Abstract
High dimensional biological datasets in recent years has been growing rapidly. Extracting the knowledge and analyzing highdimensional
biological data is one the key challenges in which variety and veracity are the two distinct characteristics. The
question that arises now is, how to perform dimensionality reduction for this heterogeneous data and how to develop a high
performance platform to efficiently analyze high dimensional biological data and how to find the useful things from this data. To
deeply discuss this issue, this paper begins with a brief introduction to data analytics available for biological data, followed by
the discussions of big data analytics and then a survey on various data reduction methods for biological data. We propose a dense
clustering algorithm for standard high dimensional biological data.
Keywords: Big Data Analytics, Dimensionality Reduction