SlideShare a Scribd company logo
Data Con LA 2022 - Using Google trends data to build product recommendations
Presented by: Mike Limcaco
Contributions: Lexi Flynn & Bryan Rutkowski
2022 August 13
DataCon LA 2022
Trends To Recommendations
Using Google trends data to build product recommendations
https://www.themoviedb.org/
https://developer.apple.com/design/human-interface-guidelines/components/system-experiences/top-shelf/
Featured Content
How can we tap into what’s trending &
continuously promote new, interesting and
relevant content?
1. Aggregate trending search interest
2. Turn these into smart searches against our product catalog(s)
3. Filter, sort and rank to further refine results
Leverage Google-Unique Data & APIs
To Drive Personalized Discovery
Data Signals
Aggregated search trend data across
geographic focus areas
Retail Search
Power your ecommerce site or
application with Google-quality
search capabilities
Vertex AI Matching Engine
Use innovative semantic matching
features to improve search results
Data Signals
Aggregated search trend data across
geographic focus areas
Retail Search
Power your ecommerce site or
application with Google-quality
search capabilities
Vertex AI Matching Engine
Use innovative semantic matching
features to improve search results
Leverage Google-Unique Data & APIs
To Drive Personalized Discovery
What is BigQuery Data Signals?
Google Trends
Data Signals
BigQuery Public
Datasets
Program
Insights for Everyone
Marketing
How do I optimize my paid media spend
when it comes to search term bidding?
Merchandising & Demand Forecasting
How can I understand demand trends to
make better assortment planning decisions?
Executives
How is the business performing across all of
our markets? Against competitors?
Supply Chain
How do I manage supply chain logistics and
distribute inventory better?
https://datasignals.looker.com/embed/dashboards/11
Data Signals
Aggregated search trend data across
geographic focus areas
Retail Search
Power your ecommerce site or
application with Google-quality
search capabilities
Vertex AI Matching Engine
Use innovative semantic matching
features to improve search results
Leverage Google-Unique Data & APIs
To Drive Personalized Discovery
Assistant
Text search
Google Cloud Retail Search
High-Quality Product Search Results as a Service
Typeahead
Product Catalog
User Events, Logs
Custom LTR Models
Query Understanding
Web + Structured Index
Pricing Updates
Business / Config Rules
Your
Team
Retail
Search
Data Signals
Aggregated search trend data across
geographic focus areas
Retail Search
Power your ecommerce site or
application with Google-quality
search capabilities
Vertex AI Matching Engine
Use innovative semantic matching
features to improve search results
Leverage Google-Unique Data & APIs
To Drive Personalized Discovery
Google Cloud Vertex AI: Matching Engine
Scalable & cost-effective Vector similarity matching service
Low Latency
Find nearest neighbors in milliseconds
Scalable
Scales to billions of vectors
Cost Effective
Requires fewer VMs to serve the same workload
● 1/4th the CPU consumption of faiss
● 1/3rd the memory consumption of nmslib Google’s technology (labelled ScaNN) compared
with popular ANN services
Scalable Nearest Neighbors
https://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
1. Training Data
Labeled Pairs
Query:
“Shakespeare
Tragedy”
Putting it all together
Signal
Gather trending search
data (Trends) via Google
Cloud BigQuery
Enrich
Leverage AI / NLP
services to enrich the
term (entity processing)
Search
Search your product
catalog with enriched
terms
Refine
Refine results by scoring
against additional
semantic relevance
Putting it all together
Signal
Gather trending search
data (Trends) via Google
Cloud BigQuery
Enrich
Leverage AI / NLP
services to enrich the
term (entity processing)
Search
Search your product
catalog with enriched
terms
Refine
Refine results by scoring
against additional
semantic relevance
BigQuery Vertex AI / Retail Search Vertex AI
Natural Language
Google Data Signals (BQ)
Search Term 1 | Location | DateTime
Search Term 2 | Location | DateTime
Search Term ...
Extract entities
Salience
Wikipedia / KG
BigQuery
Filter &
Enrichment
Refine
End User or
App Experience
Product Catalog
1B 3
Catalog-ID 1 | Title | Description
Catalog-ID 2 | Title | Description
. ..
Terms
Enriched
Terms
Enriched Search (Example Only):
select Catalog-ID from Catalog where
Metadata like ‘<Search Term>’ and
Genre = “<Genre>”
Semantically Relevant
Video Watch List
Search
Retail AI
Search
2
Natural
Language API
Vertex AI
Vector Similarity
1A
Putting it all together
Example
Example: Man United
Wikipedia: Manchester United Football Club, commonly referred to as Man United, or
simply United, is a professional football club based in the Old Trafford area of
Manchester, England. The club competes in the Premier League, the top division in
the English football league system.
https://trends.google.com/trends/explore?geo=US-CA-803&q=man%20united
https://en.wikipedia.org/wiki/Manchester_United_F.C.
Trending in Los Angeles
“Manchester United”
Retail
Ticketing & Live Events
Video / OTT Streaming
You might like …
Video / OTT: Trends Influencing Top Shelf
1. Respond to community search trends / interest in “Man United”
○ Sports team touring and visiting Los Angeles
2. Generate search candidates against sample Catalog
(movielens.org)
○ Return Movies & Products involving Manchester United FC
3. Create a tailored “Recommended / Hot” Shelf on App Landing page
○ Filter to include Products that are thematically related (sports,
football / soccer, documentary, action etc)
Enrich Search
Signal Refine
Enrich Search
Signal Refine
SELECT
*
FROM
`bigquery-public-data.google_trends.top_terms`
WHERE
refresh_date = DATE_SUB(CURRENT_DATE(), INTERVAL 1 DAY) and
dma_name = 'Los Angeles CA'
ORDER BY
week DESC,
rank ASC
https://cloud.google.com/bigquery/docs/sandbox
https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/google-search-trends
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Enrich Search
Signal Refine
Search
Signal Refine
Enrich
Optional: Enrich the Catalog Search
$ gcloud ml language analyze-entities --content="Man United vs. Liverpool"
{
"entities": [
{
…
"metadata": {
"mid": "/m/050fh",
"wikipedia_url": "https://en.wikipedia.org/wiki/Manchester_United_F.C."
},
"name": "Man United",
"salience": 0.8100557,
"type": "ORGANIZATION"
}...
"metadata": {
"mid": "/m/04ltf",
"wikipedia_url": "https://en.wikipedia.org/wiki/Liverpool_F.C."
}..
https://cloud.google.com/sdk/gcloud/reference/ml
Search
Signal Refine
Enrich
Enrich
Signal Refine
Search
{
"id": "103661",
"title": "United",
"description": "United is based on the true story of Manchester United's
legendary Busby Babes, the youngest side ever to win the
Football League and the 1958 Munich Air Crash that claimed
eight of the their number. …."
"tags": [... "football (soccer)", "manchester united",
"historical event", "sports documentary"]
. . ..
}
Example catalog (extract)
https://movielens.org/
https://www.themoviedb.org/
https://console.cloud.google.com/ai/retail
my-bucket/movies/catalog/data.json
https://console.cloud.google.com/ai/retail
“Man United”
https://console.cloud.google.com/ai/retail
”Man United” related video
content & movies where core
metadata matches (token
match) but there is content
here that is potentially
thematically “distant”
https://console.cloud.google.com/ai/retail
Enrich
Signal Refine
Search
Enrich Search
Signal Refine
"United is based on the true story of Manchester
United's legendary Busby Babes”
"Iron Man and Captain America battle to keep the
Red Skull and his triggerman, Taskmaster, from
unleashing an army”
"The Invincible Iron Man and the Incredible Hulk
must join forces to save the Earth from its
greatest threat yet”
Encoder
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
[-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …]
[8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …]
[-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …]
"United is based on the true story of Manchester
United's legendary Busby Babes”
"Iron Man and Captain America battle to keep the
Red Skull and his triggerman, Taskmaster, from
unleashing an army”
"The Invincible Iron Man and the Incredible Hulk
must join forces to save the Earth from its
greatest threat yet”
Encoder
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Input: Catalog Text Fragments (60K)
● Movie Title
● Movie Description
● Genres
● Tags
1
"United is based on the true story of Manchester
United's legendary Busby Babes”
"Iron Man and Captain America battle to keep the
Red Skull and his triggerman, Taskmaster, from
unleashing an army”
"The Invincible Iron Man and the Incredible Hulk
must join forces to save the Earth from its
greatest threat yet”
Encoder
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Input: Catalog Text Fragments (60K)
● Movie Title
● Movie Description
● Genres
● Tags
[-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …]
[8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …]
[-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …]
Output: Embeddings (Vectors)
● Example: Leverage sentence-t5-base
● 60K Vectors @ 768 Dimensions
NLP Model (Transformer)
Prebuilt (HuggingFace, TFHub)
Custom (Two Tower, Swivel)
1 2
"United is based on the true story of Manchester
United's legendary Busby Babes”
"Iron Man and Captain America battle to keep the
Red Skull and his triggerman, Taskmaster, from
unleashing an army”
"The Invincible Iron Man and the Incredible Hulk
must join forces to save the Earth from its
greatest threat yet”
Encoder
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Input: Catalog Text Fragments (60K)
● Movie Title
● Movie Description
● Genres
● Tags
[-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …]
[8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …]
[-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …]
Output: Embeddings (Vectors)
● Example: Leverage sentence-t5-base
● 60K Vectors @ 768 Dimensions
NLP Model (Transformer)
Prebuilt (HuggingFace, TFHub)
Custom (Two Tower, Swivel)
1 2
3
Vertex AI
Matching
Engine
Index & Deploy!
Data Con LA 2022 - Using Google trends data to build product recommendations
from google.cloud import aiplatform
aiplatform.init()
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>)
from sentence_transformers import SentenceTransformer
NLP_MODEL = 'sentence-transformers/sentence-t5-base'
model = SentenceTransformer(NLP_MODEL)
search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase
query_sentences = [search_term]
embedding = model.encode(query_sentences)
DEPLOYED_INDEX_ID = "my_movielens_ndx_001"
response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID,
queries=embedding,
num_neighbors=10)
print(response)
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Python >= 3.6
from google.cloud import aiplatform
aiplatform.init()
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>)
from sentence_transformers import SentenceTransformer
NLP_MODEL = 'sentence-transformers/sentence-t5-base'
model = SentenceTransformer(NLP_MODEL)
search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase
query_sentences = [search_term]
embedding = model.encode(query_sentences)
DEPLOYED_INDEX_ID = "my_movielens_ndx_001"
response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID,
queries=embedding,
num_neighbors=10)
print(response)
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Python >= 3.6
from google.cloud import aiplatform
aiplatform.init()
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>)
from sentence_transformers import SentenceTransformer
NLP_MODEL = 'sentence-transformers/sentence-t5-base'
model = SentenceTransformer(NLP_MODEL)
search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase
query_sentences = [search_term]
embedding = model.encode(query_sentences)
DEPLOYED_INDEX_ID = "my_movielens_ndx_001"
response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID,
queries=embedding,
num_neighbors=10)
print(response)
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Python >= 3.6
from google.cloud import aiplatform
aiplatform.init()
my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>)
from sentence_transformers import SentenceTransformer
NLP_MODEL = 'sentence-transformers/sentence-t5-base'
model = SentenceTransformer(NLP_MODEL)
search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase
query_sentences = [search_term]
embedding = model.encode(query_sentences)
DEPLOYED_INDEX_ID = "my_movielens_ndx_001"
response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID,
queries=embedding,
num_neighbors=10)
print(response)
https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine
Python >= 3.6
[[MatchNeighbor(id='movielens-68194', distance=0.16755491495132446),
MatchNeighbor(id='movielens-185867', distance=0.16838324069976807),
MatchNeighbor(id='movielens-195337', distance=0.1685701608657837),
MatchNeighbor(id='movielens-145921', distance=0.17106527090072632),
MatchNeighbor(id='movielens-81676', distance=0.17208701372146606),
MatchNeighbor(id='movielens-103661', distance=0.17541170120239258),
MatchNeighbor(id='movielens-183153', distance=0.18686127662658691),
MatchNeighbor(id='movielens-147436', distance=0.1904624104499817),
MatchNeighbor(id='movielens-176405', distance=0.1911325454711914),
MatchNeighbor(id='movielens-6618', distance=0.1932288408279419)]]
Cosine Distance = 1 — Cosine Similarity
Man United
Iron Men
Search: Gather Candidates
Refine: Semantic Match & Add
Add Candidate Title
● Semantic Match = YES
Delete Candidate Title
● Semantic Match = NO
Data Con LA 2022 - Using Google trends data to build product recommendations
Discussion
Commentary & Summary
1. Overall Strategy
a. Trending Data Signals (Search) to “seed” Content Recommendations
b. Search Engine (Google Cloud Retail Search AI) to gather candidates
c. Vector Similarity (Google Cloud Vertex AI) to rank sort candidates
2. Part of larger solution!
a. Ex: Use collaborative filtering (or other) to gauge user interest / engagement
b. Good for cold-start or content-heavy approach
3. More details available
a. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/google-search-trends
b. https://cloud.google.com/solutions/retail-product-discovery
c. https://cloud.google.com/vertex-ai/docs/matching-engine/overview
Thank You
https://cloud.google.com/contact
Ad

More Related Content

Similar to Data Con LA 2022 - Using Google trends data to build product recommendations (20)

SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptxSEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
DM Solvers
 
Tom Critchlow - Data Feed SEO & Advanced Site Architecture
Tom Critchlow - Data Feed SEO & Advanced Site ArchitectureTom Critchlow - Data Feed SEO & Advanced Site Architecture
Tom Critchlow - Data Feed SEO & Advanced Site Architecture
auexpo Conference
 
Ps Appliance Overview
Ps Appliance OverviewPs Appliance Overview
Ps Appliance Overview
tvstay
 
Search engine
Search engineSearch engine
Search engine
Wasif Khan
 
search engine optimisation
search engine optimisationsearch engine optimisation
search engine optimisation
philsmears
 
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
ALTER WAY
 
Attention Allocation - from Search to Social
Attention Allocation - from Search to SocialAttention Allocation - from Search to Social
Attention Allocation - from Search to Social
mediaintransition
 
Google A Wonderfull World 20586
Google A Wonderfull World 20586Google A Wonderfull World 20586
Google A Wonderfull World 20586
dobrecf
 
Elasticsearch : petit déjeuner du 13 mars 2014
Elasticsearch : petit déjeuner du 13 mars 2014Elasticsearch : petit déjeuner du 13 mars 2014
Elasticsearch : petit déjeuner du 13 mars 2014
ALTER WAY
 
Big data on_aws in korea by abhishek sinha (lunch and learn)
Big data on_aws in korea by abhishek sinha (lunch and learn)Big data on_aws in korea by abhishek sinha (lunch and learn)
Big data on_aws in korea by abhishek sinha (lunch and learn)
Amazon Web Services Korea
 
Door Of Internet
Door Of InternetDoor Of Internet
Door Of Internet
Kuldeep Padhiyar
 
Oxford Seo.Com Presentation
Oxford Seo.Com PresentationOxford Seo.Com Presentation
Oxford Seo.Com Presentation
Igorgold
 
Real-time big data analytics based on product recommendations case study
Real-time big data analytics based on product recommendations case studyReal-time big data analytics based on product recommendations case study
Real-time big data analytics based on product recommendations case study
deep.bi
 
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Neo4j
 
Introduction To Search - SEO 101
Introduction To Search - SEO 101Introduction To Search - SEO 101
Introduction To Search - SEO 101
Andrew Zarick
 
Mashups & Data Visualizations: The New Breed of Web Applications
Mashups & Data Visualizations: The New Breed of Web ApplicationsMashups & Data Visualizations: The New Breed of Web Applications
Mashups & Data Visualizations: The New Breed of Web Applications
Darlene Fichter
 
SEOMoz The Beginners Guide To SEO
SEOMoz The Beginners Guide To SEOSEOMoz The Beginners Guide To SEO
SEOMoz The Beginners Guide To SEO
FlutterbyBarb
 
Data Strategy
Data StrategyData Strategy
Data Strategy
Anthony Moor
 
Web2.0.2012 - lesson 8 - Google world
Web2.0.2012 - lesson 8 - Google worldWeb2.0.2012 - lesson 8 - Google world
Web2.0.2012 - lesson 8 - Google world
Carlo Vaccari
 
10 Things You Don't Know about Structured Data
10 Things You Don't Know about Structured Data10 Things You Don't Know about Structured Data
10 Things You Don't Know about Structured Data
Martha van Berkel
 
SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptxSEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
SEO (SEARCH ENGINE OPTIMIZATION) AND DIGITAL MARKETING.pptx
DM Solvers
 
Tom Critchlow - Data Feed SEO & Advanced Site Architecture
Tom Critchlow - Data Feed SEO & Advanced Site ArchitectureTom Critchlow - Data Feed SEO & Advanced Site Architecture
Tom Critchlow - Data Feed SEO & Advanced Site Architecture
auexpo Conference
 
Ps Appliance Overview
Ps Appliance OverviewPs Appliance Overview
Ps Appliance Overview
tvstay
 
search engine optimisation
search engine optimisationsearch engine optimisation
search engine optimisation
philsmears
 
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
Séminaire Big Data Alter Way - Elasticsearch - octobre 2014
ALTER WAY
 
Attention Allocation - from Search to Social
Attention Allocation - from Search to SocialAttention Allocation - from Search to Social
Attention Allocation - from Search to Social
mediaintransition
 
Google A Wonderfull World 20586
Google A Wonderfull World 20586Google A Wonderfull World 20586
Google A Wonderfull World 20586
dobrecf
 
Elasticsearch : petit déjeuner du 13 mars 2014
Elasticsearch : petit déjeuner du 13 mars 2014Elasticsearch : petit déjeuner du 13 mars 2014
Elasticsearch : petit déjeuner du 13 mars 2014
ALTER WAY
 
Big data on_aws in korea by abhishek sinha (lunch and learn)
Big data on_aws in korea by abhishek sinha (lunch and learn)Big data on_aws in korea by abhishek sinha (lunch and learn)
Big data on_aws in korea by abhishek sinha (lunch and learn)
Amazon Web Services Korea
 
Oxford Seo.Com Presentation
Oxford Seo.Com PresentationOxford Seo.Com Presentation
Oxford Seo.Com Presentation
Igorgold
 
Real-time big data analytics based on product recommendations case study
Real-time big data analytics based on product recommendations case studyReal-time big data analytics based on product recommendations case study
Real-time big data analytics based on product recommendations case study
deep.bi
 
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Graphs & Big Data - Philip Rathle and Andreas Kollegger @ Big Data Science Me...
Neo4j
 
Introduction To Search - SEO 101
Introduction To Search - SEO 101Introduction To Search - SEO 101
Introduction To Search - SEO 101
Andrew Zarick
 
Mashups & Data Visualizations: The New Breed of Web Applications
Mashups & Data Visualizations: The New Breed of Web ApplicationsMashups & Data Visualizations: The New Breed of Web Applications
Mashups & Data Visualizations: The New Breed of Web Applications
Darlene Fichter
 
SEOMoz The Beginners Guide To SEO
SEOMoz The Beginners Guide To SEOSEOMoz The Beginners Guide To SEO
SEOMoz The Beginners Guide To SEO
FlutterbyBarb
 
Web2.0.2012 - lesson 8 - Google world
Web2.0.2012 - lesson 8 - Google worldWeb2.0.2012 - lesson 8 - Google world
Web2.0.2012 - lesson 8 - Google world
Carlo Vaccari
 
10 Things You Don't Know about Structured Data
10 Things You Don't Know about Structured Data10 Things You Don't Know about Structured Data
10 Things You Don't Know about Structured Data
Martha van Berkel
 

More from Data Con LA (20)

Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and AtlasData Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and AtlasData Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA 2022 - Building Field-level Lineage from Scratch for Modern Data ...
Data Con LA
 
Ad

Recently uploaded (20)

VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Ad

Data Con LA 2022 - Using Google trends data to build product recommendations

  • 2. Presented by: Mike Limcaco Contributions: Lexi Flynn & Bryan Rutkowski 2022 August 13 DataCon LA 2022 Trends To Recommendations Using Google trends data to build product recommendations
  • 5. How can we tap into what’s trending & continuously promote new, interesting and relevant content? 1. Aggregate trending search interest 2. Turn these into smart searches against our product catalog(s) 3. Filter, sort and rank to further refine results
  • 6. Leverage Google-Unique Data & APIs To Drive Personalized Discovery Data Signals Aggregated search trend data across geographic focus areas Retail Search Power your ecommerce site or application with Google-quality search capabilities Vertex AI Matching Engine Use innovative semantic matching features to improve search results
  • 7. Data Signals Aggregated search trend data across geographic focus areas Retail Search Power your ecommerce site or application with Google-quality search capabilities Vertex AI Matching Engine Use innovative semantic matching features to improve search results Leverage Google-Unique Data & APIs To Drive Personalized Discovery
  • 8. What is BigQuery Data Signals? Google Trends Data Signals BigQuery Public Datasets Program Insights for Everyone Marketing How do I optimize my paid media spend when it comes to search term bidding? Merchandising & Demand Forecasting How can I understand demand trends to make better assortment planning decisions? Executives How is the business performing across all of our markets? Against competitors? Supply Chain How do I manage supply chain logistics and distribute inventory better?
  • 10. Data Signals Aggregated search trend data across geographic focus areas Retail Search Power your ecommerce site or application with Google-quality search capabilities Vertex AI Matching Engine Use innovative semantic matching features to improve search results Leverage Google-Unique Data & APIs To Drive Personalized Discovery
  • 11. Assistant Text search Google Cloud Retail Search High-Quality Product Search Results as a Service Typeahead Product Catalog User Events, Logs Custom LTR Models Query Understanding Web + Structured Index Pricing Updates Business / Config Rules Your Team Retail Search
  • 12. Data Signals Aggregated search trend data across geographic focus areas Retail Search Power your ecommerce site or application with Google-quality search capabilities Vertex AI Matching Engine Use innovative semantic matching features to improve search results Leverage Google-Unique Data & APIs To Drive Personalized Discovery
  • 13. Google Cloud Vertex AI: Matching Engine Scalable & cost-effective Vector similarity matching service Low Latency Find nearest neighbors in milliseconds Scalable Scales to billions of vectors Cost Effective Requires fewer VMs to serve the same workload ● 1/4th the CPU consumption of faiss ● 1/3rd the memory consumption of nmslib Google’s technology (labelled ScaNN) compared with popular ANN services Scalable Nearest Neighbors https://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
  • 16. Putting it all together Signal Gather trending search data (Trends) via Google Cloud BigQuery Enrich Leverage AI / NLP services to enrich the term (entity processing) Search Search your product catalog with enriched terms Refine Refine results by scoring against additional semantic relevance
  • 17. Putting it all together Signal Gather trending search data (Trends) via Google Cloud BigQuery Enrich Leverage AI / NLP services to enrich the term (entity processing) Search Search your product catalog with enriched terms Refine Refine results by scoring against additional semantic relevance BigQuery Vertex AI / Retail Search Vertex AI Natural Language
  • 18. Google Data Signals (BQ) Search Term 1 | Location | DateTime Search Term 2 | Location | DateTime Search Term ... Extract entities Salience Wikipedia / KG BigQuery Filter & Enrichment Refine End User or App Experience Product Catalog 1B 3 Catalog-ID 1 | Title | Description Catalog-ID 2 | Title | Description . .. Terms Enriched Terms Enriched Search (Example Only): select Catalog-ID from Catalog where Metadata like ‘<Search Term>’ and Genre = “<Genre>” Semantically Relevant Video Watch List Search Retail AI Search 2 Natural Language API Vertex AI Vector Similarity 1A Putting it all together
  • 20. Example: Man United Wikipedia: Manchester United Football Club, commonly referred to as Man United, or simply United, is a professional football club based in the Old Trafford area of Manchester, England. The club competes in the Premier League, the top division in the English football league system. https://trends.google.com/trends/explore?geo=US-CA-803&q=man%20united https://en.wikipedia.org/wiki/Manchester_United_F.C.
  • 21. Trending in Los Angeles “Manchester United” Retail Ticketing & Live Events Video / OTT Streaming You might like …
  • 22. Video / OTT: Trends Influencing Top Shelf 1. Respond to community search trends / interest in “Man United” ○ Sports team touring and visiting Los Angeles 2. Generate search candidates against sample Catalog (movielens.org) ○ Return Movies & Products involving Manchester United FC 3. Create a tailored “Recommended / Hot” Shelf on App Landing page ○ Filter to include Products that are thematically related (sports, football / soccer, documentary, action etc)
  • 25. SELECT * FROM `bigquery-public-data.google_trends.top_terms` WHERE refresh_date = DATE_SUB(CURRENT_DATE(), INTERVAL 1 DAY) and dma_name = 'Los Angeles CA' ORDER BY week DESC, rank ASC https://cloud.google.com/bigquery/docs/sandbox https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/google-search-trends
  • 31. Optional: Enrich the Catalog Search $ gcloud ml language analyze-entities --content="Man United vs. Liverpool" { "entities": [ { … "metadata": { "mid": "/m/050fh", "wikipedia_url": "https://en.wikipedia.org/wiki/Manchester_United_F.C." }, "name": "Man United", "salience": 0.8100557, "type": "ORGANIZATION" }... "metadata": { "mid": "/m/04ltf", "wikipedia_url": "https://en.wikipedia.org/wiki/Liverpool_F.C." }.. https://cloud.google.com/sdk/gcloud/reference/ml
  • 34. { "id": "103661", "title": "United", "description": "United is based on the true story of Manchester United's legendary Busby Babes, the youngest side ever to win the Football League and the 1958 Munich Air Crash that claimed eight of the their number. …." "tags": [... "football (soccer)", "manchester united", "historical event", "sports documentary"] . . .. } Example catalog (extract) https://movielens.org/ https://www.themoviedb.org/
  • 39. ”Man United” related video content & movies where core metadata matches (token match) but there is content here that is potentially thematically “distant” https://console.cloud.google.com/ai/retail
  • 42. "United is based on the true story of Manchester United's legendary Busby Babes” "Iron Man and Captain America battle to keep the Red Skull and his triggerman, Taskmaster, from unleashing an army” "The Invincible Iron Man and the Incredible Hulk must join forces to save the Earth from its greatest threat yet” Encoder https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine [-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …] [8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …] [-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …]
  • 43. "United is based on the true story of Manchester United's legendary Busby Babes” "Iron Man and Captain America battle to keep the Red Skull and his triggerman, Taskmaster, from unleashing an army” "The Invincible Iron Man and the Incredible Hulk must join forces to save the Earth from its greatest threat yet” Encoder https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Input: Catalog Text Fragments (60K) ● Movie Title ● Movie Description ● Genres ● Tags 1
  • 44. "United is based on the true story of Manchester United's legendary Busby Babes” "Iron Man and Captain America battle to keep the Red Skull and his triggerman, Taskmaster, from unleashing an army” "The Invincible Iron Man and the Incredible Hulk must join forces to save the Earth from its greatest threat yet” Encoder https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Input: Catalog Text Fragments (60K) ● Movie Title ● Movie Description ● Genres ● Tags [-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …] [8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …] [-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …] Output: Embeddings (Vectors) ● Example: Leverage sentence-t5-base ● 60K Vectors @ 768 Dimensions NLP Model (Transformer) Prebuilt (HuggingFace, TFHub) Custom (Two Tower, Swivel) 1 2
  • 45. "United is based on the true story of Manchester United's legendary Busby Babes” "Iron Man and Captain America battle to keep the Red Skull and his triggerman, Taskmaster, from unleashing an army” "The Invincible Iron Man and the Incredible Hulk must join forces to save the Earth from its greatest threat yet” Encoder https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Input: Catalog Text Fragments (60K) ● Movie Title ● Movie Description ● Genres ● Tags [-2.70270444e-02, -3.13250013e-02, 6.68615196e-03 …] [8.240270444e-03, -5.11250213e-02, 7.68615196e-03 …] [-7.60240444e-01, 4.28360013e-03, 7.68615196e-03 …] Output: Embeddings (Vectors) ● Example: Leverage sentence-t5-base ● 60K Vectors @ 768 Dimensions NLP Model (Transformer) Prebuilt (HuggingFace, TFHub) Custom (Two Tower, Swivel) 1 2 3 Vertex AI Matching Engine Index & Deploy!
  • 47. from google.cloud import aiplatform aiplatform.init() my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>) from sentence_transformers import SentenceTransformer NLP_MODEL = 'sentence-transformers/sentence-t5-base' model = SentenceTransformer(NLP_MODEL) search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase query_sentences = [search_term] embedding = model.encode(query_sentences) DEPLOYED_INDEX_ID = "my_movielens_ndx_001" response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID, queries=embedding, num_neighbors=10) print(response) https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Python >= 3.6
  • 48. from google.cloud import aiplatform aiplatform.init() my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>) from sentence_transformers import SentenceTransformer NLP_MODEL = 'sentence-transformers/sentence-t5-base' model = SentenceTransformer(NLP_MODEL) search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase query_sentences = [search_term] embedding = model.encode(query_sentences) DEPLOYED_INDEX_ID = "my_movielens_ndx_001" response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID, queries=embedding, num_neighbors=10) print(response) https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Python >= 3.6
  • 49. from google.cloud import aiplatform aiplatform.init() my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>) from sentence_transformers import SentenceTransformer NLP_MODEL = 'sentence-transformers/sentence-t5-base' model = SentenceTransformer(NLP_MODEL) search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase query_sentences = [search_term] embedding = model.encode(query_sentences) DEPLOYED_INDEX_ID = "my_movielens_ndx_001" response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID, queries=embedding, num_neighbors=10) print(response) https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Python >= 3.6
  • 50. from google.cloud import aiplatform aiplatform.init() my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=<ID Here>) from sentence_transformers import SentenceTransformer NLP_MODEL = 'sentence-transformers/sentence-t5-base' model = SentenceTransformer(NLP_MODEL) search_term = 'Man United' # OPTIONAL: add text data from Enrichment Phase query_sentences = [search_term] embedding = model.encode(query_sentences) DEPLOYED_INDEX_ID = "my_movielens_ndx_001" response = my_index_endpoint.match(deployed_index_id=DEPLOYED_INDEX_ID, queries=embedding, num_neighbors=10) print(response) https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/official/matching_engine Python >= 3.6
  • 51. [[MatchNeighbor(id='movielens-68194', distance=0.16755491495132446), MatchNeighbor(id='movielens-185867', distance=0.16838324069976807), MatchNeighbor(id='movielens-195337', distance=0.1685701608657837), MatchNeighbor(id='movielens-145921', distance=0.17106527090072632), MatchNeighbor(id='movielens-81676', distance=0.17208701372146606), MatchNeighbor(id='movielens-103661', distance=0.17541170120239258), MatchNeighbor(id='movielens-183153', distance=0.18686127662658691), MatchNeighbor(id='movielens-147436', distance=0.1904624104499817), MatchNeighbor(id='movielens-176405', distance=0.1911325454711914), MatchNeighbor(id='movielens-6618', distance=0.1932288408279419)]] Cosine Distance = 1 — Cosine Similarity Man United Iron Men
  • 53. Refine: Semantic Match & Add Add Candidate Title ● Semantic Match = YES Delete Candidate Title ● Semantic Match = NO
  • 56. Commentary & Summary 1. Overall Strategy a. Trending Data Signals (Search) to “seed” Content Recommendations b. Search Engine (Google Cloud Retail Search AI) to gather candidates c. Vector Similarity (Google Cloud Vertex AI) to rank sort candidates 2. Part of larger solution! a. Ex: Use collaborative filtering (or other) to gauge user interest / engagement b. Good for cold-start or content-heavy approach 3. More details available a. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/google-search-trends b. https://cloud.google.com/solutions/retail-product-discovery c. https://cloud.google.com/vertex-ai/docs/matching-engine/overview