SlideShare a Scribd company logo
5 Data-Applied.com: Outliers
IntroductionOutliers are examples in a database with unusual propertiesThey can produce erroneous results and hence should be removedThe algorithm we will define, differs from a conventional nested loop outlier detection algorithm by an improved running time
Pseudo codeProcedure: Find OutliersInput: k, the number of nearest neighbours; n, the number of outliers to return; D, a set of examples in random order.Output: O, a set of outliers.Let maxdist(x, Y ) return the maximum distance between x and an example in Y .Let Closest(x, Y , k) return the k closest examples in Y to x.begin1.	 c <- 0 	// set the cut off for pruning to 02.	 O <- Null 	// initialize to the empty set3. 	while  B<- get-next-block(D) {// load a block of examples from D4. 		Neighbours(b) <- NULL  for all b in B
Pseudo code (contd.)5. 		for each d in D {6. 			for each b in B, b != d { 7.			 if |Neighbours(b)| < k or distance(b, d) < maxdist(b, Neighbours(b)) { 8. 			Neighbours(b)  <- Closest(b, Neighbours(b) U d, k)9. 			if score(Neighbours(b),b) < c {10. 			remove b from B11. 			}}}}12.		 O <- Top(B U O, n)	 // keep only the top n outliers13. 	 c <- min(score(o)) for all o in O // the cutoff is the score of the weakest outlier14. }15. return Oend
Outliers using Data Applied’s web interface
Step1: Selection of data
Step2: Selecting Outliers
Step 3: Result
Visit more self help tutorialsPick a tutorial of your choice and browse through it at your own pace.

More Related Content

PPTX
#OOP_D_ITS - 3rd - Pointer And References
Hadziq Fabroyir
 
PPTX
#OOP_D_ITS - 2nd - C++ Getting Started
Hadziq Fabroyir
 
PPT
Dynamic allocation
CGC Technical campus,Mohali
 
PDF
Haxe vs Unicode (en)
Ryusei Yamaguchi
 
PPTX
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Meghaj Mallick
 
PPTX
Wcbpijwbpij new
Hanokh Aloni
 
PDF
Chapter27 polymorphism-virtual-function-abstract-class
Deepak Singh
 
PPTX
Malloc() and calloc() in c
Mahesh Tibrewal
 
#OOP_D_ITS - 3rd - Pointer And References
Hadziq Fabroyir
 
#OOP_D_ITS - 2nd - C++ Getting Started
Hadziq Fabroyir
 
Dynamic allocation
CGC Technical campus,Mohali
 
Haxe vs Unicode (en)
Ryusei Yamaguchi
 
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Meghaj Mallick
 
Wcbpijwbpij new
Hanokh Aloni
 
Chapter27 polymorphism-virtual-function-abstract-class
Deepak Singh
 
Malloc() and calloc() in c
Mahesh Tibrewal
 

What's hot (19)

PPTX
Directed Acyclic Graph Representation of basic blocks
Mohammad Vaseem Akaram
 
PDF
R programming lab 1 - jupyter notebook
Ashwini Mathur
 
PDF
CS50 Lecture4
昀 李
 
PPTX
Ast 09
ClarkTony
 
PPTX
The dag representation of basic blocks
Shabeen Taj
 
PPTX
Pointers
Abhimanyu Mehta
 
PDF
Matlab bode diagram_instructions
Keihin de Mexico S.A. de C.V.
 
PDF
Pythonで機械学習入門以前
Kimikazu Kato
 
PDF
Codejunk Ignitesd
carlmanaster
 
PPT
(02) c sharp_tutorial
Satish Verma
 
PDF
15 - Scala. Dependent function type (Π-type)
Roman Brovko
 
PDF
Roadmap to Object Oriented Programming
ssuser6fc8b1
 
PPTX
Py9 3
ssuserd52ac2
 
PPT
COW
永泉 韩
 
PDF
Type-level programming
Dmytro Mitin
 
DOCX
Concatenation of two strings using class in c++
Swarup Boro
 
PDF
Building complex input screens
SV.CO
 
PPTX
Constructors
shravani2191
 
Directed Acyclic Graph Representation of basic blocks
Mohammad Vaseem Akaram
 
R programming lab 1 - jupyter notebook
Ashwini Mathur
 
CS50 Lecture4
昀 李
 
Ast 09
ClarkTony
 
The dag representation of basic blocks
Shabeen Taj
 
Pointers
Abhimanyu Mehta
 
Matlab bode diagram_instructions
Keihin de Mexico S.A. de C.V.
 
Pythonで機械学習入門以前
Kimikazu Kato
 
Codejunk Ignitesd
carlmanaster
 
(02) c sharp_tutorial
Satish Verma
 
15 - Scala. Dependent function type (Π-type)
Roman Brovko
 
Roadmap to Object Oriented Programming
ssuser6fc8b1
 
Type-level programming
Dmytro Mitin
 
Concatenation of two strings using class in c++
Swarup Boro
 
Building complex input screens
SV.CO
 
Constructors
shravani2191
 
Ad

Viewers also liked (20)

PPTX
RapidMiner: Setting Up A Process
DataminingTools Inc
 
PPT
Webmining Overview
DataminingTools Inc
 
PPT
PresentacióN De Quimica
guestf6a53c
 
PDF
Cinnamonhotel saigon 2013_01
cinnamonhotel
 
PPTX
LISP:Predicates in lisp
DataminingTools Inc
 
PPTX
R Environment
DataminingTools Inc
 
PPT
Excel Datamining Addin Intermediate
DataminingTools Inc
 
PPTX
Data Applied:Forecast
DataminingTools Inc
 
PPTX
R Statistics
DataminingTools Inc
 
PPTX
WEKA: Output Knowledge Representation
DataminingTools Inc
 
PPT
Facebook: An Innovative Influenza Pandemic Early Warning System
Chen Luo
 
PPT
Festivals Refuerzo
guest9536ef5
 
PPTX
Data Applied:Decision Trees
DataminingTools Inc
 
PPTX
MED dra Coding -MSSO
drabhishekpitti
 
KEY
Kidical Mass Presentation
Eugene SRTS
 
PPTX
LISP: Type specifiers in lisp
DataminingTools Inc
 
PDF
Bind How To
cntlinux
 
PPT
Paramount Search Partners
jjmcdermott
 
PPT
How To Make Pb J
spencer shanks
 
RapidMiner: Setting Up A Process
DataminingTools Inc
 
Webmining Overview
DataminingTools Inc
 
PresentacióN De Quimica
guestf6a53c
 
Cinnamonhotel saigon 2013_01
cinnamonhotel
 
LISP:Predicates in lisp
DataminingTools Inc
 
R Environment
DataminingTools Inc
 
Excel Datamining Addin Intermediate
DataminingTools Inc
 
Data Applied:Forecast
DataminingTools Inc
 
R Statistics
DataminingTools Inc
 
WEKA: Output Knowledge Representation
DataminingTools Inc
 
Facebook: An Innovative Influenza Pandemic Early Warning System
Chen Luo
 
Festivals Refuerzo
guest9536ef5
 
Data Applied:Decision Trees
DataminingTools Inc
 
MED dra Coding -MSSO
drabhishekpitti
 
Kidical Mass Presentation
Eugene SRTS
 
LISP: Type specifiers in lisp
DataminingTools Inc
 
Bind How To
cntlinux
 
Paramount Search Partners
jjmcdermott
 
How To Make Pb J
spencer shanks
 
Ad

Similar to Data Applied:Outliers (20)

PPTX
Anomaly Detection
DataminingTools Inc
 
PPTX
Anomaly Detection
guest0edcaf
 
PPTX
Anomaly Detection
Datamining Tools
 
PDF
Data wrangling week 10
Ferdin Joe John Joseph PhD
 
PPTX
Project PPT
Dhaarna Singh
 
PDF
Detection of Outliers in Large Dataset using Distributed Approach
Editor IJMTER
 
PDF
Multiple Linear Regression Models in Outlier Detection
IJORCS
 
PDF
Unsupervised Distance Based Detection of Outliers by using Anti-hubs
IRJET Journal
 
PPTX
Vectorise all the things - long version.pptx
JodieBurchell1
 
PPT
3.7 outlier analysis
Krish_ver2
 
PPT
Lecture slides week14-15
Shani729
 
PPT
Chap10 Anomaly Detection
guest76d673
 
PPT
Data cleaning-outlier-detection
Chathurangi Shyalika
 
PDF
Outlier Detection Using Unsupervised Learning on High Dimensional Data
IJERA Editor
 
PDF
Anomaly detection : QuantUniversity Workshop
QuantUniversity
 
PPTX
Vectorise all the things
JodieBurchell1
 
PPTX
Chapter 10 Anomaly Detection
Khalid Elshafie
 
PDF
Anomaly detection Meetup Slides
QuantUniversity
 
PDF
Outlier Detection using Reverse Neares Neighbor for Unsupervised Data
ijtsrd
 
PDF
Anomaly detection: Core Techniques and Advances in Big Data and Deep Learning
QuantUniversity
 
Anomaly Detection
DataminingTools Inc
 
Anomaly Detection
guest0edcaf
 
Anomaly Detection
Datamining Tools
 
Data wrangling week 10
Ferdin Joe John Joseph PhD
 
Project PPT
Dhaarna Singh
 
Detection of Outliers in Large Dataset using Distributed Approach
Editor IJMTER
 
Multiple Linear Regression Models in Outlier Detection
IJORCS
 
Unsupervised Distance Based Detection of Outliers by using Anti-hubs
IRJET Journal
 
Vectorise all the things - long version.pptx
JodieBurchell1
 
3.7 outlier analysis
Krish_ver2
 
Lecture slides week14-15
Shani729
 
Chap10 Anomaly Detection
guest76d673
 
Data cleaning-outlier-detection
Chathurangi Shyalika
 
Outlier Detection Using Unsupervised Learning on High Dimensional Data
IJERA Editor
 
Anomaly detection : QuantUniversity Workshop
QuantUniversity
 
Vectorise all the things
JodieBurchell1
 
Chapter 10 Anomaly Detection
Khalid Elshafie
 
Anomaly detection Meetup Slides
QuantUniversity
 
Outlier Detection using Reverse Neares Neighbor for Unsupervised Data
ijtsrd
 
Anomaly detection: Core Techniques and Advances in Big Data and Deep Learning
QuantUniversity
 

More from DataminingTools Inc (20)

PPTX
Terminology Machine Learning
DataminingTools Inc
 
PPTX
Techniques Machine Learning
DataminingTools Inc
 
PPTX
Machine learning Introduction
DataminingTools Inc
 
PPTX
Areas of machine leanring
DataminingTools Inc
 
PPTX
AI: Planning and AI
DataminingTools Inc
 
PPTX
AI: Logic in AI 2
DataminingTools Inc
 
PPTX
AI: Logic in AI
DataminingTools Inc
 
PPTX
AI: Learning in AI 2
DataminingTools Inc
 
PPTX
AI: Learning in AI
DataminingTools Inc
 
PPTX
AI: Introduction to artificial intelligence
DataminingTools Inc
 
PPTX
AI: Belief Networks
DataminingTools Inc
 
PPTX
AI: AI & Searching
DataminingTools Inc
 
PPTX
AI: AI & Problem Solving
DataminingTools Inc
 
PPTX
Data Mining: Text and web mining
DataminingTools Inc
 
PPTX
Data Mining: Outlier analysis
DataminingTools Inc
 
PPTX
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
PPTX
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
PPTX
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
PPTX
Data warehouse and olap technology
DataminingTools Inc
 
PPTX
Data Mining: Data processing
DataminingTools Inc
 
Terminology Machine Learning
DataminingTools Inc
 
Techniques Machine Learning
DataminingTools Inc
 
Machine learning Introduction
DataminingTools Inc
 
Areas of machine leanring
DataminingTools Inc
 
AI: Planning and AI
DataminingTools Inc
 
AI: Logic in AI 2
DataminingTools Inc
 
AI: Logic in AI
DataminingTools Inc
 
AI: Learning in AI 2
DataminingTools Inc
 
AI: Learning in AI
DataminingTools Inc
 
AI: Introduction to artificial intelligence
DataminingTools Inc
 
AI: Belief Networks
DataminingTools Inc
 
AI: AI & Searching
DataminingTools Inc
 
AI: AI & Problem Solving
DataminingTools Inc
 
Data Mining: Text and web mining
DataminingTools Inc
 
Data Mining: Outlier analysis
DataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
Data warehouse and olap technology
DataminingTools Inc
 
Data Mining: Data processing
DataminingTools Inc
 

Recently uploaded (20)

PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PPTX
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
PPTX
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PPTX
Simple and concise overview about Quantum computing..pptx
mughal641
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PPTX
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
PDF
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PPTX
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PPTX
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
Simple and concise overview about Quantum computing..pptx
mughal641
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 

Data Applied:Outliers

  • 2. IntroductionOutliers are examples in a database with unusual propertiesThey can produce erroneous results and hence should be removedThe algorithm we will define, differs from a conventional nested loop outlier detection algorithm by an improved running time
  • 3. Pseudo codeProcedure: Find OutliersInput: k, the number of nearest neighbours; n, the number of outliers to return; D, a set of examples in random order.Output: O, a set of outliers.Let maxdist(x, Y ) return the maximum distance between x and an example in Y .Let Closest(x, Y , k) return the k closest examples in Y to x.begin1. c <- 0 // set the cut off for pruning to 02. O <- Null // initialize to the empty set3. while B<- get-next-block(D) {// load a block of examples from D4. Neighbours(b) <- NULL for all b in B
  • 4. Pseudo code (contd.)5. for each d in D {6. for each b in B, b != d { 7. if |Neighbours(b)| < k or distance(b, d) < maxdist(b, Neighbours(b)) { 8. Neighbours(b) <- Closest(b, Neighbours(b) U d, k)9. if score(Neighbours(b),b) < c {10. remove b from B11. }}}}12. O <- Top(B U O, n) // keep only the top n outliers13. c <- min(score(o)) for all o in O // the cutoff is the score of the weakest outlier14. }15. return Oend
  • 5. Outliers using Data Applied’s web interface
  • 9. Visit more self help tutorialsPick a tutorial of your choice and browse through it at your own pace.
  • 10. The tutorials section is free, self-guiding and will not involve any additional support.
  • 11. Visit us at www.dataminingtools.net