Data_UCLA
Harnessing Big Data_UCLAHarnessing Big Data_UCLA
Harnessing Big Data_UCLA
Paul Barsch
 
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Ali Alkan
 
Ad

More from Data Science Warsaw (20)

Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia SeahorseWizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Data Science Warsaw
 
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Data Science Warsaw
 
Online content popularity prediction
Online content popularity predictionOnline content popularity prediction
Online content popularity prediction
Data Science Warsaw
 
Rozwiązywanie problemów optymalizacyjnych
Rozwiązywanie problemów optymalizacyjnychRozwiązywanie problemów optymalizacyjnych
Rozwiązywanie problemów optymalizacyjnych
Data Science Warsaw
 
Ile informacji jest w danych?
Ile informacji jest w danych?Ile informacji jest w danych?
Ile informacji jest w danych?
Data Science Warsaw
 
Analiza języka naturalnego
Analiza języka naturalnegoAnaliza języka naturalnego
Analiza języka naturalnego
Data Science Warsaw
 
Otwarte Miasta
Otwarte MiastaOtwarte Miasta
Otwarte Miasta
Data Science Warsaw
 
How to build your own google
How to build your own googleHow to build your own google
How to build your own google
Data Science Warsaw
 
To się w ram ie nie zmieści
To się w ram ie nie zmieściTo się w ram ie nie zmieści
To się w ram ie nie zmieści
Data Science Warsaw
 
Azure - Duże zbiory w chmurze
Azure - Duże zbiory w chmurzeAzure - Duże zbiory w chmurze
Azure - Duże zbiory w chmurze
Data Science Warsaw
 
Data Science Warsaw
Data Science WarsawData Science Warsaw
Data Science Warsaw
Data Science Warsaw
 
Data science w ubezpieczeniach
Data science w ubezpieczeniachData science w ubezpieczeniach
Data science w ubezpieczeniach
Data Science Warsaw
 
As simple as Apache Spark
As simple as Apache SparkAs simple as Apache Spark
As simple as Apache Spark
Data Science Warsaw
 
Big Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Big  Data, Wearable, sztuczna inteligencja i ekonomia współpracyBig  Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Big Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Data Science Warsaw
 
Ask Data Anything
Ask Data AnythingAsk Data Anything
Ask Data Anything
Data Science Warsaw
 
Oracle Big Data Discovery - ludzka twarz Hadoop'a
Oracle Big Data Discovery - ludzka twarz Hadoop'aOracle Big Data Discovery - ludzka twarz Hadoop'a
Oracle Big Data Discovery - ludzka twarz Hadoop'a
Data Science Warsaw
 
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Data Science Warsaw
 
Data Exchange - the missing link in the big data value chain
Data Exchange - the missing link in the big data value chainData Exchange - the missing link in the big data value chain
Data Exchange - the missing link in the big data value chain
Data Science Warsaw
 
Metody logiczne w analizie danych
Metody logiczne w analizie danych Metody logiczne w analizie danych
Metody logiczne w analizie danych
Data Science Warsaw
 
Małe dane, duży wpływ - Dominik Batorski ICM
Małe dane, duży wpływ - Dominik Batorski ICMMałe dane, duży wpływ - Dominik Batorski ICM
Małe dane, duży wpływ - Dominik Batorski ICM
Data Science Warsaw
 
Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia SeahorseWizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Wizualne budowanie aplikacji na Sparku przy pomocy narzędzia Seahorse
Data Science Warsaw
 
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Neptune - narzędzie do monitorowania i zarządzania eksperymentami Machine Lea...
Data Science Warsaw
 
Online content popularity prediction
Online content popularity predictionOnline content popularity prediction
Online content popularity prediction
Data Science Warsaw
 
Rozwiązywanie problemów optymalizacyjnych
Rozwiązywanie problemów optymalizacyjnychRozwiązywanie problemów optymalizacyjnych
Rozwiązywanie problemów optymalizacyjnych
Data Science Warsaw
 
Big Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Big  Data, Wearable, sztuczna inteligencja i ekonomia współpracyBig  Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Big Data, Wearable, sztuczna inteligencja i ekonomia współpracy
Data Science Warsaw
 
Oracle Big Data Discovery - ludzka twarz Hadoop'a
Oracle Big Data Discovery - ludzka twarz Hadoop'aOracle Big Data Discovery - ludzka twarz Hadoop'a
Oracle Big Data Discovery - ludzka twarz Hadoop'a
Data Science Warsaw
 
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Geolokalizacja i analizy przestrzenne: trzy wymiary a ile pracy dla analityka!
Data Science Warsaw
 
Data Exchange - the missing link in the big data value chain
Data Exchange - the missing link in the big data value chainData Exchange - the missing link in the big data value chain
Data Exchange - the missing link in the big data value chain
Data Science Warsaw
 
Metody logiczne w analizie danych
Metody logiczne w analizie danych Metody logiczne w analizie danych
Metody logiczne w analizie danych
Data Science Warsaw
 
Małe dane, duży wpływ - Dominik Batorski ICM
Małe dane, duży wpływ - Dominik Batorski ICMMałe dane, duży wpływ - Dominik Batorski ICM
Małe dane, duży wpływ - Dominik Batorski ICM
Data Science Warsaw
 
Ad

Recently uploaded (20)

FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 

CRISP-DM Agile Approach to Data Mining Projects

  • 1. CRISP-DM Agile Approach to Data Mining Projects Michał Łopuszyński Warsaw Data Science Meetup, 2016.06.07
  • 2. About me I work at ICM UW• Our group = Applied Data Analysis Lab• Supercomputing centre, weather forecast , virtual library, open science platform, visualization solutions, ... • Involved in modelling and data analysis projects from cosmology, medicine, bioinformatics, quantum chemistry, biophysics, fluid dynamics, materials science, social network analysis ... • Automatic information extraction from PDFs• Text-mining in scientific literature• Variety of application projects (analysis of court judgments, aviation, deploying solutions on the big data stack Spark/Hadoop, trainings) • About me adalab.icm.edu.pl
  • 3. What is CRISP-DM? Cross Industry Standard Process for Data Mining • SPSS, Teradata, Daimler, OCHRA, NCR Developed in 1996 by big players in data analysis • • I follow "CRISP-DM 1.0 Step-by-step data mining guide"• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment Most popular methodology for data-centric projects See KDNuggets Polls• Runner-up SEMMA• I find it agile• Introduces almost no overhead• Emphasizes adaptive transitions between project phases • 2007, 2014
  • 4. Business Understanding Determine business objectives• Resources (data!), risks, costs & benefits Assess situation• Ideally with quantitative success criteria Determine data mining goals• Estimate time line, budget, but also tools and techniques Develop project plan• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 5. Business Understanding Difficult!• Often, you have to enter a new field• You have to explain data science limitations to non-experts • Source: http://xkcd.com/1425 No, performance will not be 100%• We need much more data to train an accurate model • For tomorrow, it is impossible•
  • 6. Business Understanding – my DOs and DON'Ts Have a lot of patience for vaguely defined problems• Do not waste your time on ill-defined, unrealistic projects• Learn to concretize or even reduce the scope of the initial idea• Data sample• Real-life use cases• Quantitative success metrics•
  • 7. Data Understanding Collect initial data• Persist results Describe data• Persist results Explore data• Carefully document problems and issues found! Verify data quality• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 8. Data Understanding – Validate Everything <judgement id="..."> <date>3013-12-04 00:00:00.0 CET</date> <publicationDate>2014-07-23 02:52:17.0 CEST</publicationDate> <courtId>15250000</courtId> <departmentId>503</departmentId> <chairman>Małgorzata ...</chairman> <judges> <judge>Małgorzata ...</judge> </judges> ... </judgement> <judgement id="..."> <date>2012-10-01 00:00:00.0 CEST</date> <publicationDate>2014-12-31 18:15:05.0 CET</publicationDate> <courtId>15450500</courtId> <departmentId>6027</departmentId> <judges> <judge>Piotr ...</judge> <judge>wskazał</judge> <judge>czego wymaga art. 17a ust. 2 ustawy</judge> ... </judges> </judgement>
  • 9. Data Understanding – Spot Anomalies Histogram of certain smooth quantity measured using "precise equipment" Explanation – effect of human interface between precise equipment & db
  • 10. Data Understanding – Spot Anomalies Secondary school examination (Matura) score distribution from Polish Exploratory data analysis can reveal imperfections of conducted experiment Source: CKE Materials, Matura 2012
  • 11. Data Understanding – my DOs and DON'Ts Do not trust data quality estimates provided by your customer• Verify as far as you can, if your data is correct, complete, coherent, deduplicated, representative, independent, up-to-date, stationary • Understand anomalies and outliers• Do not economize on this phase• The earlier you discover issues with your data the better (yes, your data will have issues!) • Data understanding leads to domain understanding, it will pay off in the modelling phase • Investigate what sort of processing was applied to the raw data•
  • 12. Data Preparation Select data• Clean data• Generate derived attributes Construct data• Merge information from different sources Integrate data• Convert to format convenient for modelling Format data• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 13. Data Preparation Tedious!• Make, Drake Use workflow tools to document, automate & parallelize data prep.• classification-jsonl data-aux/class-riffle data-clean/joind-jsonl data-aux/metad-riffle data-aux/priis-json data-aux/prinf-json stat/basic stat/basic-fp7 stat/collab metadata-jsonl projects-from-iis-jsonl projects-from-infspace-jsonlmetadata-extracted-jsonl Oozie, Azkaban, Luigi, Airflow, ...
  • 14. Data Preparation Data understanding and preparation will usually consume half or more of your project time! • 20% 20% 14% 10% 10%10% What % of time in your data mining project(s) is spent on data cleaning and preparation? 8% 4% 25% 25% 39% Percentage of responses Percentageoftime Source: M.A.Munson, A Study on the Importance of and Time Spent Different Modeling Steps, ACM SIGKDD Explorations Newsletter 13, 65-71 (2011) Source: KDNuggets Poll 2003
  • 15. Data Preparation – my DOs and DON'Ts Use workflow tools to help you with the above• Prepare your customer that data understanding and preparation take considerable amount of time • Automate this phase as far as possible• When merging multiple sources, track provenance of your data•
  • 16. Modelling Generate test design• Feature eng., optimize model parameters Build model• Iterate the above Assess model• Assumptions, measure of accuracy Select modelling technique• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 17. Modelling – Tooling Selection Where your model will be deployed?• Do you need to distribute your computations? (avoid!) • Breadth = performance, lots of general purpose libraries and tooling, easy creation of web services Should I use general purpose language?• C++ Java C# R Matlab Mathematica Python Scala ClojureF# BreadthDepth (quality of general purpose tooling) (qualityofdataanalysistooling) Depth = easy data manipulation, latest models and statistical techniques available Should I use data analysis language?• Can I afford a prototype?•
  • 18. Modelling – my DOs and DON'Ts Develop your model with deployment conditions in mind• Allocate time for hyperparameter optimization• • Whenever possible, peek inside your model and consult it with domain expert Assess feature importance• Run your model on simulated data• Be creative with your features (feature engineering)• Esp. from textual data or time-series you can generate a lot of std. features• Make conscious decision about missing data (NAs) and outliers (regression!)•
  • 19. Evaluation Review process• To deploy or not to deploy? Determine next steps• Determine next steps Business success criteria fulfilled? Evaluate results• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 20. Evaluation – my DOs and DON'Ts Work with the performance criteria dictated by your customer's business model • Assess not only performance, but also practical aspects, related to deployment, for example: • Training and prediction speed• Robustness and maintainability (tooling, dependence on other subsystems, library vs. homegrown code) • Watch out for data leakage, for example:• Time series – mixing past and future• Meaningful identifiers• Other nasty ways of artificially introducing extra information, not available in production •
  • 21. Deployment Plan monitoring and maintenance• Produce final report• Plan deployment• Collect lessons learned! Review project• 01001110010101 011100100111000110 100101110101 100010011101001 10000000111000001 10000110110110 110000110010010001 DATA Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment
  • 22. Deployment – my DOs and DON'Ts Read this paper, for excellent insights!