SlideShare a Scribd company logo
1
Data Pipelines Made Simple
With Apache Kafka
Ewen Cheslack-Postava
Engineer, Apache Kafka Committer
2
Attend the whole series!
Simplify Governance for Streaming Data in Apache Kafka
Date: Thursday, April 6, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Gwen Shapira, Product Manager, Confluent
Using Apache Kafka to Analyze Session Windows
Date: Thursday, March 30, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Michael Noll, Product Manager, Confluent
Monitoring and Alerting Apache Kafka with Confluent Control
Center
Date: Thursday, March 16, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Nick Dearden, Director, Engineering and Product
Data Pipelines Made Simple with Apache Kafka
Date: Thursday, March 23, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Ewen Cheslack-Postava, Engineer, Confluent
https://www.confluent.io/online-talk/online-talk-series-five-steps-to-production-with-apache-kafka/
What’s New in Apache Kafka 0.10.2 and Confluent 3.2
Date: Thursday, March 9, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Clarke Patterson, Senior Director, Product Marketing
3
The Challenge: Streaming Data Pipelines
4
Simplifying Streaming Data Pipelines with Apache Kafka
5
Kafka Connect
6
Streaming ETL
7
Single Message Transforms for Kafka Connect
Modify events before storing in
Kafka:
• Mask sensitive information
• Add identifiers
• Tag events
• Store lineage
• Remove unnecessary columns
Modify events going out of
Kafka:
• Route high priority events to
faster data stores
• Direct events to different
Elasticsearch indexes
• Cast data types to match
destination
• Remove unnecessary columns
8
Where Single Message Transforms Fit In
9
Built-in Transformations
• InsertField – Add a field using either static data or record metadata
• ReplaceField – Filter or rename fields
• MaskField – Replace field with valid null value for the type (0, empty string, etc)
• ValueToKey – Set the key to one of the value’s fields
• HoistField – Wrap the entire event as a single field inside a Struct or a Map
• ExtractField – Extract a specific field from Struct and Map and include only this field in results
• SetSchemaMetadata – modify the schema name or version
• TimestampRouter – Modify the topic of a record based on original topic and timestamp. Useful
when using a sink that needs to write to different tables or indexes based on timestamps
• RegexpRouter – modify the topic of a record based on original topic, replacement string and a
regular expression
10
Configuring Single Message Transforms
name=local-file-source
connector.class=FileStreamSource
tasks.max=1
file=test.txt
topic=connect-test
transforms=MakeMap,InsertSource
transforms.MakeMap.type=org.apache.kafka.connect.transforms.HoistField$Value
transforms.MakeMap.field=line
transforms.InsertSource.type=org.apache.kafka.connect.transforms.InsertField$Value
transforms.InsertSource.static.field=data_source
transforms.InsertSource.static.value=test-file-source
11
Why only single messages?
• Delivery guarantees!
• Always provide at least once semantics
• For supported connectors, provide exactly once semantics
• No additional complication: transformations happens inline with import/export
12
When should I use each tool?
Kafka Connect & Single Message Transforms
• Simple, message at a time
• Transformation can be performed inline
• Transformation does not interact with
external systems
Kafka Streams
• Complex transformations including
• Aggregations
• Windowing
• Joins
• Transformed data stored back in Kafka,
enabling reuse
• Write, deploy, and monitor a Java
application
13
Conclusion
Single Message Transforms in Kafka Connect
• Lightweight transformation of individual messages
• Configuration-only data pipelines
• Pluggable, with lots of built-in transformations
14
Attend the whole series!
Simplify Governance for Streaming Data in Apache Kafka
Date: Thursday, April 6, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Gwen Shapira, Product Manager, Confluent
Using Apache Kafka to Analyze Session Windows
Date: Thursday, March 30, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Michael Noll, Product Manager, Confluent
Monitoring and Alerting Apache Kafka with Confluent Control
Center
Date: Thursday, March 16, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Nick Dearden, Director, Engineering and Product
Data Pipelines Made Simple with Apache Kafka
Date: Thursday, March 23, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Ewen Cheslack-Postava, Engineer, Confluent
https://www.confluent.io/online-talk/online-talk-series-five-steps-to-production-with-apache-kafka/
What’s New in Apache Kafka 0.10.2 and Confluent 3.2
Date: Thursday, March 9, 2017
Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET
Speaker: Clarke Patterson, Senior Director, Product Marketing
15
Get Started with Apache Kafka Today!
https://www.confluent.io/downloads/
THE place to start with Apache Kafka!
Thoroughly tested and quality
assured
More extensible developer
experience
Easy upgrade path to
Confluent Enterprise
16
Discount code: kafcom17
  Use the Apache Kafka community discount code to get $50 off
  www.kafka-summit.org
Kafka Summit New York: May 8
Kafka Summit San Francisco: August 28
Presented by
Ad

More Related Content

What's hot (20)

Hadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
Hadoop made fast - Why Virtual Reality Needed Stream Processing to SurviveHadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
Hadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
confluent
 
Apache kafka-a distributed streaming platform
Apache kafka-a distributed streaming platformApache kafka-a distributed streaming platform
Apache kafka-a distributed streaming platform
confluent
 
Confluent building a real-time streaming platform using kafka streams and k...
Confluent   building a real-time streaming platform using kafka streams and k...Confluent   building a real-time streaming platform using kafka streams and k...
Confluent building a real-time streaming platform using kafka streams and k...
Thomas Alex
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platform
Paolo Castagna
 
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
confluent
 
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
confluent
 
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
Lightbend
 
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
Monal Daxini
 
Apache Kafka lessons learned @PAYBACK
Apache Kafka lessons learned @PAYBACKApache Kafka lessons learned @PAYBACK
Apache Kafka lessons learned @PAYBACK
Maxim Shelest
 
Streaming Data Integration - For Women in Big Data Meetup
Streaming Data Integration - For Women in Big Data MeetupStreaming Data Integration - For Women in Big Data Meetup
Streaming Data Integration - For Women in Big Data Meetup
Gwen (Chen) Shapira
 
Data Driven Enterprise with Apache Kafka
Data Driven Enterprise with Apache KafkaData Driven Enterprise with Apache Kafka
Data Driven Enterprise with Apache Kafka
confluent
 
Building Realtim Data Pipelines with Kafka Connect and Spark Streaming
Building Realtim Data Pipelines with Kafka Connect and Spark StreamingBuilding Realtim Data Pipelines with Kafka Connect and Spark Streaming
Building Realtim Data Pipelines with Kafka Connect and Spark Streaming
Guozhang Wang
 
Athens BigData Meetup - Sept 17
Athens BigData Meetup - Sept 17Athens BigData Meetup - Sept 17
Athens BigData Meetup - Sept 17
Landoop Ltd
 
A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology
confluent
 
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Kai Wähner
 
Riding the Streaming Wave DIY style
Riding the Streaming Wave  DIY styleRiding the Streaming Wave  DIY style
Riding the Streaming Wave DIY style
Konstantine Karantasis
 
Flink at netflix paypal speaker series
Flink at netflix   paypal speaker seriesFlink at netflix   paypal speaker series
Flink at netflix paypal speaker series
Monal Daxini
 
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
StreamNative
 
Apache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - VerisignApache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - Verisign
Michael Noll
 
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
confluent
 
Hadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
Hadoop made fast - Why Virtual Reality Needed Stream Processing to SurviveHadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
Hadoop made fast - Why Virtual Reality Needed Stream Processing to Survive
confluent
 
Apache kafka-a distributed streaming platform
Apache kafka-a distributed streaming platformApache kafka-a distributed streaming platform
Apache kafka-a distributed streaming platform
confluent
 
Confluent building a real-time streaming platform using kafka streams and k...
Confluent   building a real-time streaming platform using kafka streams and k...Confluent   building a real-time streaming platform using kafka streams and k...
Confluent building a real-time streaming platform using kafka streams and k...
Thomas Alex
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platform
Paolo Castagna
 
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
Enabling Insight to Support World-Class Supercomputing (Stefan Ceballos, Oak ...
confluent
 
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
Five Fabulous Sinks for Your Kafka Data. #3 will surprise you! (Rachel Pedres...
confluent
 
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
Lightbend
 
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
Monal Daxini
 
Apache Kafka lessons learned @PAYBACK
Apache Kafka lessons learned @PAYBACKApache Kafka lessons learned @PAYBACK
Apache Kafka lessons learned @PAYBACK
Maxim Shelest
 
Streaming Data Integration - For Women in Big Data Meetup
Streaming Data Integration - For Women in Big Data MeetupStreaming Data Integration - For Women in Big Data Meetup
Streaming Data Integration - For Women in Big Data Meetup
Gwen (Chen) Shapira
 
Data Driven Enterprise with Apache Kafka
Data Driven Enterprise with Apache KafkaData Driven Enterprise with Apache Kafka
Data Driven Enterprise with Apache Kafka
confluent
 
Building Realtim Data Pipelines with Kafka Connect and Spark Streaming
Building Realtim Data Pipelines with Kafka Connect and Spark StreamingBuilding Realtim Data Pipelines with Kafka Connect and Spark Streaming
Building Realtim Data Pipelines with Kafka Connect and Spark Streaming
Guozhang Wang
 
Athens BigData Meetup - Sept 17
Athens BigData Meetup - Sept 17Athens BigData Meetup - Sept 17
Athens BigData Meetup - Sept 17
Landoop Ltd
 
A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology
confluent
 
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Event-Driven Stream Processing and Model Deployment with Apache Kafka, Kafka ...
Kai Wähner
 
Flink at netflix paypal speaker series
Flink at netflix   paypal speaker seriesFlink at netflix   paypal speaker series
Flink at netflix paypal speaker series
Monal Daxini
 
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
Select Star: Flink SQL for Pulsar Folks - Pulsar Summit NA 2021
StreamNative
 
Apache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - VerisignApache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - Verisign
Michael Noll
 
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
Kafka Summit SF 2017 - Keynote - Go Against the Flow: Databases and Stream Pr...
confluent
 

Viewers also liked (20)

Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
confluent
 
Building Event-Driven Services with Apache Kafka
Building Event-Driven Services with Apache KafkaBuilding Event-Driven Services with Apache Kafka
Building Event-Driven Services with Apache Kafka
confluent
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache KafkaStrata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
confluent
 
Deep Dive into Apache Kafka
Deep Dive into Apache KafkaDeep Dive into Apache Kafka
Deep Dive into Apache Kafka
confluent
 
Distributed stream processing with Apache Kafka
Distributed stream processing with Apache KafkaDistributed stream processing with Apache Kafka
Distributed stream processing with Apache Kafka
confluent
 
Multi-Datacenter Kafka - Strata San Jose 2017
Multi-Datacenter Kafka - Strata San Jose 2017Multi-Datacenter Kafka - Strata San Jose 2017
Multi-Datacenter Kafka - Strata San Jose 2017
Gwen (Chen) Shapira
 
The Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and ServicesThe Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and Services
confluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
Power of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data StructuresPower of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data Structures
confluent
 
Demystifying Stream Processing with Apache Kafka
Demystifying Stream Processing with Apache KafkaDemystifying Stream Processing with Apache Kafka
Demystifying Stream Processing with Apache Kafka
confluent
 
JustGiving – Serverless Data Pipelines, API, Messaging and Stream Processing
JustGiving – Serverless Data Pipelines,  API, Messaging and Stream ProcessingJustGiving – Serverless Data Pipelines,  API, Messaging and Stream Processing
JustGiving – Serverless Data Pipelines, API, Messaging and Stream Processing
Luis Gonzalez
 
Data integration with Apache Kafka
Data integration with Apache KafkaData integration with Apache Kafka
Data integration with Apache Kafka
confluent
 
Leveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern AnalyticsLeveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern Analytics
confluent
 
Spark and MapR Streams: A Motivating Example
Spark and MapR Streams: A Motivating ExampleSpark and MapR Streams: A Motivating Example
Spark and MapR Streams: A Motivating Example
Ian Downard
 
Introducing Kafka's Streams API
Introducing Kafka's Streams APIIntroducing Kafka's Streams API
Introducing Kafka's Streams API
confluent
 
Confluent Enterprise Datasheet
Confluent Enterprise DatasheetConfluent Enterprise Datasheet
Confluent Enterprise Datasheet
confluent
 
Introduction To Streaming Data and Stream Processing with Apache Kafka
Introduction To Streaming Data and Stream Processing with Apache KafkaIntroduction To Streaming Data and Stream Processing with Apache Kafka
Introduction To Streaming Data and Stream Processing with Apache Kafka
confluent
 
Streaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in ProductionStreaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in Production
confluent
 
Data Streaming with Apache Kafka & MongoDB
Data Streaming with Apache Kafka & MongoDBData Streaming with Apache Kafka & MongoDB
Data Streaming with Apache Kafka & MongoDB
confluent
 
Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
Strata+Hadoop 2017 San Jose - The Rise of Real Time: Apache Kafka and the Str...
confluent
 
Building Event-Driven Services with Apache Kafka
Building Event-Driven Services with Apache KafkaBuilding Event-Driven Services with Apache Kafka
Building Event-Driven Services with Apache Kafka
confluent
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache KafkaStrata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
confluent
 
Deep Dive into Apache Kafka
Deep Dive into Apache KafkaDeep Dive into Apache Kafka
Deep Dive into Apache Kafka
confluent
 
Distributed stream processing with Apache Kafka
Distributed stream processing with Apache KafkaDistributed stream processing with Apache Kafka
Distributed stream processing with Apache Kafka
confluent
 
Multi-Datacenter Kafka - Strata San Jose 2017
Multi-Datacenter Kafka - Strata San Jose 2017Multi-Datacenter Kafka - Strata San Jose 2017
Multi-Datacenter Kafka - Strata San Jose 2017
Gwen (Chen) Shapira
 
The Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and ServicesThe Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and Services
confluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
Power of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data StructuresPower of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data Structures
confluent
 
Demystifying Stream Processing with Apache Kafka
Demystifying Stream Processing with Apache KafkaDemystifying Stream Processing with Apache Kafka
Demystifying Stream Processing with Apache Kafka
confluent
 
JustGiving – Serverless Data Pipelines, API, Messaging and Stream Processing
JustGiving – Serverless Data Pipelines,  API, Messaging and Stream ProcessingJustGiving – Serverless Data Pipelines,  API, Messaging and Stream Processing
JustGiving – Serverless Data Pipelines, API, Messaging and Stream Processing
Luis Gonzalez
 
Data integration with Apache Kafka
Data integration with Apache KafkaData integration with Apache Kafka
Data integration with Apache Kafka
confluent
 
Leveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern AnalyticsLeveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern Analytics
confluent
 
Spark and MapR Streams: A Motivating Example
Spark and MapR Streams: A Motivating ExampleSpark and MapR Streams: A Motivating Example
Spark and MapR Streams: A Motivating Example
Ian Downard
 
Introducing Kafka's Streams API
Introducing Kafka's Streams APIIntroducing Kafka's Streams API
Introducing Kafka's Streams API
confluent
 
Confluent Enterprise Datasheet
Confluent Enterprise DatasheetConfluent Enterprise Datasheet
Confluent Enterprise Datasheet
confluent
 
Introduction To Streaming Data and Stream Processing with Apache Kafka
Introduction To Streaming Data and Stream Processing with Apache KafkaIntroduction To Streaming Data and Stream Processing with Apache Kafka
Introduction To Streaming Data and Stream Processing with Apache Kafka
confluent
 
Streaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in ProductionStreaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in Production
confluent
 
Data Streaming with Apache Kafka & MongoDB
Data Streaming with Apache Kafka & MongoDBData Streaming with Apache Kafka & MongoDB
Data Streaming with Apache Kafka & MongoDB
confluent
 
Ad

Similar to Data Pipelines Made Simple with Apache Kafka (20)

Hopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AIHopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AI
QAware GmbH
 
Hopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Hopsworks - Self-Service Spark/Flink/Kafka/HadoopHopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Hopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Jim Dowling
 
Microservices, Kafka Streams and KafkaEsque
Microservices, Kafka Streams and KafkaEsqueMicroservices, Kafka Streams and KafkaEsque
Microservices, Kafka Streams and KafkaEsque
confluent
 
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg HansenTrivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis
 
Presentation fyp1automationreplicationinopenstack
Presentation fyp1automationreplicationinopenstackPresentation fyp1automationreplicationinopenstack
Presentation fyp1automationreplicationinopenstack
athiqah
 
Hopsworks at Google AI Huddle, Sunnyvale
Hopsworks at Google AI Huddle, SunnyvaleHopsworks at Google AI Huddle, Sunnyvale
Hopsworks at Google AI Huddle, Sunnyvale
Jim Dowling
 
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdfDustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
Dustin Vannoy
 
Prashant Vichare Resume
Prashant Vichare ResumePrashant Vichare Resume
Prashant Vichare Resume
Prashant Vichare
 
ApacheCon 2021 Apache Deep Learning 302
ApacheCon 2021   Apache Deep Learning 302ApacheCon 2021   Apache Deep Learning 302
ApacheCon 2021 Apache Deep Learning 302
Timothy Spann
 
Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?
Guido Schmutz
 
Owning time series with team apache Strata San Jose 2015
Owning time series with team apache   Strata San Jose 2015Owning time series with team apache   Strata San Jose 2015
Owning time series with team apache Strata San Jose 2015
Patrick McFadin
 
Scaling People, Not Just Systems, to Take On Big Data Challenges
Scaling People, Not Just Systems, to Take On Big Data ChallengesScaling People, Not Just Systems, to Take On Big Data Challenges
Scaling People, Not Just Systems, to Take On Big Data Challenges
Matthew Vaughn
 
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Arne Wiebalck
 
High-Performance and Scalable Designs of Programming Models for Exascale Systems
High-Performance and Scalable Designs of Programming Models for Exascale SystemsHigh-Performance and Scalable Designs of Programming Models for Exascale Systems
High-Performance and Scalable Designs of Programming Models for Exascale Systems
inside-BigData.com
 
Patterns of Streaming Applications
Patterns of Streaming ApplicationsPatterns of Streaming Applications
Patterns of Streaming Applications
C4Media
 
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Michael Rys
 
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
HostedbyConfluent
 
Introduction to OpenStack Trove & Database as a Service
Introduction to OpenStack Trove & Database as a ServiceIntroduction to OpenStack Trove & Database as a Service
Introduction to OpenStack Trove & Database as a Service
Tesora
 
Iccana 2011
Iccana 2011Iccana 2011
Iccana 2011
hanums1
 
Spark Summit EU talk by John Musser
Spark Summit EU talk by John MusserSpark Summit EU talk by John Musser
Spark Summit EU talk by John Musser
Spark Summit
 
Hopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AIHopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AI
QAware GmbH
 
Hopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Hopsworks - Self-Service Spark/Flink/Kafka/HadoopHopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Hopsworks - Self-Service Spark/Flink/Kafka/Hadoop
Jim Dowling
 
Microservices, Kafka Streams and KafkaEsque
Microservices, Kafka Streams and KafkaEsqueMicroservices, Kafka Streams and KafkaEsque
Microservices, Kafka Streams and KafkaEsque
confluent
 
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg HansenTrivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis TechEvent 2017 Tools and Methods for DB Migrations by Kim Berg Hansen
Trivadis
 
Presentation fyp1automationreplicationinopenstack
Presentation fyp1automationreplicationinopenstackPresentation fyp1automationreplicationinopenstack
Presentation fyp1automationreplicationinopenstack
athiqah
 
Hopsworks at Google AI Huddle, Sunnyvale
Hopsworks at Google AI Huddle, SunnyvaleHopsworks at Google AI Huddle, Sunnyvale
Hopsworks at Google AI Huddle, Sunnyvale
Jim Dowling
 
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdfDustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
DustinVannoy_DataPipelines_AzureDataConf_Dec22.pdf
Dustin Vannoy
 
ApacheCon 2021 Apache Deep Learning 302
ApacheCon 2021   Apache Deep Learning 302ApacheCon 2021   Apache Deep Learning 302
ApacheCon 2021 Apache Deep Learning 302
Timothy Spann
 
Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?
Guido Schmutz
 
Owning time series with team apache Strata San Jose 2015
Owning time series with team apache   Strata San Jose 2015Owning time series with team apache   Strata San Jose 2015
Owning time series with team apache Strata San Jose 2015
Patrick McFadin
 
Scaling People, Not Just Systems, to Take On Big Data Challenges
Scaling People, Not Just Systems, to Take On Big Data ChallengesScaling People, Not Just Systems, to Take On Big Data Challenges
Scaling People, Not Just Systems, to Take On Big Data Challenges
Matthew Vaughn
 
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Manila on CephFS at CERN (OpenStack Summit Boston, 11 May 2017)
Arne Wiebalck
 
High-Performance and Scalable Designs of Programming Models for Exascale Systems
High-Performance and Scalable Designs of Programming Models for Exascale SystemsHigh-Performance and Scalable Designs of Programming Models for Exascale Systems
High-Performance and Scalable Designs of Programming Models for Exascale Systems
inside-BigData.com
 
Patterns of Streaming Applications
Patterns of Streaming ApplicationsPatterns of Streaming Applications
Patterns of Streaming Applications
C4Media
 
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Michael Rys
 
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
Kafka as your Data Lake - is it Feasible? (Guido Schmutz, Trivadis) Kafka Sum...
HostedbyConfluent
 
Introduction to OpenStack Trove & Database as a Service
Introduction to OpenStack Trove & Database as a ServiceIntroduction to OpenStack Trove & Database as a Service
Introduction to OpenStack Trove & Database as a Service
Tesora
 
Iccana 2011
Iccana 2011Iccana 2011
Iccana 2011
hanums1
 
Spark Summit EU talk by John Musser
Spark Summit EU talk by John MusserSpark Summit EU talk by John Musser
Spark Summit EU talk by John Musser
Spark Summit
 
Ad

More from confluent (20)

Webinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptxWebinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptx
confluent
 
Migration, backup and restore made easy using Kannika
Migration, backup and restore made easy using KannikaMigration, backup and restore made easy using Kannika
Migration, backup and restore made easy using Kannika
confluent
 
Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025
confluent
 
Data in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - KeynoteData in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - Keynote
confluent
 
Data in Motion Tour Seoul 2024 - Roadmap Demo
Data in Motion Tour Seoul 2024  - Roadmap DemoData in Motion Tour Seoul 2024  - Roadmap Demo
Data in Motion Tour Seoul 2024 - Roadmap Demo
confluent
 
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
confluent
 
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
confluent
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...
confluent
 
Strumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent PlatformStrumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent Platform
confluent
 
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not WeeksCompose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
confluent
 
Building Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and ConfluentBuilding Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and Confluent
confluent
 
Unlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by ConfluentUnlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by Confluent
confluent
 
Il Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazioneIl Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazione
confluent
 
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
confluent
 
Break data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud ConnectorsBreak data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud Connectors
confluent
 
Building API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructureBuilding API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructure
confluent
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
confluent
 
Evolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI EraEvolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI Era
confluent
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
confluent
 
Webinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptxWebinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptx
confluent
 
Migration, backup and restore made easy using Kannika
Migration, backup and restore made easy using KannikaMigration, backup and restore made easy using Kannika
Migration, backup and restore made easy using Kannika
confluent
 
Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025
confluent
 
Data in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - KeynoteData in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - Keynote
confluent
 
Data in Motion Tour Seoul 2024 - Roadmap Demo
Data in Motion Tour Seoul 2024  - Roadmap DemoData in Motion Tour Seoul 2024  - Roadmap Demo
Data in Motion Tour Seoul 2024 - Roadmap Demo
confluent
 
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
confluent
 
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
confluent
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...
confluent
 
Strumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent PlatformStrumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent Platform
confluent
 
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not WeeksCompose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
confluent
 
Building Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and ConfluentBuilding Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and Confluent
confluent
 
Unlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by ConfluentUnlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by Confluent
confluent
 
Il Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazioneIl Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazione
confluent
 
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
confluent
 
Break data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud ConnectorsBreak data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud Connectors
confluent
 
Building API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructureBuilding API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructure
confluent
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
confluent
 
Evolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI EraEvolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI Era
confluent
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
confluent
 

Recently uploaded (20)

FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
Lionel Briand
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Creating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdfCreating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdf
Applitools
 
Wilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For WindowsWilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For Windows
Google
 
Streamline Your Manufacturing Data. Strengthen Every Operation.
Streamline Your Manufacturing Data. Strengthen Every Operation.Streamline Your Manufacturing Data. Strengthen Every Operation.
Streamline Your Manufacturing Data. Strengthen Every Operation.
Aparavi
 
Cryptocurrency Exchange Script like Binance.pptx
Cryptocurrency Exchange Script like Binance.pptxCryptocurrency Exchange Script like Binance.pptx
Cryptocurrency Exchange Script like Binance.pptx
riyageorge2024
 
A Deep Dive into Odoo CRM: Lead Management, Automation & More
A Deep Dive into Odoo CRM: Lead Management, Automation & MoreA Deep Dive into Odoo CRM: Lead Management, Automation & More
A Deep Dive into Odoo CRM: Lead Management, Automation & More
SatishKumar2651
 
Microsoft Excel Core Points Training.pptx
Microsoft Excel Core Points Training.pptxMicrosoft Excel Core Points Training.pptx
Microsoft Excel Core Points Training.pptx
Mekonnen
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
saimabibi60507
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
Innovative Approaches to Software Dev no good at all
Innovative Approaches to Software Dev no good at allInnovative Approaches to Software Dev no good at all
Innovative Approaches to Software Dev no good at all
ayeshakanwal75
 
The Elixir Developer - All Things Open
The Elixir Developer - All Things OpenThe Elixir Developer - All Things Open
The Elixir Developer - All Things Open
Carlo Gilmar Padilla Santana
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdfTop Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
evrigsolution
 
Gojek Clone App for Multi-Service Business
Gojek Clone App for Multi-Service BusinessGojek Clone App for Multi-Service Business
Gojek Clone App for Multi-Service Business
XongoLab Technologies LLP
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categorie...
Lionel Briand
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Creating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdfCreating Automated Tests with AI - Cory House - Applitools.pdf
Creating Automated Tests with AI - Cory House - Applitools.pdf
Applitools
 
Wilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For WindowsWilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For Windows
Google
 
Streamline Your Manufacturing Data. Strengthen Every Operation.
Streamline Your Manufacturing Data. Strengthen Every Operation.Streamline Your Manufacturing Data. Strengthen Every Operation.
Streamline Your Manufacturing Data. Strengthen Every Operation.
Aparavi
 
Cryptocurrency Exchange Script like Binance.pptx
Cryptocurrency Exchange Script like Binance.pptxCryptocurrency Exchange Script like Binance.pptx
Cryptocurrency Exchange Script like Binance.pptx
riyageorge2024
 
A Deep Dive into Odoo CRM: Lead Management, Automation & More
A Deep Dive into Odoo CRM: Lead Management, Automation & MoreA Deep Dive into Odoo CRM: Lead Management, Automation & More
A Deep Dive into Odoo CRM: Lead Management, Automation & More
SatishKumar2651
 
Microsoft Excel Core Points Training.pptx
Microsoft Excel Core Points Training.pptxMicrosoft Excel Core Points Training.pptx
Microsoft Excel Core Points Training.pptx
Mekonnen
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
PRTG Network Monitor Crack Latest Version & Serial Key 2025 [100% Working]
saimabibi60507
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
Innovative Approaches to Software Dev no good at all
Innovative Approaches to Software Dev no good at allInnovative Approaches to Software Dev no good at all
Innovative Approaches to Software Dev no good at all
ayeshakanwal75
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdfTop Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
evrigsolution
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 

Data Pipelines Made Simple with Apache Kafka

  • 1. 1 Data Pipelines Made Simple With Apache Kafka Ewen Cheslack-Postava Engineer, Apache Kafka Committer
  • 2. 2 Attend the whole series! Simplify Governance for Streaming Data in Apache Kafka Date: Thursday, April 6, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Gwen Shapira, Product Manager, Confluent Using Apache Kafka to Analyze Session Windows Date: Thursday, March 30, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Michael Noll, Product Manager, Confluent Monitoring and Alerting Apache Kafka with Confluent Control Center Date: Thursday, March 16, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Nick Dearden, Director, Engineering and Product Data Pipelines Made Simple with Apache Kafka Date: Thursday, March 23, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Ewen Cheslack-Postava, Engineer, Confluent https://www.confluent.io/online-talk/online-talk-series-five-steps-to-production-with-apache-kafka/ What’s New in Apache Kafka 0.10.2 and Confluent 3.2 Date: Thursday, March 9, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Clarke Patterson, Senior Director, Product Marketing
  • 3. 3 The Challenge: Streaming Data Pipelines
  • 4. 4 Simplifying Streaming Data Pipelines with Apache Kafka
  • 7. 7 Single Message Transforms for Kafka Connect Modify events before storing in Kafka: • Mask sensitive information • Add identifiers • Tag events • Store lineage • Remove unnecessary columns Modify events going out of Kafka: • Route high priority events to faster data stores • Direct events to different Elasticsearch indexes • Cast data types to match destination • Remove unnecessary columns
  • 8. 8 Where Single Message Transforms Fit In
  • 9. 9 Built-in Transformations • InsertField – Add a field using either static data or record metadata • ReplaceField – Filter or rename fields • MaskField – Replace field with valid null value for the type (0, empty string, etc) • ValueToKey – Set the key to one of the value’s fields • HoistField – Wrap the entire event as a single field inside a Struct or a Map • ExtractField – Extract a specific field from Struct and Map and include only this field in results • SetSchemaMetadata – modify the schema name or version • TimestampRouter – Modify the topic of a record based on original topic and timestamp. Useful when using a sink that needs to write to different tables or indexes based on timestamps • RegexpRouter – modify the topic of a record based on original topic, replacement string and a regular expression
  • 10. 10 Configuring Single Message Transforms name=local-file-source connector.class=FileStreamSource tasks.max=1 file=test.txt topic=connect-test transforms=MakeMap,InsertSource transforms.MakeMap.type=org.apache.kafka.connect.transforms.HoistField$Value transforms.MakeMap.field=line transforms.InsertSource.type=org.apache.kafka.connect.transforms.InsertField$Value transforms.InsertSource.static.field=data_source transforms.InsertSource.static.value=test-file-source
  • 11. 11 Why only single messages? • Delivery guarantees! • Always provide at least once semantics • For supported connectors, provide exactly once semantics • No additional complication: transformations happens inline with import/export
  • 12. 12 When should I use each tool? Kafka Connect & Single Message Transforms • Simple, message at a time • Transformation can be performed inline • Transformation does not interact with external systems Kafka Streams • Complex transformations including • Aggregations • Windowing • Joins • Transformed data stored back in Kafka, enabling reuse • Write, deploy, and monitor a Java application
  • 13. 13 Conclusion Single Message Transforms in Kafka Connect • Lightweight transformation of individual messages • Configuration-only data pipelines • Pluggable, with lots of built-in transformations
  • 14. 14 Attend the whole series! Simplify Governance for Streaming Data in Apache Kafka Date: Thursday, April 6, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Gwen Shapira, Product Manager, Confluent Using Apache Kafka to Analyze Session Windows Date: Thursday, March 30, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Michael Noll, Product Manager, Confluent Monitoring and Alerting Apache Kafka with Confluent Control Center Date: Thursday, March 16, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Nick Dearden, Director, Engineering and Product Data Pipelines Made Simple with Apache Kafka Date: Thursday, March 23, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Ewen Cheslack-Postava, Engineer, Confluent https://www.confluent.io/online-talk/online-talk-series-five-steps-to-production-with-apache-kafka/ What’s New in Apache Kafka 0.10.2 and Confluent 3.2 Date: Thursday, March 9, 2017 Time: 9:30 am - 10:00 am PT | 12:30 pm - 1:00 pm ET Speaker: Clarke Patterson, Senior Director, Product Marketing
  • 15. 15 Get Started with Apache Kafka Today! https://www.confluent.io/downloads/ THE place to start with Apache Kafka! Thoroughly tested and quality assured More extensible developer experience Easy upgrade path to Confluent Enterprise
  • 16. 16 Discount code: kafcom17  Use the Apache Kafka community discount code to get $50 off  www.kafka-summit.org Kafka Summit New York: May 8 Kafka Summit San Francisco: August 28 Presented by