This document provides an introduction to data mining concepts and techniques. It discusses why data mining is needed due to the massive growth of data, defines data mining as the extraction of patterns from large data sets, and outlines the data mining process. A variety of data types that can be mined are described, including relational, transactional, time-series, text and web data. The document also covers major data mining functionalities like classification, clustering, association rule mining and trend analysis. Top 10 popular data mining algorithms are listed.
This document provides an introduction to data mining concepts and techniques. It discusses why data mining is needed due to the massive growth of data. It defines data mining as the extraction of interesting patterns from large datasets. The document outlines the key steps in the knowledge discovery process and how data mining fits within business intelligence applications. It also describes different types of data that can be mined and popular data mining algorithms.
The document provides an overview of the data mining concepts and techniques course offered at the University of Illinois at Urbana-Champaign. It discusses the motivation for data mining due to abundant data collection and the need for knowledge discovery. It also describes common data mining functionalities like classification, clustering, association rule mining and the most popular algorithms used.
This document introduces data mining concepts and techniques. It defines data mining as the process of discovering interesting patterns from large amounts of data. The document outlines several data mining functionalities including classification, clustering, association rule mining, and outlier detection. It also discusses popular data mining algorithms, major issues in data mining, and provides a brief history of the data mining field and community.
This document provides an overview of data mining concepts and techniques. It discusses how data mining has evolved from traditional data analysis due to the massive amounts of data now available. It defines data mining as the extraction of interesting patterns from large datasets. The document also outlines several data mining functionalities including classification, clustering, association rule mining, and outlier detection. It concludes by identifying the top 10 most popular data mining algorithms.
This document provides an overview of data mining concepts and techniques courses offered at the University of Illinois at Urbana-Champaign. It describes two courses - CS412 which covers introductory topics in data warehousing and mining and CS512 which covers more advanced data mining principles and algorithms. The document also provides brief introductions to data mining definitions, processes, functionalities, types of data that can be mined, and popular algorithms.
The document provides an introduction to the concept of data mining. It discusses the evolution of data analysis techniques from empirical to computational to data-driven approaches. Data mining is presented as a natural evolution to analyze massive data sets and discover useful patterns. Key aspects of data mining covered include its functionality, types of data and knowledge that can be mined, major issues, and its relationship to other fields such as machine learning, statistics, and databases.
Unit 1 (Chapter-1) on data mining concepts.pptPadmajaLaksh
This document provides an introduction to data mining concepts. It discusses why data mining is important due to the massive growth of data. It defines data mining as the automated analysis of large datasets to discover hidden patterns and unknown correlations. The document presents a multi-dimensional view of data mining, including the types of data that can be mined, the patterns that can be discovered, techniques used, and applications. It provides an overview of the key concepts in data mining.
The document provides an introduction to data mining. It discusses the growth of data from terabytes to petabytes and how data mining can help extract knowledge from large datasets. The document outlines the evolution of sciences from empirical to theoretical to computational and now data-driven. It also describes the evolution of database technology and defines data mining as the process of discovering interesting patterns from large amounts of data. The key steps of the knowledge discovery process are discussed.
Jiawei Han, Micheline Kamber and Jian Pei
Data Mining: Concepts and Techniques, 3rd ed.
The Morgan Kaufmann Series in Data Management Systems
Morgan Kaufmann Publishers, July 2011. ISBN 978-0123814791
The document provides an overview of data mining concepts and techniques. It introduces data mining, describing it as the process of discovering interesting patterns or knowledge from large amounts of data. It discusses why data mining is necessary due to the explosive growth of data and how it relates to other fields like machine learning, statistics, and database technology. Additionally, it covers different types of data that can be mined, functionalities of data mining like classification and prediction, and classifications of data mining systems.
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated process of discovering patterns and knowledge from large data sets. The chapter outlines several key aspects of data mining, including the types of data that can be mined, the patterns that can be discovered, the technologies used, and its applications across various domains.
This document provides an introduction to data mining concepts and techniques. It discusses why data mining has become important due to the massive growth of digital data. Data mining aims to extract useful patterns from large datasets through techniques like generalization, association analysis, classification, and cluster analysis. It can be applied to many types of data and has uses in domains such as business, science, and healthcare to gain insights and make predictions.
01Introduction to data mining chapter 1.pptadmsoyadm4
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated extraction of meaningful patterns from large data sets, and notes it draws on techniques from machine learning, statistics, pattern recognition, and database systems. The chapter outlines different types of data that can be mined, patterns that can be discovered, and applications of data mining in various domains including business, science, and on the web.
This document provides an introduction to data mining concepts and techniques. It discusses why data mining has become important due to the massive growth of digital data. Data mining aims to extract useful patterns from large datasets through techniques like generalization, association analysis, classification, and cluster analysis. It can be applied to many types of data and has uses in domains such as business, science, and healthcare to help analyze data and discover useful knowledge.
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated extraction of meaningful patterns from large data sets, and notes it draws on techniques from machine learning, statistics, pattern recognition, and database systems. The chapter outlines different types of data that can be mined, patterns that can be discovered, and applications of data mining in various domains including business, science, and on the web.
This document provides an overview of data mining concepts and techniques from the third edition of the textbook "Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei. It introduces why data mining is important due to the massive growth of data, defines data mining, and discusses the multi-dimensional nature of data mining including the types of data, patterns, techniques and applications. The chapter also covers data mining functions such as generalization, association analysis, classification, and cluster analysis.
We introduce the Gaussian process (GP) modeling module developed within the UQLab software framework. The novel design of the GP-module aims at providing seamless integration of GP modeling into any uncertainty quantification workflow, as well as a standalone surrogate modeling tool. We first briefly present the key mathematical tools on the basis of GP modeling (a.k.a. Kriging), as well as the associated theoretical and computational framework. We then provide an extensive overview of the available features of the software and demonstrate its flexibility and user-friendliness. Finally, we showcase the usage and the performance of the software on several applications borrowed from different fields of engineering. These include a basic surrogate of a well-known analytical benchmark function; a hierarchical Kriging example applied to wind turbine aero-servo-elastic simulations and a more complex geotechnical example that requires a non-stationary, user-defined correlation function. The GP-module, like the rest of the scientific code that is shipped with UQLab, is open source (BSD license).
The document provides an introduction to the concept of data mining. It discusses the evolution of data analysis techniques from empirical to computational to data-driven approaches. Data mining is presented as a natural evolution to analyze massive data sets and discover useful patterns. Key aspects of data mining covered include its functionality, types of data and knowledge that can be mined, major issues, and its relationship to other fields such as machine learning, statistics, and databases.
Unit 1 (Chapter-1) on data mining concepts.pptPadmajaLaksh
This document provides an introduction to data mining concepts. It discusses why data mining is important due to the massive growth of data. It defines data mining as the automated analysis of large datasets to discover hidden patterns and unknown correlations. The document presents a multi-dimensional view of data mining, including the types of data that can be mined, the patterns that can be discovered, techniques used, and applications. It provides an overview of the key concepts in data mining.
The document provides an introduction to data mining. It discusses the growth of data from terabytes to petabytes and how data mining can help extract knowledge from large datasets. The document outlines the evolution of sciences from empirical to theoretical to computational and now data-driven. It also describes the evolution of database technology and defines data mining as the process of discovering interesting patterns from large amounts of data. The key steps of the knowledge discovery process are discussed.
Jiawei Han, Micheline Kamber and Jian Pei
Data Mining: Concepts and Techniques, 3rd ed.
The Morgan Kaufmann Series in Data Management Systems
Morgan Kaufmann Publishers, July 2011. ISBN 978-0123814791
The document provides an overview of data mining concepts and techniques. It introduces data mining, describing it as the process of discovering interesting patterns or knowledge from large amounts of data. It discusses why data mining is necessary due to the explosive growth of data and how it relates to other fields like machine learning, statistics, and database technology. Additionally, it covers different types of data that can be mined, functionalities of data mining like classification and prediction, and classifications of data mining systems.
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated process of discovering patterns and knowledge from large data sets. The chapter outlines several key aspects of data mining, including the types of data that can be mined, the patterns that can be discovered, the technologies used, and its applications across various domains.
This document provides an introduction to data mining concepts and techniques. It discusses why data mining has become important due to the massive growth of digital data. Data mining aims to extract useful patterns from large datasets through techniques like generalization, association analysis, classification, and cluster analysis. It can be applied to many types of data and has uses in domains such as business, science, and healthcare to gain insights and make predictions.
01Introduction to data mining chapter 1.pptadmsoyadm4
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated extraction of meaningful patterns from large data sets, and notes it draws on techniques from machine learning, statistics, pattern recognition, and database systems. The chapter outlines different types of data that can be mined, patterns that can be discovered, and applications of data mining in various domains including business, science, and on the web.
This document provides an introduction to data mining concepts and techniques. It discusses why data mining has become important due to the massive growth of digital data. Data mining aims to extract useful patterns from large datasets through techniques like generalization, association analysis, classification, and cluster analysis. It can be applied to many types of data and has uses in domains such as business, science, and healthcare to help analyze data and discover useful knowledge.
This chapter introduces data mining and discusses its rise due to the massive growth of digital data. It describes data mining as the automated extraction of meaningful patterns from large data sets, and notes it draws on techniques from machine learning, statistics, pattern recognition, and database systems. The chapter outlines different types of data that can be mined, patterns that can be discovered, and applications of data mining in various domains including business, science, and on the web.
This document provides an overview of data mining concepts and techniques from the third edition of the textbook "Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei. It introduces why data mining is important due to the massive growth of data, defines data mining, and discusses the multi-dimensional nature of data mining including the types of data, patterns, techniques and applications. The chapter also covers data mining functions such as generalization, association analysis, classification, and cluster analysis.
We introduce the Gaussian process (GP) modeling module developed within the UQLab software framework. The novel design of the GP-module aims at providing seamless integration of GP modeling into any uncertainty quantification workflow, as well as a standalone surrogate modeling tool. We first briefly present the key mathematical tools on the basis of GP modeling (a.k.a. Kriging), as well as the associated theoretical and computational framework. We then provide an extensive overview of the available features of the software and demonstrate its flexibility and user-friendliness. Finally, we showcase the usage and the performance of the software on several applications borrowed from different fields of engineering. These include a basic surrogate of a well-known analytical benchmark function; a hierarchical Kriging example applied to wind turbine aero-servo-elastic simulations and a more complex geotechnical example that requires a non-stationary, user-defined correlation function. The GP-module, like the rest of the scientific code that is shipped with UQLab, is open source (BSD license).
☁️ GDG Cloud Munich: Build With AI Workshop - Introduction to Vertex AI! ☁️
Join us for an exciting #BuildWithAi workshop on the 28th of April, 2025 at the Google Office in Munich!
Dive into the world of AI with our "Introduction to Vertex AI" session, presented by Google Cloud expert Randy Gupta.
its all about Artificial Intelligence(Ai) and Machine Learning and not on advanced level you can study before the exam or can check for some information on Ai for project
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
It can be divided into fluid statics, the study of various fluids at rest, and fluid dynamics.
Fluid statics, also known as hydrostatics, is the study of fluids at rest, specifically when there's no relative motion between fluid particles. It focuses on the conditions under which fluids are in stable equilibrium and doesn't involve fluid motion.
Fluid kinematics is the branch of fluid mechanics that focuses on describing and analyzing the motion of fluids, such as liquids and gases, without considering the forces that cause the motion. It deals with the geometrical and temporal aspects of fluid flow, including velocity and acceleration. Fluid dynamics, on the other hand, considers the forces acting on the fluid.
Fluid dynamics is the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic.
Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is devoted to this approach. Particle image velocimetry, an experimental method for visualizing and analyzing fluid flow, also takes advantage of the highly visual nature of fluid flow.
Fundamentally, every fluid mechanical system is assumed to obey the basic laws :
Conservation of mass
Conservation of energy
Conservation of momentum
The continuum assumption
For example, the assumption that mass is conserved means that for any fixed control volume (for example, a spherical volume)—enclosed by a control surface—the rate of change of the mass contained in that volume is equal to the rate at which mass is passing through the surface from outside to inside, minus the rate at which mass is passing from inside to outside. This can be expressed as an equation in integral form over the control volume.
The continuum assumption is an idealization of continuum mechanics under which fluids can be treated as continuous, even though, on a microscopic scale, they are composed of molecules. Under the continuum assumption, macroscopic (observed/measurable) properties such as density, pressure, temperature, and bulk velocity are taken to be well-defined at "infinitesimal" volume elements—small in comparison to the characteristic length scale of the system, but large in comparison to molecular length scale
The Fluke 925 is a vane anemometer, a handheld device designed to measure wind speed, air flow (volume), and temperature. It features a separate sensor and display unit, allowing greater flexibility and ease of use in tight or hard-to-reach spaces. The Fluke 925 is particularly suitable for HVAC (heating, ventilation, and air conditioning) maintenance in both residential and commercial buildings, offering a durable and cost-effective solution for routine airflow diagnostics.
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfMohamedAbdelkader115
Glad to be one of only 14 members inside Kuwait to hold this credential.
Please check the members inside kuwait from this link:
https://www.rics.org/networking/find-a-member.html?firstname=&lastname=&town=&country=Kuwait&member_grade=(AssocRICS)&expert_witness=&accrediation=&page=1
This paper proposes a shoulder inverse kinematics (IK) technique. Shoulder complex is comprised of the sternum, clavicle, ribs, scapula, humerus, and four joints.
1. April 18, 2024 Data Mining: Concepts and Techniques 1
Chapter 1. Introduction
Motivation: Why data mining?
What is data mining?
Data Mining: On what kind of data?
Data mining functionality
Classification of data mining systems
Top-10 most popular data mining algorithms
Major issues in data mining
Overview of the course
2. April 18, 2024 Data Mining: Concepts and Techniques 2
Why Data Mining?
The Explosive Growth of Data: from terabytes to petabytes
Data collection and data availability
Automated data collection tools, database systems, Web,
computerized society
Major sources of abundant data
Business: Web, e-commerce, transactions, stocks, …
Science: Remote sensing, bioinformatics, scientific simulation, …
Society and everyone: news, digital cameras, YouTube
We are drowning in data, but starving for knowledge!
“Necessity is the mother of invention”—Data mining—Automated
analysis of massive data sets
3. April 18, 2024 Data Mining: Concepts and Techniques 3
Evolution of Sciences
Before 1600, empirical science
1600-1950s, theoretical science
Each discipline has grown a theoretical component. Theoretical models often
motivate experiments and generalize our understanding.
1950s-1990s, computational science
Over the last 50 years, most disciplines have grown a third, computational branch
(e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
Computational Science traditionally meant simulation. It grew out of our inability to
find closed-form solutions for complex mathematical models.
1990-now, data science
The flood of data from new scientific instruments and simulations
The ability to economically store and manage petabytes of data online
The Internet and computing Grid that makes all these archives universally accessible
Scientific info. management, acquisition, organization, query, and visualization tasks
scale almost linearly with data volumes. Data mining is a major new challenge!
Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science,
Comm. ACM, 45(11): 50-54, Nov. 2002
4. April 18, 2024 Data Mining: Concepts and Techniques 4
Evolution of Database Technology
1960s:
Data collection, database creation, IMS and network DBMS
1970s:
Relational data model, relational DBMS implementation
1980s:
RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
Application-oriented DBMS (spatial, scientific, engineering, etc.)
1990s:
Data mining, data warehousing, multimedia databases, and Web
databases
2000s
Stream data management and mining
Data mining and its applications
Web technology (XML, data integration) and global information systems
5. April 18, 2024 Data Mining: Concepts and Techniques 5
What Is Data Mining?
Data mining (knowledge discovery from data)
Extraction of interesting (non-trivial, implicit, previously
unknown and potentially useful) patterns or knowledge from
huge amount of data
Data mining: a misnomer?
Alternative names
Knowledge discovery (mining) in databases (KDD), knowledge
extraction, data/pattern analysis, data archeology, data
dredging, information harvesting, business intelligence, etc.
Watch out: Is everything “data mining”?
Simple search and query processing
(Deductive) expert systems
6. April 18, 2024 Data Mining: Concepts and Techniques 6
Knowledge Discovery (KDD) Process
Data mining—core of
knowledge discovery
process
Data Cleaning
Data Integration
Databases
Data Warehouse
Task-relevant Data
Selection
Data Mining
Pattern Evaluation
7. April 18, 2024 Data Mining: Concepts and Techniques 7
Data Mining and Business Intelligence
Increasing potential
to support
business decisions End User
Business
Analyst
Data
Analyst
DBA
Decision
Making
Data Presentation
Visualization Techniques
Data Mining
Information Discovery
Data Exploration
Statistical Summary, Querying, and Reporting
Data Preprocessing/Integration, Data Warehouses
Data Sources
Paper, Files, Web documents, Scientific experiments, Database Systems
8. April 18, 2024 Data Mining: Concepts and Techniques 8
Data Mining: Confluence of Multiple Disciplines
Data Mining
Database
Technology Statistics
Machine
Learning
Pattern
Recognition
Algorithm
Other
Disciplines
Visualization
9. April 18, 2024 Data Mining: Concepts and Techniques 9
Why Not Traditional Data Analysis?
Tremendous amount of data
Algorithms must be highly scalable to handle such as tera-bytes of
data
High-dimensionality of data
Micro-array may have tens of thousands of dimensions
High complexity of data
Data streams and sensor data
Time-series data, temporal data, sequence data
Structure data, graphs, social networks and multi-linked data
Heterogeneous databases and legacy databases
Spatial, spatiotemporal, multimedia, text and Web data
Software programs, scientific simulations
New and sophisticated applications
10. April 18, 2024 Data Mining: Concepts and Techniques 10
Multi-Dimensional View of Data Mining
Data to be mined
Relational, data warehouse, transactional, stream, object-
oriented/relational, active, spatial, time-series, text, multi-media,
heterogeneous, legacy, WWW
Knowledge to be mined
Characterization, discrimination, association, classification, clustering,
trend/deviation, outlier analysis, etc.
Multiple/integrated functions and mining at multiple levels
Techniques utilized
Database-oriented, data warehouse (OLAP), machine learning, statistics,
visualization, etc.
Applications adapted
Retail, telecommunication, banking, fraud analysis, bio-data mining, stock
market analysis, text mining, Web mining, etc.
11. April 18, 2024 Data Mining: Concepts and Techniques 11
Data Mining: Classification Schemes
General functionality
Descriptive data mining
Predictive data mining
Different views lead to different classifications
Data view: Kinds of data to be mined
Knowledge view: Kinds of knowledge to be discovered
Method view: Kinds of techniques utilized
Application view: Kinds of applications adapted
12. April 18, 2024 Data Mining: Concepts and Techniques 12
Data Mining: On What Kinds of Data?
Database-oriented data sets and applications
Relational database, data warehouse, transactional database
Advanced data sets and advanced applications
Data streams and sensor data
Time-series data, temporal data, sequence data (incl. bio-sequences)
Structure data, graphs, social networks and multi-linked data
Object-relational databases
Heterogeneous databases and legacy databases
Spatial data and spatiotemporal data
Multimedia database
Text databases
The World-Wide Web
13. April 18, 2024 Data Mining: Concepts and Techniques 13
Data Mining Functionalities
Multidimensional concept description: Characterization and
discrimination
Generalize, summarize, and contrast data characteristics, e.g.,
dry vs. wet regions
Frequent patterns, association, correlation vs. causality
Diaper Beer [0.5%, 75%] (Correlation or causality?)
Classification and prediction
Construct models (functions) that describe and distinguish
classes or concepts for future prediction
E.g., classify countries based on (climate), or classify cars
based on (gas mileage)
Predict some unknown or missing numerical values
14. April 18, 2024 Data Mining: Concepts and Techniques 14
Data Mining Functionalities (2)
Cluster analysis
Class label is unknown: Group data to form new classes, e.g.,
cluster houses to find distribution patterns
Maximizing intra-class similarity & minimizing interclass similarity
Outlier analysis
Outlier: Data object that does not comply with the general behavior
of the data
Noise or exception? Useful in fraud detection, rare events analysis
Trend and evolution analysis
Trend and deviation: e.g., regression analysis
Sequential pattern mining: e.g., digital camera large SD memory
Periodicity analysis
Similarity-based analysis
Other pattern-directed or statistical analyses
15. April 18, 2024 Data Mining: Concepts and Techniques 15
Top-10 Most Popular DM Algorithms:
18 Identified Candidates (I)
Classification
#1. C4.5: Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan
Kaufmann., 1993.
#2. CART: L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Wadsworth, 1984.
#3. K Nearest Neighbours (kNN): Hastie, T. and Tibshirani, R. 1996.
Discriminant Adaptive Nearest Neighbor Classification. TPAMI. 18(6)
#4. Naive Bayes Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid
After All? Internat. Statist. Rev. 69, 385-398.
Statistical Learning
#5. SVM: Vapnik, V. N. 1995. The Nature of Statistical Learning Theory.
Springer-Verlag.
#6. EM: McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J.
Wiley, New York. Association Analysis
#7. Apriori: Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms
for Mining Association Rules. In VLDB '94.
#8. FP-Tree: Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns
without candidate generation. In SIGMOD '00.
16. April 18, 2024 Data Mining: Concepts and Techniques 16
The 18 Identified Candidates (II)
Link Mining
#9. PageRank: Brin, S. and Page, L. 1998. The anatomy of a
large-scale hypertextual Web search engine. In WWW-7, 1998.
#10. HITS: Kleinberg, J. M. 1998. Authoritative sources in a
hyperlinked environment. SODA, 1998.
Clustering
#11. K-Means: MacQueen, J. B., Some methods for classification
and analysis of multivariate observations, in Proc. 5th Berkeley
Symp. Mathematical Statistics and Probability, 1967.
#12. BIRCH: Zhang, T., Ramakrishnan, R., and Livny, M. 1996.
BIRCH: an efficient data clustering method for very large
databases. In SIGMOD '96.
Bagging and Boosting
#13. AdaBoost: Freund, Y. and Schapire, R. E. 1997. A decision-
theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
17. April 18, 2024 Data Mining: Concepts and Techniques 17
The 18 Identified Candidates (III)
Sequential Patterns
#14. GSP: Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th International Conference on Extending Database Technology, 1996.
#15. PrefixSpan: J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In ICDE '01.
Integrated Mining
#16. CBA: Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98.
Rough Sets
#17. Finding reduct: Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of
Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992
Graph Mining
#18. gSpan: Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure
Pattern Mining. In ICDM '02.
19. April 18, 2024 Data Mining: Concepts and Techniques 19
Major Issues in Data Mining
Mining methodology
Mining different kinds of knowledge from diverse data types, e.g., bio, stream,
Web
Performance: efficiency, effectiveness, and scalability
Pattern evaluation: the interestingness problem
Incorporation of background knowledge
Handling noise and incomplete data
Parallel, distributed and incremental mining methods
Integration of the discovered knowledge with existing one: knowledge fusion
User interaction
Data mining query languages and ad-hoc mining
Expression and visualization of data mining results
Interactive mining of knowledge at multiple levels of abstraction
Applications and social impacts
Domain-specific data mining & invisible data mining
Protection of data security, integrity, and privacy
20. April 18, 2024 Data Mining: Concepts and Techniques 20
A Brief History of Data Mining Society
1989 IJCAI Workshop on Knowledge Discovery in Databases
Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley,
1991)
1991-1994 Workshops on Knowledge Discovery in Databases
Advances in Knowledge Discovery and Data Mining (U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
1995-1998 International Conferences on Knowledge Discovery in Databases
and Data Mining (KDD’95-98)
Journal of Data Mining and Knowledge Discovery (1997)
ACM SIGKDD conferences since 1998 and SIGKDD Explorations
More conferences on data mining
PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM
(2001), etc.
ACM Transactions on KDD starting in 2007
21. April 18, 2024 Data Mining: Concepts and Techniques 21
Conferences and Journals on Data Mining
KDD Conferences
ACM SIGKDD Int. Conf. on
Knowledge Discovery in
Databases and Data Mining
(KDD)
SIAM Data Mining Conf. (SDM)
(IEEE) Int. Conf. on Data
Mining (ICDM)
Conf. on Principles and
practices of Knowledge
Discovery and Data Mining
(PKDD)
Pacific-Asia Conf. on
Knowledge Discovery and Data
Mining (PAKDD)
Other related conferences
ACM SIGMOD
VLDB
(IEEE) ICDE
WWW, SIGIR
ICML, CVPR, NIPS
Journals
Data Mining and Knowledge
Discovery (DAMI or DMKD)
IEEE Trans. On Knowledge
and Data Eng. (TKDE)
KDD Explorations
ACM Trans. on KDD
22. April 18, 2024 Data Mining: Concepts and Techniques 22
Where to Find References? DBLP, CiteSeer, Google
Data mining and KDD (SIGKDD: CDROM)
Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD
Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)
Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.
AI & Machine Learning
Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems,
IEEE-PAMI, etc.
Web and IR
Conferences: SIGIR, WWW, CIKM, etc.
Journals: WWW: Internet and Web Information Systems,
Statistics
Conferences: Joint Stat. Meeting, etc.
Journals: Annals of statistics, etc.
Visualization
Conference proceedings: CHI, ACM-SIGGraph, etc.
Journals: IEEE Trans. visualization and computer graphics, etc.
23. April 18, 2024 Data Mining: Concepts and Techniques 23
Recommended Reference Books
S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan
Kaufmann, 2002
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and
Data Mining. AAAI/MIT Press, 1996
U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge
Discovery, Morgan Kaufmann, 2001
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2nd ed., 2006
D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Springer-Verlag, 2001
B. Liu, Web Data Mining, Springer 2006.
T. M. Mitchell, Machine Learning, McGraw Hill, 1997
G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991
P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 2nd ed. 2005
24. April 18, 2024 Data Mining: Concepts and Techniques 24
Summary
Data mining: Discovering interesting patterns from large amounts of
data
A natural evolution of database technology, in great demand, with
wide applications
A KDD process includes data cleaning, data integration, data
selection, transformation, data mining, pattern evaluation, and
knowledge presentation
Mining can be performed in a variety of information repositories
Data mining functionalities: characterization, discrimination,
association, classification, clustering, outlier and trend analysis, etc.
Data mining systems and architectures
Major issues in data mining
26. April 18, 2024 Data Mining: Concepts and Techniques 26
Supplementary Lecture Slides
Note: The slides following the end of chapter
summary are supplementary slides that could be
useful for supplementary readings or teaching
These slides may have its corresponding text
contents in the book chapters, but were omitted
due to limited time in author’s own course lecture
The slides in other chapters have similar
convention and treatment
27. April 18, 2024 Data Mining: Concepts and Techniques 27
Why Data Mining?—Potential Applications
Data analysis and decision support
Market analysis and management
Target marketing, customer relationship management (CRM),
market basket analysis, cross selling, market segmentation
Risk analysis and management
Forecasting, customer retention, improved underwriting,
quality control, competitive analysis
Fraud detection and detection of unusual patterns (outliers)
Other Applications
Text mining (news group, email, documents) and Web mining
Stream data mining
Bioinformatics and bio-data analysis
28. April 18, 2024 Data Mining: Concepts and Techniques 28
Ex. 1: Market Analysis and Management
Where does the data come from?—Credit card transactions, loyalty cards,
discount coupons, customer complaint calls, plus (public) lifestyle studies
Target marketing
Find clusters of “model” customers who share the same characteristics: interest,
income level, spending habits, etc.
Determine customer purchasing patterns over time
Cross-market analysis—Find associations/co-relations between product sales,
& predict based on such association
Customer profiling—What types of customers buy what products (clustering
or classification)
Customer requirement analysis
Identify the best products for different groups of customers
Predict what factors will attract new customers
Provision of summary information
Multidimensional summary reports
Statistical summary information (data central tendency and variation)
29. April 18, 2024 Data Mining: Concepts and Techniques 29
Ex. 2: Corporate Analysis & Risk Management
Finance planning and asset evaluation
cash flow analysis and prediction
contingent claim analysis to evaluate assets
cross-sectional and time series analysis (financial-ratio, trend
analysis, etc.)
Resource planning
summarize and compare the resources and spending
Competition
monitor competitors and market directions
group customers into classes and a class-based pricing procedure
set pricing strategy in a highly competitive market
30. April 18, 2024 Data Mining: Concepts and Techniques 30
Ex. 3: Fraud Detection & Mining Unusual Patterns
Approaches: Clustering & model construction for frauds, outlier analysis
Applications: Health care, retail, credit card service, telecomm.
Auto insurance: ring of collisions
Money laundering: suspicious monetary transactions
Medical insurance
Professional patients, ring of doctors, and ring of references
Unnecessary or correlated screening tests
Telecommunications: phone-call fraud
Phone call model: destination of the call, duration, time of day or
week. Analyze patterns that deviate from an expected norm
Retail industry
Analysts estimate that 38% of retail shrink is due to dishonest
employees
Anti-terrorism
31. April 18, 2024 Data Mining: Concepts and Techniques 31
KDD Process: Several Key Steps
Learning the application domain
relevant prior knowledge and goals of application
Creating a target data set: data selection
Data cleaning and preprocessing: (may take 60% of effort!)
Data reduction and transformation
Find useful features, dimensionality/variable reduction, invariant
representation
Choosing functions of data mining
summarization, classification, regression, association, clustering
Choosing the mining algorithm(s)
Data mining: search for patterns of interest
Pattern evaluation and knowledge presentation
visualization, transformation, removing redundant patterns, etc.
Use of discovered knowledge
32. April 18, 2024 Data Mining: Concepts and Techniques 32
Are All the “Discovered” Patterns Interesting?
Data mining may generate thousands of patterns: Not all of them
are interesting
Suggested approach: Human-centered, query-based, focused mining
Interestingness measures
A pattern is interesting if it is easily understood by humans, valid on new
or test data with some degree of certainty, potentially useful, novel, or
validates some hypothesis that a user seeks to confirm
Objective vs. subjective interestingness measures
Objective: based on statistics and structures of patterns, e.g., support,
confidence, etc.
Subjective: based on user’s belief in the data, e.g., unexpectedness,
novelty, actionability, etc.
33. April 18, 2024 Data Mining: Concepts and Techniques 33
Find All and Only Interesting Patterns?
Find all the interesting patterns: Completeness
Can a data mining system find all the interesting patterns? Do we
need to find all of the interesting patterns?
Heuristic vs. exhaustive search
Association vs. classification vs. clustering
Search for only interesting patterns: An optimization problem
Can a data mining system find only the interesting patterns?
Approaches
First general all the patterns and then filter out the uninteresting
ones
Generate only the interesting patterns—mining query
optimization
34. April 18, 2024 Data Mining: Concepts and Techniques 34
Other Pattern Mining Issues
Precise patterns vs. approximate patterns
Association and correlation mining: possible find sets of precise
patterns
But approximate patterns can be more compact and sufficient
How to find high quality approximate patterns??
Gene sequence mining: approximate patterns are inherent
How to derive efficient approximate pattern mining
algorithms??
Constrained vs. non-constrained patterns
Why constraint-based mining?
What are the possible kinds of constraints? How to push
constraints into the mining process?
35. April 18, 2024 Data Mining: Concepts and Techniques 35
A Few Announcements (Sept. 1)
A new section CS412ADD: CRN 48711 and its
rules/arrangements
4th Unit for I2CS students
Survey report for mining new types of data
4th Unit for in-campus students
High quality implementation of one selected (to be
discussed with TA/Instructor) data mining algorithm in
the textbook
Or, a research report if you plan to devote your future
research thesis on data mining
36. April 18, 2024 Data Mining: Concepts and Techniques 36
Why Data Mining Query Language?
Automated vs. query-driven?
Finding all the patterns autonomously in a database?—unrealistic
because the patterns could be too many but uninteresting
Data mining should be an interactive process
User directs what to be mined
Users must be provided with a set of primitives to be used to
communicate with the data mining system
Incorporating these primitives in a data mining query language
More flexible user interaction
Foundation for design of graphical user interface
Standardization of data mining industry and practice
37. April 18, 2024 Data Mining: Concepts and Techniques 37
Primitives that Define a Data Mining Task
Task-relevant data
Database or data warehouse name
Database tables or data warehouse cubes
Condition for data selection
Relevant attributes or dimensions
Data grouping criteria
Type of knowledge to be mined
Characterization, discrimination, association, classification,
prediction, clustering, outlier analysis, other data mining tasks
Background knowledge
Pattern interestingness measurements
Visualization/presentation of discovered patterns
38. April 18, 2024 Data Mining: Concepts and Techniques 38
Primitive 3: Background Knowledge
A typical kind of background knowledge: Concept hierarchies
Schema hierarchy
E.g., street < city < province_or_state < country
Set-grouping hierarchy
E.g., {20-39} = young, {40-59} = middle_aged
Operation-derived hierarchy
email address: [email protected]
login-name < department < university < country
Rule-based hierarchy
low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 -
P2) < $50
39. April 18, 2024 Data Mining: Concepts and Techniques 39
Primitive 4: Pattern Interestingness Measure
Simplicity
e.g., (association) rule length, (decision) tree size
Certainty
e.g., confidence, P(A|B) = #(A and B)/ #(B), classification
reliability or accuracy, certainty factor, rule strength, rule quality,
discriminating weight, etc.
Utility
potential usefulness, e.g., support (association), noise threshold
(description)
Novelty
not previously known, surprising (used to remove redundant
rules, e.g., Illinois vs. Champaign rule implication support ratio)
40. April 18, 2024 Data Mining: Concepts and Techniques 40
Primitive 5: Presentation of Discovered Patterns
Different backgrounds/usages may require different forms of
representation
E.g., rules, tables, crosstabs, pie/bar chart, etc.
Concept hierarchy is also important
Discovered knowledge might be more understandable when
represented at high level of abstraction
Interactive drill up/down, pivoting, slicing and dicing provide
different perspectives to data
Different kinds of knowledge require different representation:
association, classification, clustering, etc.
41. April 18, 2024 Data Mining: Concepts and Techniques 41
DMQL—A Data Mining Query Language
Motivation
A DMQL can provide the ability to support ad-hoc and
interactive data mining
By providing a standardized language like SQL
Hope to achieve a similar effect like that SQL has on
relational database
Foundation for system development and evolution
Facilitate information exchange, technology transfer,
commercialization and wide acceptance
Design
DMQL is designed with the primitives described earlier
42. April 18, 2024 Data Mining: Concepts and Techniques 42
An Example Query in DMQL
43. April 18, 2024 Data Mining: Concepts and Techniques 43
Other Data Mining Languages &
Standardization Efforts
Association rule language specifications
MSQL (Imielinski & Virmani’99)
MineRule (Meo Psaila and Ceri’96)
Query flocks based on Datalog syntax (Tsur et al’98)
OLEDB for DM (Microsoft’2000) and recently DMX (Microsoft SQLServer
2005)
Based on OLE, OLE DB, OLE DB for OLAP, C#
Integrating DBMS, data warehouse and data mining
DMML (Data Mining Mark-up Language) by DMG (www.dmg.org)
Providing a platform and process structure for effective data mining
Emphasizing on deploying data mining technology to solve business
problems
44. April 18, 2024 Data Mining: Concepts and Techniques 44
Integration of Data Mining and Data Warehousing
Data mining systems, DBMS, Data warehouse systems
coupling
No coupling, loose-coupling, semi-tight-coupling, tight-coupling
On-line analytical mining data
integration of mining and OLAP technologies
Interactive mining multi-level knowledge
Necessity of mining knowledge and patterns at different levels of
abstraction by drilling/rolling, pivoting, slicing/dicing, etc.
Integration of multiple mining functions
Characterized classification, first clustering and then association
45. April 18, 2024 Data Mining: Concepts and Techniques 45
Coupling Data Mining with DB/DW Systems
No coupling—flat file processing, not recommended
Loose coupling
Fetching data from DB/DW
Semi-tight coupling—enhanced DM performance
Provide efficient implement a few data mining primitives in a
DB/DW system, e.g., sorting, indexing, aggregation, histogram
analysis, multiway join, precomputation of some stat functions
Tight coupling—A uniform information processing
environment
DM is smoothly integrated into a DB/DW system, mining query
is optimized based on mining query, indexing, query processing
methods, etc.
46. April 18, 2024 Data Mining: Concepts and Techniques 46
Architecture: Typical Data Mining System
data cleaning, integration, and selection
Database or Data
Warehouse Server
Data Mining Engine
Pattern Evaluation
Graphical User Interface
Knowl
edge-
Base
Database
Data
Warehouse
World-Wide
Web
Other Info
Repositories