Building an Effective Data Warehouse ArchitectureJames Serra
Why use a data warehouse? What is the best methodology to use when creating a data warehouse? Should I use a normalized or dimensional approach? What is the difference between the Kimball and Inmon methodologies? Does the new Tabular model in SQL Server 2012 change things? What is the difference between a data warehouse and a data mart? Is there hardware that is optimized for a data warehouse? What if I have a ton of data? During this session James will help you to answer these questions.
Snowflake: The most cost-effective agile and scalable data warehouse ever!Visual_BI
In this webinar, the presenter will take you through the most revolutionary data warehouse, Snowflake with a live demo and technical and functional discussions with a customer. Ryan Goltz from Chesapeake Energy and Tristan Handy, creator of DBT Cloud and owner of Fishtown Analytics will also be joining the webinar.
Melbourne: Certus Data 2.0 Vault Meetup with Snowflake - Data Vault In The Cl...Certus Solutions
Snowflake is a cloud data warehouse that provides elasticity, scalability, and simplicity. It allows organizations to consolidate their diverse data sources in one place and instantly scale up or down their compute capacity as needed. Aptus Health, a digital marketing company, used Snowflake to break down data silos, integrate disparate data sources, enable broad data sharing, and provide a scalable and cost-effective solution to meet their analytics needs. Snowflake addressed both business needs for timely access to centralized data and IT needs for flexibility, extensibility, and reducing ETL work.
How to Strengthen Enterprise Data Governance with Data QualityDATAVERSITY
If your organization is in a highly-regulated industry – or relies on data for competitive advantage – data governance is undoubtedly a top priority. Whether you’re focused on “defensive” data governance (supporting regulatory compliance and risk management) or “offensive” data governance (extracting the maximum value from your data assets, and minimizing the cost of bad data), data quality plays a critical role in ensuring success.
Join our webinar to learn how enterprise data quality drives stronger data governance, including:
The overlaps between data governance and data quality
The “data” dependencies of data governance – and how data quality addresses them
Key considerations for deploying data quality for data governance
Data Catalog for Better Data Discovery and GovernanceDenodo
Watch full webinar here: https://buff.ly/2Vq9FR0
Data catalogs are en vogue answering critical data governance questions like “Where all does my data reside?” “What other entities are associated with my data?” “What are the definitions of the data fields?” and “Who accesses the data?” Data catalogs maintain the necessary business metadata to answer these questions and many more. But that’s not enough. For it to be useful, data catalogs need to deliver these answers to the business users right within the applications they use.
In this session, you will learn:
*How data catalogs enable enterprise-wide data governance regimes
*What key capability requirements should you expect in data catalogs
*How data virtualization combines dynamic data catalogs with delivery
The document discusses modern data architectures. It presents conceptual models for data ingestion, storage, processing, and insights/actions. It compares traditional vs modern architectures. The modern architecture uses a data lake for storage and allows for on-demand analysis. It provides an example of how this could be implemented on Microsoft Azure using services like Azure Data Lake Storage, Azure Data Bricks, and Azure Data Warehouse. It also outlines common data management functions such as data governance, architecture, development, operations, and security.
This introduction to data governance presentation covers the inter-related DM foundational disciplines (Data Integration / DWH, Business Intelligence and Data Governance). Some of the pitfalls and success factors for data governance.
• IM Foundational Disciplines
• Cross-functional Workflow Exchange
• Key Objectives of the Data Governance Framework
• Components of a Data Governance Framework
• Key Roles in Data Governance
• Data Governance Committee (DGC)
• 4 Data Governance Policy Areas
• 3 Challenges to Implementing Data Governance
• Data Governance Success Factors
Emerging Trends in Data Architecture – What’s the Next Big Thing?DATAVERSITY
With technological innovation and change occurring at an ever-increasing rate, it’s hard to keep track of what’s hype and what can provide practical value for your organization. Join this webinar to see the results of a recent DATAVERSITY survey on emerging trends in Data Architecture, along with practical commentary and advice from industry expert Donna Burbank.
Data Governance Trends - A Look Backwards and ForwardsDATAVERSITY
As DATAVERSITY’s RWDG series hurdles into our 12th year, this webinar takes a quick look behind us, evaluates the present, and predicts the future of Data Governance. Based on webinar numbers, hot Data Governance topics have evolved over the years from policies and best practices, roles and tools, data catalogs and frameworks, to supporting data mesh and fabric, artificial intelligence, virtualization, literacy, and metadata governance.
Join Bob Seiner as he reflects on the past and what has and has not worked, while sharing examples of enterprise successes and struggles. In this webinar, Bob will challenge the audience to stay a step ahead by learning from the past and blazing a new trail into the future of Data Governance.
In this webinar, Bob will focus on:
- Data Governance’s past, present, and future
- How trials and tribulations evolve to success
- Leveraging lessons learned to improve productivity
- The great Data Governance tool explosion
- The future of Data Governance
Activate Data Governance Using the Data CatalogDATAVERSITY
This document discusses activating data governance using a data catalog. It compares active vs passive data governance, with active embedding governance into people's work through a catalog. The catalog plays a key role by allowing stewards to document definition, production, and usage of data in a centralized place. For governance to be effective, metadata from various sources must be consolidated and maintained in the catalog.
Data Lakehouse Symposium | Day 1 | Part 2Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
Data Architecture - The Foundation for Enterprise Architecture and GovernanceDATAVERSITY
Organizations are faced with an increasingly complex data landscape, finding themselves unable to cope with exponentially increasing data volumes, compounded by additional regulatory requirements with increased fines for non-compliance. Enterprise architecture and data governance are often discussed at length, but often with different stakeholder audiences. This can result in complementary and sometimes conflicting initiatives rather than a focused, integrated approach. Data governance requires a solid data architecture foundation in order to support the pillars of enterprise architecture. In this session, IDERA’s Ron Huizenga will discuss a practical, integrated approach to effectively understand, define and implement an cohesive enterprise architecture and data governance discipline with integrated modeling and metadata management.
Learn to Use Databricks for Data ScienceDatabricks
Data scientists face numerous challenges throughout the data science workflow that hinder productivity. As organizations continue to become more data-driven, a collaborative environment is more critical than ever — one that provides easier access and visibility into the data, reports and dashboards built against the data, reproducibility, and insights uncovered within the data.. Join us to hear how Databricks’ open and collaborative platform simplifies data science by enabling you to run all types of analytics workloads, from data preparation to exploratory analysis and predictive analytics, at scale — all on one unified platform.
Data Warehouse or Data Lake, Which Do I Choose?DATAVERSITY
Today’s data-driven companies have a choice to make – where do we store our data? As the move to the cloud continues to be a driving factor, the choice becomes either the data warehouse (Snowflake et al) or the data lake (AWS S3 et al). There are pro’s and con’s for each approach. While the data warehouse will give you strong data management with analytics, they don’t do well with semi-structured and unstructured data with tightly coupled storage and compute, not to mention expensive vendor lock-in. On the other hand, data lakes allow you to store all kinds of data and are extremely affordable, but they’re only meant for storage and by themselves provide no direct value to an organization.
Enter the Open Data Lakehouse, the next evolution of the data stack that gives you the openness and flexibility of the data lake with the key aspects of the data warehouse like management and transaction support.
In this webinar, you’ll hear from Ali LeClerc who will discuss the data landscape and why many companies are moving to an open data lakehouse. Ali will share more perspective on how you should think about what fits best based on your use case and workloads, and how some real world customers are using Presto, a SQL query engine, to bring analytics to the data lakehouse.
Building a Data Strategy – Practical Steps for Aligning with Business GoalsDATAVERSITY
Developing a Data Strategy for your organization can seem like a daunting task – but it’s worth the effort. Getting your Data Strategy right can provide significant value, as data drives many of the key initiatives in today’s marketplace – from digital transformation, to marketing, to customer centricity, to population health, and more. This webinar will help demystify Data Strategy and its relationship to Data Architecture and will provide concrete, practical ways to get started.
Tackling Data Quality problems requires more than a series of tactical, one-off improvement projects. By their nature, many Data Quality problems extend across and often beyond an organization. Addressing these issues requires a holistic architectural approach combining people, process, and technology. Join Nigel Turner and Donna Burbank as they provide practical ways to control Data Quality issues in your organization.
Data Warehousing Trends, Best Practices, and Future OutlookJames Serra
Over the last decade, the 3Vs of data - Volume, Velocity & Variety has grown massively. The Big Data revolution has completely changed the way companies collect, analyze & store data. Advancements in cloud-based data warehousing technologies have empowered companies to fully leverage big data without heavy investments both in terms of time and resources. But, that doesn’t mean building and managing a cloud data warehouse isn’t accompanied by any challenges. From deciding on a service provider to the design architecture, deploying a data warehouse tailored to your business needs is a strenuous undertaking. Looking to deploy a data warehouse to scale your company’s data infrastructure or still on the fence? In this presentation you will gain insights into the current Data Warehousing trends, best practices, and future outlook. Learn how to build your data warehouse with the help of real-life use-cases and discussion on commonly faced challenges. In this session you will learn:
- Choosing the best solution - Data Lake vs. Data Warehouse vs. Data Mart
- Choosing the best Data Warehouse design methodologies: Data Vault vs. Kimball vs. Inmon
- Step by step approach to building an effective data warehouse architecture
- Common reasons for the failure of data warehouse implementations and how to avoid them
The document discusses migrating a data warehouse to the Databricks Lakehouse Platform. It outlines why legacy data warehouses are struggling, how the Databricks Platform addresses these issues, and key considerations for modern analytics and data warehousing. The document then provides an overview of the migration methodology, approach, strategies, and key takeaways for moving to a lakehouse on Databricks.
The data lake has become extremely popular, but there is still confusion on how it should be used. In this presentation I will cover common big data architectures that use the data lake, the characteristics and benefits of a data lake, and how it works in conjunction with a relational data warehouse. Then I’ll go into details on using Azure Data Lake Store Gen2 as your data lake, and various typical use cases of the data lake. As a bonus I’ll talk about how to organize a data lake and discuss the various products that can be used in a modern data warehouse.
Who Should Own Data Governance – IT or Business?DATAVERSITY
The question is asked all the time: “What part of the organization should own your Data Governance program?” The typical answers are “the business” and “IT (information technology).” Another answer to that question is “Yes.” The program must be owned and reside somewhere in the organization. You may ask yourself if there is a correct answer to the question.
Join this new RWDG webinar with Bob Seiner where Bob will answer the question that is the title of this webinar. Determining ownership of Data Governance is a vital first step. Figuring out the appropriate part of the organization to manage the program is an important second step. This webinar will help you address these questions and more.
In this session Bob will share:
- What is meant by “the business” when it comes to owning Data Governance
- Why some people say that Data Governance in IT is destined to fail
- Examples of IT positioned Data Governance success
- Considerations for answering the question in your organization
- The final answer to the question of who should own Data Governance
Data Lakehouse, Data Mesh, and Data Fabric (r2)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a modern data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. They all may sound great in theory, but I'll dig into the concerns you need to be aware of before taking the plunge. I’ll also include use cases so you can see what approach will work best for your big data needs. And I'll discuss Microsoft version of the data mesh.
Data Catalogs Are the Answer – What is the Question?DATAVERSITY
Organizations with governed metadata made available through their data catalog can answer questions their people have about the organization’s data. These organizations get more value from their data, protect their data better, gain improved ROI from data-centric projects and programs, and have more confidence in their most strategic data.
Join Bob Seiner for this lively webinar where he will talk about the value of a data catalog and how to build the use of the catalog into your stewards’ daily routines. Bob will share how the tool must be positioned for success and viewed as a must-have resource that is a steppingstone and catalyst to governed data across the organization.
The document discusses data mesh vs data fabric architectures. It defines data mesh as a decentralized data processing architecture with microservices and event-driven integration of enterprise data assets across multi-cloud environments. The key aspects of data mesh are that it is decentralized, processes data at the edge, uses immutable event logs and streams for integration, and can move all types of data reliably. The document then provides an overview of how data mesh architectures have evolved from hub-and-spoke models to more distributed designs using techniques like kappa architecture and describes some use cases for event streaming and complex event processing.
Chief Data Officer (CDO) Organization RolesDave Getty
If your Company wants to treat Data as an Asset, it needs a Chief Data Officer to initiate significant changes in the Roles and Responsibilities of the Data Governance, IT Data Management and Business Analyst Data Scientist organizations. This presentation describes how the resulting organizations might look and behave.
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Introduction to Data Governance
Seminar hosted by Embarcadero technologies, where Christopher Bradley presented a session on Data Governance.
Drivers for Data Governance & Benefits
Data Governance Framework
Organization & Structures
Roles & responsibilities
Policies & Processes
Programme & Implementation
Reporting & Assurance
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. I’ll include use cases so you can see what approach will work best for your big data needs.
Bridging the Last Mile: Getting Data to the People Who Need ItDenodo
Watch full webinar here: https://bit.ly/3cUA0Qi
Many organizations are embarking on strategically important journeys to embrace data and analytics. The goal can be to improve internal efficiencies, improve the customer experience, drive new business models and revenue streams, or – in the public sector – provide better services. All of these goals require empowering employees to act on data and analytics and to make data-driven decisions. However, getting data – the right data at the right time – to these employees is a huge challenge and traditional technologies and data architectures are simply not up to this task. This webinar will look at how organizations are using Data Virtualization to quickly and efficiently get data to the people that need it.
Attend this session to learn:
- The challenges organizations face when trying to get data to the business users in a timely manner
- How Data Virtualization can accelerate time-to-value for an organization’s data assets
- Examples of leading companies that used data virtualization to get the right data to the users at the right time
ADV Slides: Platforming Your Data for Success – Databases, Hadoop, Managed Ha...DATAVERSITY
Thirty years is a long time for a technology foundation to be as active as relational databases. Are their replacements here? In this webinar, we say no.
Databases have not sat around while Hadoop emerged. The Hadoop era generated a ton of interest and confusion, but is it still relevant as organizations are deploying cloud storage like a kid in a candy store? We’ll discuss what platforms to use for what data. This is a critical decision that can dictate two to five times additional work effort if it’s a bad fit.
Drop the herd mentality. In reality, there is no “one size fits all” right now. We need to make our platform decisions amidst this backdrop.
This webinar will distinguish these analytic deployment options and help you platform 2020 and beyond for success.
Data Governance Trends - A Look Backwards and ForwardsDATAVERSITY
As DATAVERSITY’s RWDG series hurdles into our 12th year, this webinar takes a quick look behind us, evaluates the present, and predicts the future of Data Governance. Based on webinar numbers, hot Data Governance topics have evolved over the years from policies and best practices, roles and tools, data catalogs and frameworks, to supporting data mesh and fabric, artificial intelligence, virtualization, literacy, and metadata governance.
Join Bob Seiner as he reflects on the past and what has and has not worked, while sharing examples of enterprise successes and struggles. In this webinar, Bob will challenge the audience to stay a step ahead by learning from the past and blazing a new trail into the future of Data Governance.
In this webinar, Bob will focus on:
- Data Governance’s past, present, and future
- How trials and tribulations evolve to success
- Leveraging lessons learned to improve productivity
- The great Data Governance tool explosion
- The future of Data Governance
Activate Data Governance Using the Data CatalogDATAVERSITY
This document discusses activating data governance using a data catalog. It compares active vs passive data governance, with active embedding governance into people's work through a catalog. The catalog plays a key role by allowing stewards to document definition, production, and usage of data in a centralized place. For governance to be effective, metadata from various sources must be consolidated and maintained in the catalog.
Data Lakehouse Symposium | Day 1 | Part 2Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
Data Architecture - The Foundation for Enterprise Architecture and GovernanceDATAVERSITY
Organizations are faced with an increasingly complex data landscape, finding themselves unable to cope with exponentially increasing data volumes, compounded by additional regulatory requirements with increased fines for non-compliance. Enterprise architecture and data governance are often discussed at length, but often with different stakeholder audiences. This can result in complementary and sometimes conflicting initiatives rather than a focused, integrated approach. Data governance requires a solid data architecture foundation in order to support the pillars of enterprise architecture. In this session, IDERA’s Ron Huizenga will discuss a practical, integrated approach to effectively understand, define and implement an cohesive enterprise architecture and data governance discipline with integrated modeling and metadata management.
Learn to Use Databricks for Data ScienceDatabricks
Data scientists face numerous challenges throughout the data science workflow that hinder productivity. As organizations continue to become more data-driven, a collaborative environment is more critical than ever — one that provides easier access and visibility into the data, reports and dashboards built against the data, reproducibility, and insights uncovered within the data.. Join us to hear how Databricks’ open and collaborative platform simplifies data science by enabling you to run all types of analytics workloads, from data preparation to exploratory analysis and predictive analytics, at scale — all on one unified platform.
Data Warehouse or Data Lake, Which Do I Choose?DATAVERSITY
Today’s data-driven companies have a choice to make – where do we store our data? As the move to the cloud continues to be a driving factor, the choice becomes either the data warehouse (Snowflake et al) or the data lake (AWS S3 et al). There are pro’s and con’s for each approach. While the data warehouse will give you strong data management with analytics, they don’t do well with semi-structured and unstructured data with tightly coupled storage and compute, not to mention expensive vendor lock-in. On the other hand, data lakes allow you to store all kinds of data and are extremely affordable, but they’re only meant for storage and by themselves provide no direct value to an organization.
Enter the Open Data Lakehouse, the next evolution of the data stack that gives you the openness and flexibility of the data lake with the key aspects of the data warehouse like management and transaction support.
In this webinar, you’ll hear from Ali LeClerc who will discuss the data landscape and why many companies are moving to an open data lakehouse. Ali will share more perspective on how you should think about what fits best based on your use case and workloads, and how some real world customers are using Presto, a SQL query engine, to bring analytics to the data lakehouse.
Building a Data Strategy – Practical Steps for Aligning with Business GoalsDATAVERSITY
Developing a Data Strategy for your organization can seem like a daunting task – but it’s worth the effort. Getting your Data Strategy right can provide significant value, as data drives many of the key initiatives in today’s marketplace – from digital transformation, to marketing, to customer centricity, to population health, and more. This webinar will help demystify Data Strategy and its relationship to Data Architecture and will provide concrete, practical ways to get started.
Tackling Data Quality problems requires more than a series of tactical, one-off improvement projects. By their nature, many Data Quality problems extend across and often beyond an organization. Addressing these issues requires a holistic architectural approach combining people, process, and technology. Join Nigel Turner and Donna Burbank as they provide practical ways to control Data Quality issues in your organization.
Data Warehousing Trends, Best Practices, and Future OutlookJames Serra
Over the last decade, the 3Vs of data - Volume, Velocity & Variety has grown massively. The Big Data revolution has completely changed the way companies collect, analyze & store data. Advancements in cloud-based data warehousing technologies have empowered companies to fully leverage big data without heavy investments both in terms of time and resources. But, that doesn’t mean building and managing a cloud data warehouse isn’t accompanied by any challenges. From deciding on a service provider to the design architecture, deploying a data warehouse tailored to your business needs is a strenuous undertaking. Looking to deploy a data warehouse to scale your company’s data infrastructure or still on the fence? In this presentation you will gain insights into the current Data Warehousing trends, best practices, and future outlook. Learn how to build your data warehouse with the help of real-life use-cases and discussion on commonly faced challenges. In this session you will learn:
- Choosing the best solution - Data Lake vs. Data Warehouse vs. Data Mart
- Choosing the best Data Warehouse design methodologies: Data Vault vs. Kimball vs. Inmon
- Step by step approach to building an effective data warehouse architecture
- Common reasons for the failure of data warehouse implementations and how to avoid them
The document discusses migrating a data warehouse to the Databricks Lakehouse Platform. It outlines why legacy data warehouses are struggling, how the Databricks Platform addresses these issues, and key considerations for modern analytics and data warehousing. The document then provides an overview of the migration methodology, approach, strategies, and key takeaways for moving to a lakehouse on Databricks.
The data lake has become extremely popular, but there is still confusion on how it should be used. In this presentation I will cover common big data architectures that use the data lake, the characteristics and benefits of a data lake, and how it works in conjunction with a relational data warehouse. Then I’ll go into details on using Azure Data Lake Store Gen2 as your data lake, and various typical use cases of the data lake. As a bonus I’ll talk about how to organize a data lake and discuss the various products that can be used in a modern data warehouse.
Who Should Own Data Governance – IT or Business?DATAVERSITY
The question is asked all the time: “What part of the organization should own your Data Governance program?” The typical answers are “the business” and “IT (information technology).” Another answer to that question is “Yes.” The program must be owned and reside somewhere in the organization. You may ask yourself if there is a correct answer to the question.
Join this new RWDG webinar with Bob Seiner where Bob will answer the question that is the title of this webinar. Determining ownership of Data Governance is a vital first step. Figuring out the appropriate part of the organization to manage the program is an important second step. This webinar will help you address these questions and more.
In this session Bob will share:
- What is meant by “the business” when it comes to owning Data Governance
- Why some people say that Data Governance in IT is destined to fail
- Examples of IT positioned Data Governance success
- Considerations for answering the question in your organization
- The final answer to the question of who should own Data Governance
Data Lakehouse, Data Mesh, and Data Fabric (r2)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a modern data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. They all may sound great in theory, but I'll dig into the concerns you need to be aware of before taking the plunge. I’ll also include use cases so you can see what approach will work best for your big data needs. And I'll discuss Microsoft version of the data mesh.
Data Catalogs Are the Answer – What is the Question?DATAVERSITY
Organizations with governed metadata made available through their data catalog can answer questions their people have about the organization’s data. These organizations get more value from their data, protect their data better, gain improved ROI from data-centric projects and programs, and have more confidence in their most strategic data.
Join Bob Seiner for this lively webinar where he will talk about the value of a data catalog and how to build the use of the catalog into your stewards’ daily routines. Bob will share how the tool must be positioned for success and viewed as a must-have resource that is a steppingstone and catalyst to governed data across the organization.
The document discusses data mesh vs data fabric architectures. It defines data mesh as a decentralized data processing architecture with microservices and event-driven integration of enterprise data assets across multi-cloud environments. The key aspects of data mesh are that it is decentralized, processes data at the edge, uses immutable event logs and streams for integration, and can move all types of data reliably. The document then provides an overview of how data mesh architectures have evolved from hub-and-spoke models to more distributed designs using techniques like kappa architecture and describes some use cases for event streaming and complex event processing.
Chief Data Officer (CDO) Organization RolesDave Getty
If your Company wants to treat Data as an Asset, it needs a Chief Data Officer to initiate significant changes in the Roles and Responsibilities of the Data Governance, IT Data Management and Business Analyst Data Scientist organizations. This presentation describes how the resulting organizations might look and behave.
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Introduction to Data Governance
Seminar hosted by Embarcadero technologies, where Christopher Bradley presented a session on Data Governance.
Drivers for Data Governance & Benefits
Data Governance Framework
Organization & Structures
Roles & responsibilities
Policies & Processes
Programme & Implementation
Reporting & Assurance
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. I’ll include use cases so you can see what approach will work best for your big data needs.
Bridging the Last Mile: Getting Data to the People Who Need ItDenodo
Watch full webinar here: https://bit.ly/3cUA0Qi
Many organizations are embarking on strategically important journeys to embrace data and analytics. The goal can be to improve internal efficiencies, improve the customer experience, drive new business models and revenue streams, or – in the public sector – provide better services. All of these goals require empowering employees to act on data and analytics and to make data-driven decisions. However, getting data – the right data at the right time – to these employees is a huge challenge and traditional technologies and data architectures are simply not up to this task. This webinar will look at how organizations are using Data Virtualization to quickly and efficiently get data to the people that need it.
Attend this session to learn:
- The challenges organizations face when trying to get data to the business users in a timely manner
- How Data Virtualization can accelerate time-to-value for an organization’s data assets
- Examples of leading companies that used data virtualization to get the right data to the users at the right time
ADV Slides: Platforming Your Data for Success – Databases, Hadoop, Managed Ha...DATAVERSITY
Thirty years is a long time for a technology foundation to be as active as relational databases. Are their replacements here? In this webinar, we say no.
Databases have not sat around while Hadoop emerged. The Hadoop era generated a ton of interest and confusion, but is it still relevant as organizations are deploying cloud storage like a kid in a candy store? We’ll discuss what platforms to use for what data. This is a critical decision that can dictate two to five times additional work effort if it’s a bad fit.
Drop the herd mentality. In reality, there is no “one size fits all” right now. We need to make our platform decisions amidst this backdrop.
This webinar will distinguish these analytic deployment options and help you platform 2020 and beyond for success.
ADV Slides: When and How Data Lakes Fit into a Modern Data ArchitectureDATAVERSITY
Whether to take data ingestion cycles off the ETL tool and the data warehouse or to facilitate competitive Data Science and building algorithms in the organization, the data lake – a place for unmodeled and vast data – will be provisioned widely in 2020.
Though it doesn’t have to be complicated, the data lake has a few key design points that are critical, and it does need to follow some principles for success. Avoid building the data swamp, but not the data lake! The tool ecosystem is building up around the data lake and soon many will have a robust lake and data warehouse. We will discuss policy to keep them straight, send data to its best platform, and keep users’ confidence up in their data platforms.
Data lakes will be built in cloud object storage. We’ll discuss the options there as well.
Get this data point for your data lake journey.
Are You Killing the Benefits of Your Data Lake?Denodo
Watch the full webinar on-demand here: https://goo.gl/RL1ZSa
Data lakes are centralized data repositories. Data needed by data scientists is physically copied to a data lake which serves as a one storage environment. This way, data scientists can access all the data from only one entry point – a one-stop shop to get the right data. However, such an approach is not always feasible for all the data and limits it’s use to solely data scientists, making it a single-purpose system.
So, what’s the solution?
A multi-purpose data lake allows a broader and deeper use of the data lake without minimizing the potential value for data science and without making it an inflexible environment
Attend this session to learn:
• Disadvantages and limitations that are weakening or even killing the potential benefits of a data lake.
• Why a multi-purpose data lake is essential in building a universal data delivery system.
• How to build a logical multi-purpose data lake using data virtualization.
Do not miss this opportunity to make your data lake project successful and beneficial.
When and How Data Lakes Fit into a Modern Data ArchitectureDATAVERSITY
Whether to take data ingestion cycles off the ETL tool and the data warehouse or to facilitate competitive Data Science and building algorithms in the organization, the data lake – a place for unmodeled and vast data – will be provisioned widely in 2020.
Though it doesn’t have to be complicated, the data lake has a few key design points that are critical, and it does need to follow some principles for success. Avoid building the data swamp, but not the data lake! The tool ecosystem is building up around the data lake and soon many will have a robust lake and data warehouse. We will discuss policy to keep them straight, send data to its best platform, and keep users’ confidence up in their data platforms.
Data lakes will be built in cloud object storage. We’ll discuss the options there as well.
Get this data point for your data lake journey.
The Data Lake and Getting Buisnesses the Big Data Insights They NeedDunn Solutions Group
Do terms like "Data Lake" confuse you? You’re not alone. With all of the technology buzzwords flying around today, it can become a task to keep up with and clearly understand each of them. However a data lake is definitely something to dedicate the time to understand. Leveraging data lake technology, companies are finally able to keep all of their disparate information and streams of data in one secure location ready for consumption at any time – this includes structured, unstructured, and semi-structured data. For more information on our Big Data Consulting Services, don’t hesitate to visit us online at: http://bit.ly/2fvV5rR
Big Data, NoSQL, NewSQL & The Future of Data ManagementTony Bain
It is an exciting and interesting time to be involved in data. More change of influence has occurred in the database management in the last 18 months than has occurred in the last 18 years. New technologies such as NoSQL & Hadoop and radical redesigns of existing technologies, like NewSQL , will change dramatically how we manage data moving forward.
These technologies bring with them possibilities both in terms of the scale of data retained but also in how this data can be utilized as an information asset. The ability to leverage Big Data to drive deep insights will become a key competitive advantage for many organisations in the future.
Join Tony Bain as he takes us through both the high level drivers for the changes in technology, how these are relevant to the enterprise and an overview of the possibilities a Big Data strategy can start to unlock.
The document discusses Microsoft's approach to implementing a data mesh architecture using their Azure Data Fabric. It describes how the Fabric can provide a unified foundation for data governance, security, and compliance while also enabling business units to independently manage their own domain-specific data products and analytics using automated data services. The Fabric aims to overcome issues with centralized data architectures by empowering lines of business and reducing dependencies on central teams. It also discusses how domains, workspaces, and "shortcuts" can help virtualize and share data across business units and data platforms while maintaining appropriate access controls and governance.
ADV Slides: Building and Growing Organizational Analytics with Data LakesDATAVERSITY
Data lakes are providing immense value to organizations embracing data science.
In this webinar, William will discuss the value of having broad, detailed, and seemingly obscure data available in cloud storage for purposes of expanding Data Science in the organization.
Data Lakes: A Logical Approach for Faster Unified InsightsDenodo
Watch full webinar here: https://bit.ly/3Cpn2bj
Data lakes and data warehouses offer organizations centralized data delivery platforms. The recent Building the Unified Data Warehouse and Data Lake report by leading industry analysts TDWI we discovered 64% of organizations stated the objective for a unified Data Warehouse and Data Lakes is to get more business value and that 84% of organizations polled felt that a unified approach to Data Warehouses and Data Lakes was either extremely or moderately important. In the recent report Logical Data Fabric to the Rescue Integrating Data Warehouses, Data Lakes, and Data Hubs by Rick van der Lans, we also discovered the importance of “time to insight and speed”.
During this webinar we will discuss how a logical data fabric not only helps organizations have a holistic view of their data across multiple data lakes, data warehouses and data sources, but how it improves time to value.
Attend & Learn:
- How a Logical Data Fabric is the right approach to assist organizations to unify their data.
- The advanced features of a Logical Data Fabric that assist with optimizing your queries irrespective of data source, whether the data is in a data lake, data warehouse or other source.
- How a Logical Data Fabric with Data Virtualization enhances your legacy data integration landscape to simplify data access and encourage self service.
The document discusses how data accessibility is driving innovation in manufacturing through cloud and vault data management systems. It outlines how data has become more disruptive as information needs to be accessed in real-time across sites and stakeholders. Those not leveraging their data may fall behind. The presentation will demonstrate how a cloud-based vault provides real-time accessibility, analytics, and concurrent engineering across organizations and on mobile devices. Key benefits include data centricity, productivity, flexibility, and reduced costs compared to on-premise systems. Attendees will understand how partners can help leverage data for business optimization through these solutions.
Data Lake Acceleration vs. Data Virtualization - What’s the difference?Denodo
Watch full webinar here: https://bit.ly/3hgOSwm
Data Lake technologies have been in constant evolution in recent years, with each iteration primising to fix what previous ones failed to accomplish. Several data lake engines are hitting the market with better ingestion, governance, and acceleration capabilities that aim to create the ultimate data repository. But isn't that the promise of a logical architecture with data virtualization too? So, what’s the difference between the two technologies? Are they friends or foes? This session will explore the details.
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)Denodo
Watch full webinar here: https://bit.ly/3aIofv9
The best of breed big data fabrics should deliver actionable insights to the business users with minimal effort, provide end-to-end security to the entire enterprise data platform and provide real-time data integration, while delivering self-service data platform to business users.
While big data initiatives have become necessary for any business to generate actionable insights, big data fabric has become a necessity for any successful big data initiative. The best of breed big data fabrics should deliver actionable insights to the business users with minimal effort, provide end-to-end security to the entire enterprise data platform and provide real-time data integration, while delivering self-service data platform to business users.
Attend this session to learn how big data fabric enabled by data virtualization:
- Provides lightning fast self-service data access to business users
- Centralizes data security, governance and data privacy
- Fulfills the promise of data lakes to provide actionable insights
Options for Data Prep - A Survey of the Current MarketDremio Corporation
Data comes in many shapes and sizes, and every company struggles to find ways to transform, validate, and enrich data for multiple purposes. The problem has been around as long as data, and the market has an overwhelming number of options. In this presentation we look at the problem and key options from vendors in the market today. Dremio is a new approach that eliminates the need for stand alone data prep tools.
Myth Busters III: I’m Building a Data Lake, So I Don’t Need Data VirtualizationDenodo
Watch full webinar here: https://bit.ly/2XXAzU3
So you’re building a data lake to solve your big data challenges. A data lake will allow you to keep all of your raw, detailed data in a single, consolidated repository; therefore, your problem is solved. Or is it? Is it really that easy?
Data lakes have their use and purpose, and we’re not here to argue that. However, data lakes on their own are constrained by factors such as duplication of data and therefore higher costs, governance limitations, and the risk of becoming another data silo.
With the addition of data virtualization, a physical data lake, can turn into a virtual or logical data like through an abstraction layer. Data virtualization can facilitate and expedite accessing and exploring critical data in a cost-effective manner and assist in deriving a greater return on the data lake investment.
You might still not be convinced. Give us an opportunity and join us as we try to bust this myth!
Watch this webinar as we explore the promises of a data lake as well as its downfalls to draw a final conclusion.
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)Denodo
Watch full webinar here: https://bit.ly/3JBpwGm
Data lakes and data warehouses offer organizations a centralized data delivery platform. From the recent Building the Unified Data Warehouse and Data Lake report by leading industry analysts TDWI, we discovered 64% of organizations stated the objective for a unified Data Warehouse and Data Lakes is to get more business value and that 84% of organizations polled felt that a unified approach to Data Warehouses and Data Lakes was either extremely or moderately important.
In the recent report Logical Data Fabric to the Rescue Integrating Data Warehouses, Data Lakes, and Data Hubs by Rick van der Lans, we also discovered the importance of “time to insight and speed”.
During this webinar, we will discuss how a logical data fabric not only helps organizations have a holistic view of their data across multiple data lakes, data warehouses, and data sources but how it improves time to value.
Catch this on-demand session & learn:
- How a Logical Data Fabric is the right approach to assist organizations to unify their data.
- The advanced features of a Logical Data Fabric that assist with optimizing your queries irrespective of data source, whether the data is in a data lake, data warehouse, or other sources.
- How a Logical Data Fabric with Data Virtualization enhances your legacy data integration landscape to simplify data access and encourage self-service.
The Great Lakes: How to Approach a Big Data ImplementationInside Analysis
- Rick Stellwagen from Think Big, A Teradata Company, discussed best practices for implementing a data lake including establishing standards for data ingestion and metadata capture, developing a security plan, and planning for data discovery and reporting.
- Analyst Robin Bloor asked questions about metadata management, data governance, and security for data lakes. Bloor noted that while data lakes are a new concept, best practices are needed as organizations move analytics and BI capabilities to this model.
- Upcoming Briefing Room topics in 2015 will focus on big data, cloud computing, and innovators in technology.
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)Denodo
Watch full webinar here: https://bit.ly/34iCruM
Many organizations are embarking on strategically important journeys to embrace data and analytics. The goal can be to improve internal efficiencies, improve the customer experience, drive new business models and revenue streams, or – in the public sector – provide better services. All of these goals require empowering employees to act on data and analytics and to make data-driven decisions. However, getting data – the right data at the right time – to these employees is a huge challenge and traditional technologies and data architectures are simply not up to this task. This webinar will look at how organizations are using Data Virtualization to quickly and efficiently get data to the people that need it.
Attend this session to learn:
- The challenges organizations face when trying to get data to the business users in a timely manner
- How Data Virtualization can accelerate time-to-value for an organization’s data assets
- Examples of leading companies that used data virtualization to get the right data to the users at the right time
Low-Latency Analytics with NoSQL – Introduction to Storm and CassandraCaserta
Businesses are generating and ingesting an unprecedented volume of structured and unstructured data to be analyzed. Needed is a scalable Big Data infrastructure that processes and parses extremely high volume in real-time and calculates aggregations and statistics. Banking trade data where volumes can exceed billions of messages a day is a perfect example.
Firms are fast approaching 'the wall' in terms of scalability with relational databases, and must stop imposing relational structure on analytics data and map raw trade data to a data model in low latency, preserve the mapped data to disk, and handle ad-hoc data requests for data analytics.
Joe discusses and introduces NoSQL databases, describing how they are capable of scaling far beyond relational databases while maintaining performance , and shares a real-world case study that details the architecture and technologies needed to ingest high-volume data for real-time analytics.
For more information, visit www.casertaconcepts.com
computer organization and assembly language : its about types of programming language along with variable and array description..https://www.nfciet.edu.pk/
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsContify
AI competitor analysis helps businesses watch and understand what their competitors are doing. Using smart competitor intelligence tools, you can track their moves, learn from their strategies, and find ways to do better. Stay smart, act fast, and grow your business with the power of AI insights.
For more information please visit here https://www.contify.com/
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
By James Francis, CEO of Paradigm Asset Management
In the landscape of urban safety innovation, Mt. Vernon is emerging as a compelling case study for neighboring Westchester County cities. The municipality’s recently launched Public Safety Camera Program not only represents a significant advancement in community protection but also offers valuable insights for New Rochelle and White Plains as they consider their own safety infrastructure enhancements.
chapter 4 Variability statistical research .pptxjustinebandajbn
Ad
Data Vault Vs Data Lake
1. The difference between a Data Lake and a
Data Vault is the difference between a
stethoscope and a radar
• A Data Lake reinforces what you already know
• A Data Lake provides weak support for strategic
decisions
• Data Lakes encourage a silo mentality
• Data Lakes can show the ‘what’
• Data Vaults help with the ‘why’
• Data Lakes enable drill down
• Data Vaults encourage drill across
Data Lake vs Vault Summary
3. What do we do?
Signal Processing or Data
Processing?
• Signals start conversations
• Signals move boardrooms
• Signals release IT expenditure
• Signal variety, reliability and context
are key business drivers
• Data Processing ends
conversations!
4. Signal Processing is the
customer of Data
Integration & Warehousing
Signal
Processing
Business
Intelligence
Artificial
Intelligence
Reporting Analytics
Spreadsheets
Dashboards
5. Sales are down but why?
There are many interpretations of
reality;
• Website broken
• Marketing budget cut
• Campaign poor
• Product price uncompetitive
• New product release
• Company trashed by Trump
• Fashion victim
• Delivery delays and/or cost
• Recession
6. Signal Processing at Scale
• The Cloud is one massive signal
processor, with limitless
compute power and storage
• The Role of Data Integration in
the cloud is the organisation of
data sets for both efficient and
effective signal processing
• Data Lakes & Vaults have
emerged as key cloud
integration patterns
8. Data Lake Evolution
• 2011: Horton Works Forms
• 2012: AWS announces Amazon RedShift
• 2014: Data Lake European on premise
projects take off
• 2015: Snowflake released on AWS
• 2015: Hive and Presto released on AWS
• 2017: AWS Athena released
• 2006: Amazon AWS Launches
• 2008: Yahoo Open Sources Hadoop
• 2009: Cloudera Forms
• 2009: AWS Elastic MapReduce
• 2010 (October): Apache Hive release
• 2010 (October): James Dickson,
CTO Pentaho, coined the term Data Lake
9. Data Lake Signals are Isolated
• Data Lakes encourage detailed
analysis of a very narrow field
• Thinking across separate data
sources is difficult and inconsistent
• A silo mentality can emerge
• Data Scientists spend their time
hunting for the data lake ontology
• Weak support for strategic
decisions
• Too easy to make bad decisions on
limited data
10. Data Lake Warning
The danger with Data Lakes is that they encourage
decisions based upon what can be easily measured
11. Data Lakes are Good for
• Starting EDW projects
• Persistent staging areas
• Feedstock for Data Vaults
• Tactical Analysis
• DWH flexibility
• API Calls/Gateway
• Unstructured log analysis
• Operational Monitoring
12. Data Vault Evolution
• 1990s: Conceived by Dan Linstedt
• 2000: DV 1.0 Released into public domain
• 2014: DV 2.0 Announced
13. Data Vault Trends
• Strong tools are emerging for source centric
modelling and model population
• The need for business centric modelling
• Patterns emerging for automation of documentation,
validation and reconciliation
• New Data Warehouse Databases complement data
vaults
• GDPR and & PII are driving the need for ontologies
• S3/Athena as a Data Vault?
14. Data Vaults are Good for
• EDW projects
• Strategic Analysis
• Feedstock for Cubes and Models
15. Data Vault Signals are related
through business context
Sales are down and here is the
business context
• Broadens the field of vision and
the scope of questions
• Increases the variety, quality and
strength of signal channels
• Different business perspectives
are supported in a consistent
analysis framework
#4: In the pub, signals open conversations
Signals move boardrooms not data
How our data integration projects are consumed by the board determines the success/failure
We should sell signals not technology
Flying blind
Yield Curves
#6: Board can’t take action if blind to obvious signals
#9: 10 years since Yahoo open sourced Hadoop
Which came first James Dickson or Hive?
Up until Hive, Hadoop was hard, separated compute from storage without analysis
4 years since first data lake iteration…poor