SlideShare a Scribd company logo
25127
The Data Lake Engine
Spark + AI Summit 2020
Data Science Across Data Sources with Apache Arrow
25127
Dremio is the Data Lake Engine CompanyTomer Shiran
Co-Founder & CPO, Dremio
tomer@dremio.com Powering the cloud data lakes of the world’s
leading companies across all industries
Creators of
Over $100M raised
Background
25127
Your Data Lake is Exploding, Yet Your Data Remains Inaccessible
But…
>100% YoY S3
Data Growth1
>50% of Data
Will Live on Cloud Data
Lake Storage by 20252
1) Estimate based on historical growth https://aws.amazon.com/blogs/aws/amazon-s3-growth-for-2011-now-762-billion-objects/
2) Estimate based on trends around cloud migration plus growth in semi-structured and unstructured data
Data Lakes are becoming the
primary place that data lands
Consuming the data is
too slow & too difficult
SQL
Data Consumers
X X X
S3ADLS
S3ADLS
or or
25127
Data Movement is the Typical Workaround for Data Lake Storage
BI Users
SQL
Data Scientists
Data Lake
Storage ADLS S3
25127
Data Movement is the Typical Workaround for Data Lake Storage
BI Users
SQL
Data Scientists
1
Brittle & complex
ETL/ELT
Data Lake
Storage ADLS S3
25127
Data Movement is the Typical Workaround for Data Lake Storage
1
2
Brittle & complex
ETL/ELT
Data Lake
Storage
Proprietary & expensive
DW/Data Marts
BI Users
SQL
Data Scientists
ADLS S3
25127
Data Movement is the Typical Workaround for Data Lake Storage
Proliferating Cubes,
BI Extracts, &
Aggregation Tables
Proprietary & expensive
DW/Data Marts
+
+
+
+
+
+
+
+
+
1
2
3
Brittle & complex
ETL/ELT
D
ecreasingD
ataScope&
Flexibility
Data Lake
Storage
BI Users
SQL
Data Scientists
ADLS S3
25127
Proliferating Cubes,
BI Extracts, &
Aggregation Tables
Proprietary & expensive
DW/Data Marts
+
+
+
+
+
+
+
+
+
1
2
3
Brittle & complex
ETL/ELT
D
ecreasingD
ataScope&
Flexibility
BI Users
SQL
Data Scientists
Data Lake
Storage ADLS S3o
r
o
r
Query data lake storage directly with 4-100X performance
Powered by .
What is Apache Arrow?
Columnar In-
Memory
Representation
Many Language
Bindings
Broad Industry
Adoption
Row-based Column-based
10+ Downloads per Month
25127
Apache Arrow Gandiva Improves CPU Efficiency
✓ A standalone C++ library for efficient
evaluation of arbitrary SQL expressions on
Arrow vectors using runtime code-
generation in LLVM
✓ Expressions are compiled to LLVM bytecode
(IR), optimized & translated to machine code
✓ Gandiva enables vectorized execution with
Intel SIMD instructions
SQL expression
Vectorized
execution
kernel
Input Arrow
buffer
Output Arrow
buffer
Gandiva
compiler
Pre-compiled
functions (.bs)
OptimizeIRBuilder
25127
4.5x-90x Faster than Java-based Code Generation
Test Project time (secs)
with Java JIT
Project time (secs)
with Gandiva LLVM
Improvement
Sum 3.805 0.558 6.8x
Project 5 columns 8.681 1.689 5.13x
Project 10 columns 24.923 3.476 7.74x
CASE-10 4.308 0.925 4.66x
CASE-100 1361 15.187 89.6x
25127
Dremio’s Arrow-based Columnar Cloud Cache (C3) Accelerates I/O
✓ Columnar cloud cache (C3) automatically provides
NVMe-level I/O performance when reading from
S3/ADLS
✓ Arrow persistence enables granular caching as Arrow
buffers in local engine NVMe
✓ Bypass data deserialization and decompression
✓ Enables high-concurrency, low-latency BI workloads
on cloud data lake storage
…
Executor Executor Executor Executor
AWS S3
NVMe NVMeNVMe NVMe
C3 with Apache Arrow persistence
…
Executor Executor Executor
NVMe NVMe NVMe
C3 with Apache Arrow persistence
XL engine
M engine
25127
The Open Data Platform
Storage
Data
Compute
Client
Interactive SQL & BI Data science & batch Occasional SQL
Athena EMR
Batch processing
AWS
S3
ADLS HDFS
File formats: Text | JSON | Parquet | ORC
Table formats: Glue | Hive Metastore | Delta Lake | Iceberg
We Need Fast, Industry-Standard Data Exchange
Storage
Data
Compute
Client
Interactive SQL & BI Data science & batch Occasional SQL
Athena EMR
AWS
S3
ADLS HDFS
File formats: Text | JSON | Parquet | ORC
Table formats: Glue | Hive Metastore | Delta Lake | Iceberg
Batch processing
2
1
3
4
Arrow Flight is an Arrow-based RPC Interface
✓ High-performance wire protocol
✓ Parallel streams of Arrow buffers are transferred
✓ Delivers on the interoperability promise of Apache
Arrow
✓ Client-cluster and cluster-cluster communication
…
Arrow Flight dataframe
Arrow Flight Python Client
import pyarrow.flight as flt
c = flt.FlightClient.connect("localhost", 47470)
fd = flt.FlightDescriptor.for_command(sql)
fi = c.get_flight_info(fd)
ticket = fi.endpoints[0].ticket
df = c.do_get(ticket0).read_all()
Client-Cluster Communication
Cluster-Cluster Communication
Demo
Demo
25127
Q&AThe Data Lake Engine
25127
Dremio is the Data Lake Engine
Data
Lake
Storage
Data
Lake
Engine
BI Users
SQL
Data Scientists
ADLS S3or or
Optional
External
Sources
Data
Users
Accelerate
Business
100X BI query speed
4X Ad-hoc query speed
0 cubes, extracts, or
aggregation tables
Reduce
Cost & Risk&
10x lower AWS EC2 /
Azure VM spend for same
performance
0 lock-in, loss of control,
and duplication of data
Powered by
A Next-Generation Data Lake Query Engine for Live, Interactive Analytics Directly on Data Lake Storage
Ad

More Related Content

What's hot (20)

Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
DataWorks Summit/Hadoop Summit
 
Spark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark MeetupSpark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Programming in Spark using PySpark
Programming in Spark using PySpark      Programming in Spark using PySpark
Programming in Spark using PySpark
Mostafa
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Hive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep DiveHive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Introduction to Apache NiFi 1.11.4
Introduction to Apache NiFi 1.11.4Introduction to Apache NiFi 1.11.4
Introduction to Apache NiFi 1.11.4
Timothy Spann
 
Using LLVM to accelerate processing of data in Apache Arrow
Using LLVM to accelerate processing of data in Apache ArrowUsing LLVM to accelerate processing of data in Apache Arrow
Using LLVM to accelerate processing of data in Apache Arrow
DataWorks Summit
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Dremio Corporation
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Real time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafkaReal time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafka
Timothy Spann
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
HostedbyConfluent
 
DevOps for Databricks
DevOps for DatabricksDevOps for Databricks
DevOps for Databricks
Databricks
 
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
StreamNative
 
Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
Top Three Big Data Governance Issues and How Apache ATLAS resolves it for the...
DataWorks Summit/Hadoop Summit
 
Spark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark MeetupSpark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Programming in Spark using PySpark
Programming in Spark using PySpark      Programming in Spark using PySpark
Programming in Spark using PySpark
Mostafa
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Hive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep DiveHive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Introduction to Apache NiFi 1.11.4
Introduction to Apache NiFi 1.11.4Introduction to Apache NiFi 1.11.4
Introduction to Apache NiFi 1.11.4
Timothy Spann
 
Using LLVM to accelerate processing of data in Apache Arrow
Using LLVM to accelerate processing of data in Apache ArrowUsing LLVM to accelerate processing of data in Apache Arrow
Using LLVM to accelerate processing of data in Apache Arrow
DataWorks Summit
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Dremio Corporation
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Real time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafkaReal time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafka
Timothy Spann
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
Designing Apache Hudi for Incremental Processing With Vinoth Chandar and Etha...
HostedbyConfluent
 
DevOps for Databricks
DevOps for DatabricksDevOps for Databricks
DevOps for Databricks
Databricks
 
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
StreamNative
 

Similar to Data Science Across Data Sources with Apache Arrow (20)

Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
Serverless Data Platform
Serverless Data PlatformServerless Data Platform
Serverless Data Platform
Shu-Jeng Hsieh
 
The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019
Amit Banerjee
 
Cloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AICloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AI
Torsten Steinbach
 
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Precisely
 
Owning Your Own (Data) Lake House
Owning Your Own (Data) Lake HouseOwning Your Own (Data) Lake House
Owning Your Own (Data) Lake House
Data Con LA
 
Big Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI MobileBig Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI Mobile
Roy Kim
 
Overview SQL Server 2019
Overview SQL Server 2019Overview SQL Server 2019
Overview SQL Server 2019
Juan Fabian
 
Dev/Test Environment Provisioning and Management on AWS
Dev/Test Environment Provisioning and Management on AWSDev/Test Environment Provisioning and Management on AWS
Dev/Test Environment Provisioning and Management on AWS
Shiva Narayanaswamy
 
Seminario de Cloud Computing na UFRRJ
Seminario de Cloud Computing na UFRRJSeminario de Cloud Computing na UFRRJ
Seminario de Cloud Computing na UFRRJ
Alex Barbosa Coqueiro
 
ArcReady - Architecting For The Cloud
ArcReady - Architecting For The CloudArcReady - Architecting For The Cloud
ArcReady - Architecting For The Cloud
Microsoft ArcReady
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Ivan Donev
 
AWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
AWS Innovate: Build a Data Lake on AWS- Johnathon MeichtryAWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
AWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
Amazon Web Services Korea
 
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on AzureGlobal Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Karim Vaes
 
Solved: Your Most Dreaded Test Environment Management Challenges
Solved: Your Most Dreaded Test Environment Management ChallengesSolved: Your Most Dreaded Test Environment Management Challenges
Solved: Your Most Dreaded Test Environment Management Challenges
DevOps.com
 
IBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data Lake
Torsten Steinbach
 
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Lace Lofranco
 
Coud-based Data Lake for Analytics and AI
Coud-based Data Lake for Analytics and AICoud-based Data Lake for Analytics and AI
Coud-based Data Lake for Analytics and AI
Torsten Steinbach
 
Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage
CCG
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
Serverless Data Platform
Serverless Data PlatformServerless Data Platform
Serverless Data Platform
Shu-Jeng Hsieh
 
The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019
Amit Banerjee
 
Cloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AICloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AI
Torsten Steinbach
 
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Big Data Goes Airborne. Propelling Your Big Data Initiative with Ironcluster ...
Precisely
 
Owning Your Own (Data) Lake House
Owning Your Own (Data) Lake HouseOwning Your Own (Data) Lake House
Owning Your Own (Data) Lake House
Data Con LA
 
Big Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI MobileBig Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI Mobile
Roy Kim
 
Overview SQL Server 2019
Overview SQL Server 2019Overview SQL Server 2019
Overview SQL Server 2019
Juan Fabian
 
Dev/Test Environment Provisioning and Management on AWS
Dev/Test Environment Provisioning and Management on AWSDev/Test Environment Provisioning and Management on AWS
Dev/Test Environment Provisioning and Management on AWS
Shiva Narayanaswamy
 
Seminario de Cloud Computing na UFRRJ
Seminario de Cloud Computing na UFRRJSeminario de Cloud Computing na UFRRJ
Seminario de Cloud Computing na UFRRJ
Alex Barbosa Coqueiro
 
ArcReady - Architecting For The Cloud
ArcReady - Architecting For The CloudArcReady - Architecting For The Cloud
ArcReady - Architecting For The Cloud
Microsoft ArcReady
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Ivan Donev
 
AWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
AWS Innovate: Build a Data Lake on AWS- Johnathon MeichtryAWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
AWS Innovate: Build a Data Lake on AWS- Johnathon Meichtry
Amazon Web Services Korea
 
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on AzureGlobal Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Global Azure Bootcamp 2017 - Why I love S2D for MSSQL on Azure
Karim Vaes
 
Solved: Your Most Dreaded Test Environment Management Challenges
Solved: Your Most Dreaded Test Environment Management ChallengesSolved: Your Most Dreaded Test Environment Management Challenges
Solved: Your Most Dreaded Test Environment Management Challenges
DevOps.com
 
IBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data Lake
Torsten Steinbach
 
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Lace Lofranco
 
Coud-based Data Lake for Analytics and AI
Coud-based Data Lake for Analytics and AICoud-based Data Lake for Analytics and AI
Coud-based Data Lake for Analytics and AI
Torsten Steinbach
 
Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage
CCG
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Ad

Recently uploaded (20)

Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Chromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docxChromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docx
NohaSalah45
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptxAllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptx
bpkr84
 
Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptxPRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
JayeshTaneja4
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Chromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docxChromatography_Detailed_Information.docx
Chromatography_Detailed_Information.docx
NohaSalah45
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptxAllContacts Vs AllSubscribers - SFMC.pptx
AllContacts Vs AllSubscribers - SFMC.pptx
bpkr84
 
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptxPRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
JayeshTaneja4
 

Data Science Across Data Sources with Apache Arrow

  • 1. 25127 The Data Lake Engine Spark + AI Summit 2020 Data Science Across Data Sources with Apache Arrow
  • 2. 25127 Dremio is the Data Lake Engine CompanyTomer Shiran Co-Founder & CPO, Dremio [email protected] Powering the cloud data lakes of the world’s leading companies across all industries Creators of Over $100M raised Background
  • 3. 25127 Your Data Lake is Exploding, Yet Your Data Remains Inaccessible But… >100% YoY S3 Data Growth1 >50% of Data Will Live on Cloud Data Lake Storage by 20252 1) Estimate based on historical growth https://aws.amazon.com/blogs/aws/amazon-s3-growth-for-2011-now-762-billion-objects/ 2) Estimate based on trends around cloud migration plus growth in semi-structured and unstructured data Data Lakes are becoming the primary place that data lands Consuming the data is too slow & too difficult SQL Data Consumers X X X S3ADLS S3ADLS or or
  • 4. 25127 Data Movement is the Typical Workaround for Data Lake Storage BI Users SQL Data Scientists Data Lake Storage ADLS S3
  • 5. 25127 Data Movement is the Typical Workaround for Data Lake Storage BI Users SQL Data Scientists 1 Brittle & complex ETL/ELT Data Lake Storage ADLS S3
  • 6. 25127 Data Movement is the Typical Workaround for Data Lake Storage 1 2 Brittle & complex ETL/ELT Data Lake Storage Proprietary & expensive DW/Data Marts BI Users SQL Data Scientists ADLS S3
  • 7. 25127 Data Movement is the Typical Workaround for Data Lake Storage Proliferating Cubes, BI Extracts, & Aggregation Tables Proprietary & expensive DW/Data Marts + + + + + + + + + 1 2 3 Brittle & complex ETL/ELT D ecreasingD ataScope& Flexibility Data Lake Storage BI Users SQL Data Scientists ADLS S3
  • 8. 25127 Proliferating Cubes, BI Extracts, & Aggregation Tables Proprietary & expensive DW/Data Marts + + + + + + + + + 1 2 3 Brittle & complex ETL/ELT D ecreasingD ataScope& Flexibility BI Users SQL Data Scientists Data Lake Storage ADLS S3o r o r Query data lake storage directly with 4-100X performance Powered by .
  • 9. What is Apache Arrow? Columnar In- Memory Representation Many Language Bindings Broad Industry Adoption Row-based Column-based
  • 11. 25127 Apache Arrow Gandiva Improves CPU Efficiency ✓ A standalone C++ library for efficient evaluation of arbitrary SQL expressions on Arrow vectors using runtime code- generation in LLVM ✓ Expressions are compiled to LLVM bytecode (IR), optimized & translated to machine code ✓ Gandiva enables vectorized execution with Intel SIMD instructions SQL expression Vectorized execution kernel Input Arrow buffer Output Arrow buffer Gandiva compiler Pre-compiled functions (.bs) OptimizeIRBuilder
  • 12. 25127 4.5x-90x Faster than Java-based Code Generation Test Project time (secs) with Java JIT Project time (secs) with Gandiva LLVM Improvement Sum 3.805 0.558 6.8x Project 5 columns 8.681 1.689 5.13x Project 10 columns 24.923 3.476 7.74x CASE-10 4.308 0.925 4.66x CASE-100 1361 15.187 89.6x
  • 13. 25127 Dremio’s Arrow-based Columnar Cloud Cache (C3) Accelerates I/O ✓ Columnar cloud cache (C3) automatically provides NVMe-level I/O performance when reading from S3/ADLS ✓ Arrow persistence enables granular caching as Arrow buffers in local engine NVMe ✓ Bypass data deserialization and decompression ✓ Enables high-concurrency, low-latency BI workloads on cloud data lake storage … Executor Executor Executor Executor AWS S3 NVMe NVMeNVMe NVMe C3 with Apache Arrow persistence … Executor Executor Executor NVMe NVMe NVMe C3 with Apache Arrow persistence XL engine M engine
  • 14. 25127 The Open Data Platform Storage Data Compute Client Interactive SQL & BI Data science & batch Occasional SQL Athena EMR Batch processing AWS S3 ADLS HDFS File formats: Text | JSON | Parquet | ORC Table formats: Glue | Hive Metastore | Delta Lake | Iceberg
  • 15. We Need Fast, Industry-Standard Data Exchange Storage Data Compute Client Interactive SQL & BI Data science & batch Occasional SQL Athena EMR AWS S3 ADLS HDFS File formats: Text | JSON | Parquet | ORC Table formats: Glue | Hive Metastore | Delta Lake | Iceberg Batch processing 2 1 3 4
  • 16. Arrow Flight is an Arrow-based RPC Interface ✓ High-performance wire protocol ✓ Parallel streams of Arrow buffers are transferred ✓ Delivers on the interoperability promise of Apache Arrow ✓ Client-cluster and cluster-cluster communication … Arrow Flight dataframe
  • 17. Arrow Flight Python Client import pyarrow.flight as flt c = flt.FlightClient.connect("localhost", 47470) fd = flt.FlightDescriptor.for_command(sql) fi = c.get_flight_info(fd) ticket = fi.endpoints[0].ticket df = c.do_get(ticket0).read_all()
  • 20. Demo
  • 21. Demo
  • 23. 25127 Dremio is the Data Lake Engine Data Lake Storage Data Lake Engine BI Users SQL Data Scientists ADLS S3or or Optional External Sources Data Users Accelerate Business 100X BI query speed 4X Ad-hoc query speed 0 cubes, extracts, or aggregation tables Reduce Cost & Risk& 10x lower AWS EC2 / Azure VM spend for same performance 0 lock-in, loss of control, and duplication of data Powered by A Next-Generation Data Lake Query Engine for Live, Interactive Analytics Directly on Data Lake Storage