SlideShare a Scribd company logo
Data modeling for
Florian Hopf - @fhopf
GOTO nights Berlin
22.10.2015
What are we talking about?
●
Storing and querying data
●
String
●
Numeric
●
Date
●
Embedding documents
●
Types and Mapping
●
Updating data
●
Time stamped data
Documents
A relational view
A relational view
●
Different aspects are stored in different tables
●
Traversal of tables via join-Operations
●
High degree of normalization
Documents
{ }Book
Author
Publisher
Documents
●
Often more natural
●
Flexible schema
●
Fields can be queried
●
Duplicate storage of document parts
Documents
POST /library/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Text
Text
POST /library/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Searching data
GET /library/book/_search?q=elasticsearch
{
"took": 75,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.067124054,
"hits": [
[...]
]
}
}
Searching data
GET /library/book/_search
{
"query": {
"match": {
"title": "elasticsearch"
}
}
}
Understand index storage
●
Data is stored in the inverted index
●
Analyzing process determines storage and
query characteristics
●
Important for designing data storage
Analyzing
Term Document Id
Action 1
ein 2
Einstieg 2
Elasticsearch 1,2
in 1
praktischer 2
1. Tokenization
Elasticsearch
in Action
Elasticsearch:
Ein praktischer
Einstieg
Analyzing
Term Document Id
action 1
ein 2
einstieg 2
elasticsearch 1,2
in 1
praktischer 2
1. Tokenization
Elasticsearch
in Action
Elasticsearch:
Ein praktischer
Einstieg
2. Lowercasing
Search
Term Document Id
action 1
ein 2
einstieg 2
elasticsearch 1,2
in 1
praktischer 2
1. Tokenization
2. LowercasingElasticsearch elasticsearch
Inverted Index
●
Terms are deduplicated
●
Original content is lost
●
Elasticsearch stores the original content in a
special field source
Inverted Index
●
New requirement: search for German content
●
praktischer praktisch→
Search
Term Document Id
action 1
ein 2
einstieg 2
elasticsearch 1,2
in 1
praktischer 2
1. Tokenization
2. Lowercasingpraktisch praktisch
Analyzing
Term Document Id
action 1
ein 2
einstieg 2
elasticsearch 1,2
in 1
praktisch 2
1. Tokenization
Elasticsearch
in Action
Elasticsearch:
Ein praktischer
Einstieg
2. Lowercasing
3. Stemming
Search
Term Document Id
action 1
ein 2
einstieg 2
elasticsearch 1,2
in 1
praktisch 2
1. Tokenization
2. Lowercasingpraktisch praktisch
3. Stemming
Mapping
curl -XPUT "http://localhost:9200/library/book/_mapping"
-d'
{
"book": {
"properties": {
"title": {
"type": "string",
"analyzer": "german"
}
}
}
}'
Understand index storage
●
For every indexed document Elasticsearch
builds a mapping from the fields in the
documents
●
Sane defaults for lots of use cases
●
But: understand and control it and your data
Searching data
GET /library/book/_search?q=elasticsearch
{
"took": 75,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.067124054,
"hits": [
[...]
]
}
}
_all
●
Default search field _all
"book": {
"_all": {
"enabled": false
}
}
Partial Word Matches
●
New requirement: Search for parts of words
●
elastic elasticsearch→
Partial Word Matches
●
Common option: Using wildcards
POST /library/book/_search
{
"query": {
"wildcard": {
"title": {
"value": "elastic*"
}
}
}
}
Partial Word Matches
●
Wildcards
●
Query time option
●
Scalability?
Partial Word Matches
●
Alternative: Index Time preprocessing
●
Terms are stored in the index in a special way
●
Search is then a normal lookup
●
For partial words: N-Grams
N-Grams
●
Configuring an N-Gram analyzer
●
Builds N-Grams
●
elas
●
elast
●
elasti
●
elastic
●
elastics
●
...
Index Settings for N-Grams
PUT /library-ngram
{
"settings": {
"analysis": {
"analyzer": {
"prefix_analyzer": {
"type": "custom",
"tokenizer": "prefix_tokenizer",
"filter": ["lowercase"]
}
},
"tokenizer": {
"prefix_tokenizer": {
"type": "edgeNGram",
"min_gram" : "4",
"max_gram" : "8",
"token_chars": [ "letter", "digit" ]
}
}
}}}
Mapping for N-Grams
PUT /library-ngram/book/_mapping
{
"book": {
"properties": {
"title": {
"type": "string",
"analyzer": "german",
"fields": {
"prefix": {
"type": "string",
"index_analyzer": "prefix_analyzer",
"query_analyzer": "lowercase"
}
}
}
}
}
}
Additional Field
●
Indexed Document stays the same
●
Additional index field title.prefix
●
Can be queried like any field
Querying additional Field
GET /library-ngram/book/_search
{
"query": {
"match": {
"title.prefix": "elastic"
}
}
}
Querying additional Field
GET /library-ngram/book/_search
{
"query": {
"bool": {
"should": [
{
"match": {
"title": "elastic"
}
},
{
"match": {
"title.prefix": "elastic"
}
}
]
}
}
}
Additional Field
●
Increased storage requirements
●
Increased scalability (and performance) during
search
●
Trade storage against search performance
Numbers
Storing data
POST /library/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Querying
POST /library/book/_search
{
"query": {
"term": {
"pages": "400"
}
}
}
●
Numeric term is in index
Querying
POST /library/book/_search
{
"query": {
"range": {
"pages": {
"gte": 300
}
}
}
}
●
Ranges
Numeric values
●
Numeric values are stored in a Trie structure
●
Makes range queries very efficient
Numeric values
●
Simplified view: 250, 290 and 400
Numeric values
●
Precision influences depth of tree
●
Lower precision_step higher number of→
terms
●
Most of the time defaults are fine
Date
Storing data
POST /library/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Date
●
Default: ISO8601 format
●
Joda Time patterns
●
Internally stored as long
Date
PUT /library-date/book/_mapping
{
"book": {
"properties": {
"published": {
"type": "date",
"format": "dd.MM.yyyy"
}
}
}
}
Date
POST /library-date/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "30.06.2015",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Date
●
Common: Filtering on date range
●
from and/or to
Date
"query": {
"filtered": {
"filter": {
"range": {
"published": {
"to": "30.06.2015"
}
}
}
}
}
Date
"query": {
"filtered": {
"filter": {
"range": {
"published": {
"to": "now-3M"
}
}
}
}
}
Date
●
Filter is not cached with 'now'
●
Only cached with rounded value
"range": {
"published": {
"to": "now-3M/d"
}
}
Date
●
Exact values needed Combine filters→
Embedded Documents
Embedded Documents
POST /library/book
{
"title": "Elasticsearch in Action",
"author": [ "Radu Gheorghe",
"Matthew Lee Hinman",
"Roy Russo" ],
"pages": 400,
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Embedded Documents
●
Default: Flat structure
●
Good for 1:1 relation
"publisher": {
"name": "Manning",
"country": "USA"
}
"publisher.name": "Manning",
"publisher.country": "USA"
Embedded documents
●
1:N relations are problematic
{
"title": "Elasticsearch in Action",
"ratings": [
{
"source": "Amazon",
"stars": 5
},
{
"source": "Goodreads",
"stars": 4
}
]
}
Embedded documents
●
1:N relations are problematic
"query": {
"bool": {
"must": [
{ "match": { "ratings.source": "Goodreads" }},
{ "match": { "ratings.stars": 5 }}
]
}
}
Nested
●
Solution: Nested documents
●
Lucene internal: Seperate document,
connected via Block-Join
●
Accessing documents via specialized query
Nested
●
Explicit mapping
"book": {
"properties": {
"ratings": {
"type": "nested",
"properties": {
"source": {
"type": "string"
},
"stars": {
"type": "integer"
}
}
}
}
}
Nested
●
Nested-Query
"query": {
"nested": {
"path": "ratings",
"query": {
"bool": {
"must": [
{ "match": { "ratings.source": "Goodreads" }},
{ "match": { "ratings.stars": 5 }}
]
}
}
}
}
Nested
●
Additional flat storage
●
include_in_parent
●
include_in_root
Parent-Child
●
Alternative storage
●
Indexing seperate types
●
Connection via parent parameter
Parent-Child
●
Book is stored without ratings
POST /library-parent-child/book/
{
"title": "Elasticsearch in Action",
"publisher": {
"name": "Manning"
}
}
Parent-Child
●
Ratings reference books
PUT /library-parent-child/rating/_mapping
{
"rating": {
"_parent": {
"type": "book"
}
}
}
Parent-Child
●
Ratings reference book
POST /library-parent-child/rating?
parent=AU_smK5FYK634dNiekGr
{
"source": "Amazon",
"stars": 5
}
POST /library-parent-child/rating?
parent=AU_smK5FYK634dNiekGr
{
"source": "Goodreads",
"stars": 4
}
Parent-Child
●
has_child/has_parent
POST /library-parent-child/book/_search
{
"query": {
"has_child": {
"type": "rating",
"query": {
"bool": {
"must": [
{ "match": {"source": "Goodreads" }},
{ "match": {"stars": 5 }}
]
}
}
}
}
}
Parent-Child
●
Stored on same shard
●
Only suitable for smaller amounts of docs
●
Requires different types
Types and Mapping
Querying Elasticsearch
●
Ad-hoc queries
●
But better characteristics when designing storage
for query
●
Flexible Schema
●
But mapping better defined upfront
Mapping
●
Mapping for field can't be changed
●
Think about how you will be querying your
data
●
Think about defining a static mapping upfront
Disable dynamic mapping
PUT /library/book/_mapping
{
"book": {
"dynamic": "strict"
}
}
Disable dynamic mapping
POST /library/book
{
"titel": "Falsch"
}
{
"error" : "StrictDynamicMappingException[mapping set to
strict! dynamic introduction of [titel] within [book]
is not allowed]",
"status" : 400
}
Types
●
Types determine mapping
●
Lucene doesn't know about types
Types
●
Fields with same names need to be mapped
the same way
●
Relevance can be influenced
●
Index settings: shards, replicas per type?
Key-Value-Store
●
Careful when using ES as key-value-store
●
Mapping is part of cluster state
Updating Data
Updating Data
●
Primary Datastore
●
Full indexing
●
Incremental indexing
Updating Data
●
Elasticsearch stores data in segment files
●
Immutable files
●
Segment is a mini inverted index
Segments
Segments
●
Building inverted index is expensive
●
Add documents add new segments→
Segments
●
Doc deletion is only a marker
●
Deleted documents are automatically filtered
Updating Data
●
Documents can be updated
●
Full Update
●
Partial Update
Updating data
●
Full update: Replaces a document
PUT /library/book/AVBDusjh0tduyhTzZqTC
{
"title": "Elasticsearch in Action",
"author": [
"Radu Gheorghe",
"Matthew L. Hinman",
"Roy Russo"
],
"published": "2015-06-30T00:00:00.000Z",
"publisher": {
"name": "Manning",
"country": "USA"
}
}
Updating data
●
Partial update: Uses source of document
POST /library/book/AVBDusjh0tduyhTzZqTC/_update
{
"doc": {
"title": "Elasticsearch In Action"
}
}
Updating data
●
Update = Delete + Add
●
Expensive operation
●
Design documents as events if possible
Timestamps
Working with timestamps
●
Timestamped data
●
Write events
●
Common: Log events
Index Design
●
Use date aware index name
●
library-221015
●
Create a new index every day
Index Design
●
Index templates for custom settings
PUT /_template/library-template
{
"template": "library-*",
"mappings": {
"book": {
"properties": {
"title": {
"type": "string",
"analyzer": "german"
}
}
}
}
}
Index Design
●
Search multiple indices
GET /library-221015,library-211015/_search
GET /library-*/_search
Index Design
●
Combining indices with Index-Aliases
POST /_aliases
{
"actions" : [
{ "add" : {
"index" : "library-2015*",
"alias" : "thisyear"
}},
{ "add" : {
"index" : "library-2015-10*",
"alias" : "thismonth"
}}
]
}
Index Design
●
Implicit date selection
GET /thisyear/_search
GET /thismonth/_search
Index Design
●
Filtered Alias
"actions" : [{
"add" : {
"index" : "library",
"alias" : "buecher",
"filter" : {
"term" : { "publisher.country" : "de" }
}
}
}]
What is missing?
●
Distributed data and Routing
●
Field Data and Doc Values
●
Index-Options
●
Geo-Data
More Info
More Info
●
http://elastic.co
●
Elasticsearch – The definitive Guide
●
https://www.elastic.co/guide/en/elasticsearch/gui
de/master/index.html
●
Elasticsearch in Action
●
https://www.manning.com/books/elasticsearch-in-
action
●
http://blog.florian-hopf.de
Resources
●
http://blog.parsely.com/post/1691/lucene/
●
http://de.slideshare.net/VadimKirilchuk/nume
ric-rangequeries
●
https://www.elastic.co/blog/found-optimizing-
elasticsearch-searches
Images
●
http://www.morguefile.com/archive/display/48456
●
http://www.morguefile.com/archive/display/104082
●
http://www.morguefile.com/archive/display/978102
●
http://www.morguefile.com/archive/display/978102
●
http://www.morguefile.com/archive/display/861633
●
http://www.morguefile.com/archive/display/899572
●
http://www.morguefile.com/archive/display/903066
●
http://www.morguefile.com/archive/display/53012
Ad

More Related Content

What's hot (20)

Modern data warehouse
Modern data warehouseModern data warehouse
Modern data warehouse
Rakesh Jayaram
 
E2E Data Pipeline - Apache Spark/Airflow/Livy
E2E Data Pipeline - Apache Spark/Airflow/LivyE2E Data Pipeline - Apache Spark/Airflow/Livy
E2E Data Pipeline - Apache Spark/Airflow/Livy
Rikin Tanna
 
An Intro to Elasticsearch and Kibana
An Intro to Elasticsearch and KibanaAn Intro to Elasticsearch and Kibana
An Intro to Elasticsearch and Kibana
ObjectRocket
 
Delta from a Data Engineer's Perspective
Delta from a Data Engineer's PerspectiveDelta from a Data Engineer's Perspective
Delta from a Data Engineer's Perspective
Databricks
 
Snowflake free trial_lab_guide
Snowflake free trial_lab_guideSnowflake free trial_lab_guide
Snowflake free trial_lab_guide
slidedown1
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and PitfallsRunning Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Databricks
 
ElasticSearch Basic Introduction
ElasticSearch Basic IntroductionElasticSearch Basic Introduction
ElasticSearch Basic Introduction
Mayur Rathod
 
엘라스틱 서치 세미나
엘라스틱 서치 세미나엘라스틱 서치 세미나
엘라스틱 서치 세미나
종현 김
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Elastic search overview
Elastic search overviewElastic search overview
Elastic search overview
ABC Talks
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
hypto
 
elasticsearch_적용 및 활용_정리
elasticsearch_적용 및 활용_정리elasticsearch_적용 및 활용_정리
elasticsearch_적용 및 활용_정리
Junyi Song
 
Slim Baltagi – Flink vs. Spark
Slim Baltagi – Flink vs. SparkSlim Baltagi – Flink vs. Spark
Slim Baltagi – Flink vs. Spark
Flink Forward
 
Introduction to Elasticsearch with basics of Lucene
Introduction to Elasticsearch with basics of LuceneIntroduction to Elasticsearch with basics of Lucene
Introduction to Elasticsearch with basics of Lucene
Rahul Jain
 
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Artem Chebotko
 
Azure SQL Database Managed Instance - technical overview
Azure SQL Database Managed Instance - technical overviewAzure SQL Database Managed Instance - technical overview
Azure SQL Database Managed Instance - technical overview
George Walters
 
Building Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Building Real-time Pipelines with FLaNK_ A Case Study with Transit DataBuilding Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Building Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Timothy Spann
 
Data Platform Architecture Principles and Evaluation Criteria
Data Platform Architecture Principles and Evaluation CriteriaData Platform Architecture Principles and Evaluation Criteria
Data Platform Architecture Principles and Evaluation Criteria
ScyllaDB
 
Oracle RDBMS architecture
Oracle RDBMS architectureOracle RDBMS architecture
Oracle RDBMS architecture
Martin Berger
 
E2E Data Pipeline - Apache Spark/Airflow/Livy
E2E Data Pipeline - Apache Spark/Airflow/LivyE2E Data Pipeline - Apache Spark/Airflow/Livy
E2E Data Pipeline - Apache Spark/Airflow/Livy
Rikin Tanna
 
An Intro to Elasticsearch and Kibana
An Intro to Elasticsearch and KibanaAn Intro to Elasticsearch and Kibana
An Intro to Elasticsearch and Kibana
ObjectRocket
 
Delta from a Data Engineer's Perspective
Delta from a Data Engineer's PerspectiveDelta from a Data Engineer's Perspective
Delta from a Data Engineer's Perspective
Databricks
 
Snowflake free trial_lab_guide
Snowflake free trial_lab_guideSnowflake free trial_lab_guide
Snowflake free trial_lab_guide
slidedown1
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and PitfallsRunning Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Databricks
 
ElasticSearch Basic Introduction
ElasticSearch Basic IntroductionElasticSearch Basic Introduction
ElasticSearch Basic Introduction
Mayur Rathod
 
엘라스틱 서치 세미나
엘라스틱 서치 세미나엘라스틱 서치 세미나
엘라스틱 서치 세미나
종현 김
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Elastic search overview
Elastic search overviewElastic search overview
Elastic search overview
ABC Talks
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
hypto
 
elasticsearch_적용 및 활용_정리
elasticsearch_적용 및 활용_정리elasticsearch_적용 및 활용_정리
elasticsearch_적용 및 활용_정리
Junyi Song
 
Slim Baltagi – Flink vs. Spark
Slim Baltagi – Flink vs. SparkSlim Baltagi – Flink vs. Spark
Slim Baltagi – Flink vs. Spark
Flink Forward
 
Introduction to Elasticsearch with basics of Lucene
Introduction to Elasticsearch with basics of LuceneIntroduction to Elasticsearch with basics of Lucene
Introduction to Elasticsearch with basics of Lucene
Rahul Jain
 
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Artem Chebotko
 
Azure SQL Database Managed Instance - technical overview
Azure SQL Database Managed Instance - technical overviewAzure SQL Database Managed Instance - technical overview
Azure SQL Database Managed Instance - technical overview
George Walters
 
Building Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Building Real-time Pipelines with FLaNK_ A Case Study with Transit DataBuilding Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Building Real-time Pipelines with FLaNK_ A Case Study with Transit Data
Timothy Spann
 
Data Platform Architecture Principles and Evaluation Criteria
Data Platform Architecture Principles and Evaluation CriteriaData Platform Architecture Principles and Evaluation Criteria
Data Platform Architecture Principles and Evaluation Criteria
ScyllaDB
 
Oracle RDBMS architecture
Oracle RDBMS architectureOracle RDBMS architecture
Oracle RDBMS architecture
Martin Berger
 

Viewers also liked (9)

Elasticsearch - Devoxx France 2012 - English version
Elasticsearch - Devoxx France 2012 - English versionElasticsearch - Devoxx France 2012 - English version
Elasticsearch - Devoxx France 2012 - English version
David Pilato
 
ElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learnedElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learned
BeyondTrees
 
Elasticsearch in Zalando
Elasticsearch in ZalandoElasticsearch in Zalando
Elasticsearch in Zalando
Alaa Elhadba
 
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search EngineElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
Daniel N
 
Elasticsearch as a search alternative to a relational database
Elasticsearch as a search alternative to a relational databaseElasticsearch as a search alternative to a relational database
Elasticsearch as a search alternative to a relational database
Kristijan Duvnjak
 
Intro to Elasticsearch
Intro to ElasticsearchIntro to Elasticsearch
Intro to Elasticsearch
Clifford James
 
Elasticsearch Introduction to Data model, Search & Aggregations
Elasticsearch Introduction to Data model, Search & AggregationsElasticsearch Introduction to Data model, Search & Aggregations
Elasticsearch Introduction to Data model, Search & Aggregations
Alaa Elhadba
 
Elastic Search (엘라스틱서치) 입문
Elastic Search (엘라스틱서치) 입문Elastic Search (엘라스틱서치) 입문
Elastic Search (엘라스틱서치) 입문
SeungHyun Eom
 
Logging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & KibanaLogging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & Kibana
Amazee Labs
 
Elasticsearch - Devoxx France 2012 - English version
Elasticsearch - Devoxx France 2012 - English versionElasticsearch - Devoxx France 2012 - English version
Elasticsearch - Devoxx France 2012 - English version
David Pilato
 
ElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learnedElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learned
BeyondTrees
 
Elasticsearch in Zalando
Elasticsearch in ZalandoElasticsearch in Zalando
Elasticsearch in Zalando
Alaa Elhadba
 
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search EngineElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
ElasticSearch: Distributed Multitenant NoSQL Datastore and Search Engine
Daniel N
 
Elasticsearch as a search alternative to a relational database
Elasticsearch as a search alternative to a relational databaseElasticsearch as a search alternative to a relational database
Elasticsearch as a search alternative to a relational database
Kristijan Duvnjak
 
Intro to Elasticsearch
Intro to ElasticsearchIntro to Elasticsearch
Intro to Elasticsearch
Clifford James
 
Elasticsearch Introduction to Data model, Search & Aggregations
Elasticsearch Introduction to Data model, Search & AggregationsElasticsearch Introduction to Data model, Search & Aggregations
Elasticsearch Introduction to Data model, Search & Aggregations
Alaa Elhadba
 
Elastic Search (엘라스틱서치) 입문
Elastic Search (엘라스틱서치) 입문Elastic Search (엘라스틱서치) 입문
Elastic Search (엘라스틱서치) 입문
SeungHyun Eom
 
Logging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & KibanaLogging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & Kibana
Amazee Labs
 
Ad

Similar to Data modeling for Elasticsearch (20)

Elasticsearch for Data Engineers
Elasticsearch for Data EngineersElasticsearch for Data Engineers
Elasticsearch for Data Engineers
Duy Do
 
Gdg dev fest 2018 elasticsearch, how to use and when to use.
Gdg dev fest 2018   elasticsearch, how to use and when to use.Gdg dev fest 2018   elasticsearch, how to use and when to use.
Gdg dev fest 2018 elasticsearch, how to use and when to use.
Ziyavuddin Vakhobov
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
Florian Hopf
 
Elasticsearch speed is key
Elasticsearch speed is keyElasticsearch speed is key
Elasticsearch speed is key
Enterprise Search Warsaw Meetup
 
Search Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and SolrSearch Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and Solr
Kai Chan
 
Elasticsearch: You know, for search! and more!
Elasticsearch: You know, for search! and more!Elasticsearch: You know, for search! and more!
Elasticsearch: You know, for search! and more!
Philips Kokoh Prasetyo
 
ElasticSearch in action
ElasticSearch in actionElasticSearch in action
ElasticSearch in action
Codemotion
 
Elastic Search
Elastic SearchElastic Search
Elastic Search
NexThoughts Technologies
 
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIMEElasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Piotr Pelczar
 
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Kai Chan
 
06. ElasticSearch : Mapping and Analysis
06. ElasticSearch : Mapping and Analysis06. ElasticSearch : Mapping and Analysis
06. ElasticSearch : Mapping and Analysis
OpenThink Labs
 
Working with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDBWorking with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDB
ScaleGrid.io
 
Elasticsearch & "PeopleSearch"
Elasticsearch & "PeopleSearch"Elasticsearch & "PeopleSearch"
Elasticsearch & "PeopleSearch"
George Stathis
 
01 ElasticSearch : Getting Started
01 ElasticSearch : Getting Started01 ElasticSearch : Getting Started
01 ElasticSearch : Getting Started
OpenThink Labs
 
Modeling JSON data for NoSQL document databases
Modeling JSON data for NoSQL document databasesModeling JSON data for NoSQL document databases
Modeling JSON data for NoSQL document databases
Ryan CrawCour
 
Elasticsearch in hatena bookmark
Elasticsearch in hatena bookmarkElasticsearch in hatena bookmark
Elasticsearch in hatena bookmark
Shunsuke Kozawa
 
Elasticsearch an overview
Elasticsearch   an overviewElasticsearch   an overview
Elasticsearch an overview
Amit Juneja
 
Schema Design
Schema DesignSchema Design
Schema Design
MongoDB
 
Использование Elasticsearch для организации поиска по сайту
Использование Elasticsearch для организации поиска по сайтуИспользование Elasticsearch для организации поиска по сайту
Использование Elasticsearch для организации поиска по сайту
Olga Lavrentieva
 
MongoDB Schema Design
MongoDB Schema DesignMongoDB Schema Design
MongoDB Schema Design
MongoDB
 
Elasticsearch for Data Engineers
Elasticsearch for Data EngineersElasticsearch for Data Engineers
Elasticsearch for Data Engineers
Duy Do
 
Gdg dev fest 2018 elasticsearch, how to use and when to use.
Gdg dev fest 2018   elasticsearch, how to use and when to use.Gdg dev fest 2018   elasticsearch, how to use and when to use.
Gdg dev fest 2018 elasticsearch, how to use and when to use.
Ziyavuddin Vakhobov
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
Florian Hopf
 
Search Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and SolrSearch Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and Solr
Kai Chan
 
Elasticsearch: You know, for search! and more!
Elasticsearch: You know, for search! and more!Elasticsearch: You know, for search! and more!
Elasticsearch: You know, for search! and more!
Philips Kokoh Prasetyo
 
ElasticSearch in action
ElasticSearch in actionElasticSearch in action
ElasticSearch in action
Codemotion
 
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIMEElasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Elasticsearch - SEARCH & ANALYZE DATA IN REAL TIME
Piotr Pelczar
 
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Kai Chan
 
06. ElasticSearch : Mapping and Analysis
06. ElasticSearch : Mapping and Analysis06. ElasticSearch : Mapping and Analysis
06. ElasticSearch : Mapping and Analysis
OpenThink Labs
 
Working with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDBWorking with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDB
ScaleGrid.io
 
Elasticsearch & "PeopleSearch"
Elasticsearch & "PeopleSearch"Elasticsearch & "PeopleSearch"
Elasticsearch & "PeopleSearch"
George Stathis
 
01 ElasticSearch : Getting Started
01 ElasticSearch : Getting Started01 ElasticSearch : Getting Started
01 ElasticSearch : Getting Started
OpenThink Labs
 
Modeling JSON data for NoSQL document databases
Modeling JSON data for NoSQL document databasesModeling JSON data for NoSQL document databases
Modeling JSON data for NoSQL document databases
Ryan CrawCour
 
Elasticsearch in hatena bookmark
Elasticsearch in hatena bookmarkElasticsearch in hatena bookmark
Elasticsearch in hatena bookmark
Shunsuke Kozawa
 
Elasticsearch an overview
Elasticsearch   an overviewElasticsearch   an overview
Elasticsearch an overview
Amit Juneja
 
Schema Design
Schema DesignSchema Design
Schema Design
MongoDB
 
Использование Elasticsearch для организации поиска по сайту
Использование Elasticsearch для организации поиска по сайтуИспользование Elasticsearch для организации поиска по сайту
Использование Elasticsearch для организации поиска по сайту
Olga Lavrentieva
 
MongoDB Schema Design
MongoDB Schema DesignMongoDB Schema Design
MongoDB Schema Design
MongoDB
 
Ad

More from Florian Hopf (13)

Modern Java Features
Modern Java Features Modern Java Features
Modern Java Features
Florian Hopf
 
Einführung in Elasticsearch
Einführung in ElasticsearchEinführung in Elasticsearch
Einführung in Elasticsearch
Florian Hopf
 
Java clients for elasticsearch
Java clients for elasticsearchJava clients for elasticsearch
Java clients for elasticsearch
Florian Hopf
 
Einfuehrung in Elasticsearch
Einfuehrung in ElasticsearchEinfuehrung in Elasticsearch
Einfuehrung in Elasticsearch
Florian Hopf
 
Einführung in Elasticsearch
Einführung in ElasticsearchEinführung in Elasticsearch
Einführung in Elasticsearch
Florian Hopf
 
Elasticsearch und die Java-Welt
Elasticsearch und die Java-WeltElasticsearch und die Java-Welt
Elasticsearch und die Java-Welt
Florian Hopf
 
Anwendungsfälle für Elasticsearch JAX 2015
Anwendungsfälle für Elasticsearch JAX 2015Anwendungsfälle für Elasticsearch JAX 2015
Anwendungsfälle für Elasticsearch JAX 2015
Florian Hopf
 
Anwendungsfälle für Elasticsearch JavaLand 2015
Anwendungsfälle für Elasticsearch JavaLand 2015Anwendungsfälle für Elasticsearch JavaLand 2015
Anwendungsfälle für Elasticsearch JavaLand 2015
Florian Hopf
 
Anwendungsfaelle für Elasticsearch
Anwendungsfaelle für ElasticsearchAnwendungsfaelle für Elasticsearch
Anwendungsfaelle für Elasticsearch
Florian Hopf
 
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Florian Hopf
 
Search Evolution - Von Lucene zu Solr und ElasticSearch
Search Evolution - Von Lucene zu Solr und ElasticSearchSearch Evolution - Von Lucene zu Solr und ElasticSearch
Search Evolution - Von Lucene zu Solr und ElasticSearch
Florian Hopf
 
Akka Presentation Schule@synyx
Akka Presentation Schule@synyxAkka Presentation Schule@synyx
Akka Presentation Schule@synyx
Florian Hopf
 
Lucene Solr talk at Java User Group Karlsruhe
Lucene Solr talk at Java User Group KarlsruheLucene Solr talk at Java User Group Karlsruhe
Lucene Solr talk at Java User Group Karlsruhe
Florian Hopf
 
Modern Java Features
Modern Java Features Modern Java Features
Modern Java Features
Florian Hopf
 
Einführung in Elasticsearch
Einführung in ElasticsearchEinführung in Elasticsearch
Einführung in Elasticsearch
Florian Hopf
 
Java clients for elasticsearch
Java clients for elasticsearchJava clients for elasticsearch
Java clients for elasticsearch
Florian Hopf
 
Einfuehrung in Elasticsearch
Einfuehrung in ElasticsearchEinfuehrung in Elasticsearch
Einfuehrung in Elasticsearch
Florian Hopf
 
Einführung in Elasticsearch
Einführung in ElasticsearchEinführung in Elasticsearch
Einführung in Elasticsearch
Florian Hopf
 
Elasticsearch und die Java-Welt
Elasticsearch und die Java-WeltElasticsearch und die Java-Welt
Elasticsearch und die Java-Welt
Florian Hopf
 
Anwendungsfälle für Elasticsearch JAX 2015
Anwendungsfälle für Elasticsearch JAX 2015Anwendungsfälle für Elasticsearch JAX 2015
Anwendungsfälle für Elasticsearch JAX 2015
Florian Hopf
 
Anwendungsfälle für Elasticsearch JavaLand 2015
Anwendungsfälle für Elasticsearch JavaLand 2015Anwendungsfälle für Elasticsearch JavaLand 2015
Anwendungsfälle für Elasticsearch JavaLand 2015
Florian Hopf
 
Anwendungsfaelle für Elasticsearch
Anwendungsfaelle für ElasticsearchAnwendungsfaelle für Elasticsearch
Anwendungsfaelle für Elasticsearch
Florian Hopf
 
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Search Evolution - Von Lucene zu Solr und ElasticSearch (Majug 20.06.2013)
Florian Hopf
 
Search Evolution - Von Lucene zu Solr und ElasticSearch
Search Evolution - Von Lucene zu Solr und ElasticSearchSearch Evolution - Von Lucene zu Solr und ElasticSearch
Search Evolution - Von Lucene zu Solr und ElasticSearch
Florian Hopf
 
Akka Presentation Schule@synyx
Akka Presentation Schule@synyxAkka Presentation Schule@synyx
Akka Presentation Schule@synyx
Florian Hopf
 
Lucene Solr talk at Java User Group Karlsruhe
Lucene Solr talk at Java User Group KarlsruheLucene Solr talk at Java User Group Karlsruhe
Lucene Solr talk at Java User Group Karlsruhe
Florian Hopf
 

Recently uploaded (20)

Chromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docxChromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docx
NohaSalah45
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptxAllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptx
bpkr84
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
brainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptxbrainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptx
maritzacastro321
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Chromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docxChromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docx
NohaSalah45
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptxAllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptx
bpkr84
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
brainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptxbrainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptx
maritzacastro321
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 

Data modeling for Elasticsearch