SlideShare a Scribd company logo
Allen Keyte
Director - Mero
Data Virtualization for
Data Architects
21 October 2020
Chris Day
Director Sales Engineering - Denodo
Data Virtualization for Data Architects
Mero & Denodo
Extending your Data Architecture
Questions
Next Steps
This Webinar - agenda
Leader in data virtualization
Combine disparate sources
Consume with a data catalog
Data engineering & analytics consulting
Over 100 active clients
Modern data platforms
Data Virtualization for Data Architects
New Zealand partnership
Denodo Data Virtualization
5
Gartner – The Rise of Logical Architectures
This is a Second Major Cycle of Analytical Consolidation
Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
Operational
Application
Operational
Application
Cube
Operational
Application
Cube
? Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
1980s
Pre EDW
1990s
EDW
2010s2000s
Post EDW
Time
LDW
Operational
Application
Operational
Application
Operational
Application
Data
Warehouse
Data
Warehouse
Data
Lake
?
Logical Data
Warehouse
Data Warehouse
Data Lake
Marts
ODS
Staging/Ingest
Unified analysis
› Consolidated data
› "Collect the data"
› Single server, multiple nodes
› More analysis than any
one server can provide
©2018 Gartner, Inc.
Unified analysis
› Logically consolidated view of all data
› "Connect and collect"
› Multiple servers, of multiple nodes
› More analysis than any one system can provide
ID: 342254
Fragmented/
nonexistent analysis
› Multiple sources
› Multiple structured sources
Fragmented analysis
› "Collect the data" (Into
› different repositories)
› New data types,
› processing, requirements
› Uncoordinated views
6
Gartner – The Rise of Logical Architectures
This is a Second Major Cycle of Analytical Consolidation
Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
Operational
Application
Operational
Application
Cube
Operational
Application
Cube
? Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
1980s
Pre EDW
1990s
EDW
2010s2000s
Post EDW
Time
LDW
Operational
Application
Operational
Application
Operational
Application
Data
Warehouse
Data
Warehouse
Data
Lake
?
Unified analysis
› Consolidated data
› "Collect the data"
› Single server, multiple nodes
› More analysis than any
one server can provide
©2018 Gartner, Inc.
Unified analysis
› Logically consolidated view of all data
› "Connect and collect"
› Multiple servers, of multiple nodes
› More analysis than any one system can provide
ID: 342254
Fragmented/
nonexistent analysis
› Multiple sources
› Multiple structured sources
Fragmented analysis
› "Collect the data" (Into
› different repositories)
› New data types,
› processing, requirements
› Uncoordinated views
Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
Logical Data
Warehouse
Data Warehouse
Data Lake
Marts
ODS
Staging/Ingest
Data
Virtualization
√ Improved Time to Market by 50 to 90%
√ Improved Report Consistency
√ Reduce Duplication of Data
√ Improve Transparency
√ Reduced development Cost
√ Future Proof the architecture against
technology changes
DATA CONSUMERS
DISPARATE DATA SOURCES
SQL Queries
(JDBC, ODBC, ADO.NET)
Web Services
(SOAP, REST, OData)
Web-based catalog
& search
Secure delivery
(SSL/TLS)
DATA CONSUMERS
MPP Processing
Relational Cache
Corporate Security
Monitoring & Auditing
Metadata
Repository
Execution Engine
& Optimizer
Data Virtualization as a Data Access Layer
DATA VIRTUALIZATION
Consume
Combine
2
3
Connect
1
DATA CONSUMERS
DISPARATE DATA SOURCES
SQL Queries
(JDBC, ODBC, ADO.NET)
Web Services
(SOAP, REST, OData)
Web-based catalog
& search
Secure delivery
(SSL/TLS)
DATA CONSUMERS
Data Virtualization in Action
Consume
Combine
2
3
Connect
1
Base/Raw views
Standardized
views
Customer Product Order
Business viewsFinance Operations Sales
Less Structured
Operational
Each Layer of Views
provides more refined
Single Views of Truth
Platform Demonstration
10
Demo Scenario
▪ Historical sales data offloaded to Hadoop
cluster for cheaper storage
▪ Marketing campaigns managed in an external
cloud app
▪ Country is part of the customer details table,
stored in the DW
Sources
Combine,
Transform
&
Integrate
Consume
Base View
Source
Abstraction
join
group by state
join
Sales Campaign Customer
SaaS solution
How effective are our marketing Campaigns?
11
Personas
Denodo Developer
Business User
& BI Analyst Data Scientist
Application-to-Application
Administration &
Operations
Unified Web Administration: Central Web Portal
Entry point for all
users to all Denodo
Environments.
SSO to all tools
with Kerberos, SAML
or OAuth
Data Virtualization:
1. Enables data re-use reducing costs & increasing
collaboration
2. Unifies disparate data sources in real-time
3. Supports self-service & data discovery
4. Centralises governance & security of enterprise
data assets
Key Takeaways
Data Virtualization for Data Architects
Questions
Wed Nov 11 | Data Virtualization for Business Consumption
Workshop | Hands-on virtual workshops - greg.laws@mero.co.nz | +64 21 875 875
Data Virtualization for Data Architects
Next Steps
Webinar series continues
Test Drive | Try it out on mero.co.nz/denodo/
16
What is the optimizer doing?
SELECT c.state, AVG(s.amount)
FROM customer c JOIN sales s
ON c.id = s.customer_id
GROUP BY c.state
Sales Customer
join
group by
Sales Customer
Create temp
table
join
group by
Option 1?
Option 2? Option 3?
Temp_Customer
Customer and Sales are in different sources.
What is the best execution plan?
Naïve Strategy Temporary Data Movement
300 M 2 M
2 M
50 M
Sales Customer
join
group by ID
Group by
state
Partial Aggregation Pushdown
2 M
2 M
‘Cost’ ~302 M ‘Cost’ ~52 M ‘Cost’ ~4 M
17
Why is this so important?
SELECT c.name, AVG(s.amount)
FROM customer c JOIN sales s
ON c.id = s.customer_id
GROUP BY c.state
How Denodo works compared with other federation engines
System Execution Time Data Transferred Optimization Technique
Denodo 9 sec. 4 M Aggregation push-down
Others 125 sec. 302 M None: full scan
300 M 2 M
Sales Customer
join
group by
2 M
2 M
Sales Customer
join
group by ID
Group by
state
To maximize push
down to the EDW
the aggregation is
split in 2 steps:
• 1st by customerID
• 2nd by state
This significantly
reduces network
Traffic and processing
In Denodo
18
Denodo Performance Strategies
• Post-processing and Federation in the DV engine
• Delegation
▪ Process as much as possible in the data sources
• Temporary Tables
▪ Automatically move data to the biggest data source to optimize the execution
• Summaries
▪ Based on the query the Denodo optimizer can use a “summary” for accelerating the execution
• MPP Integration
▪ Move processing to an external MPP system on the fly
• Caching
▪ Persist data beforehand in a relational database
Ad

More Related Content

What's hot (20)

Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the FieldPartner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Denodo
 
GDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data VirtualizationGDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data Virtualization
Denodo
 
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Denodo
 
Secure your data with Virtual Data Fabric (Middle East)
Secure your data with Virtual Data Fabric (Middle East)Secure your data with Virtual Data Fabric (Middle East)
Secure your data with Virtual Data Fabric (Middle East)
Denodo
 
Why Data Virtualization? An Introduction
Why Data Virtualization? An IntroductionWhy Data Virtualization? An Introduction
Why Data Virtualization? An Introduction
Denodo
 
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo
 
Where does Fast Data Strategy Fit within IT Projects
Where does Fast Data Strategy Fit within IT ProjectsWhere does Fast Data Strategy Fit within IT Projects
Where does Fast Data Strategy Fit within IT Projects
Denodo
 
In Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data ScenariosIn Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data Scenarios
Denodo
 
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
 Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Data Con LA
 
Why Data Virtualization Matters in Your Portfolio
Why Data Virtualization Matters in Your PortfolioWhy Data Virtualization Matters in Your Portfolio
Why Data Virtualization Matters in Your Portfolio
Denodo
 
Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)
Denodo
 
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Denodo
 
Denodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo DataFest 2017: Data Virtualization in the World of Edge ComputingDenodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo
 
Data Virtualization: From Zero to Hero (Middle East)
Data Virtualization: From Zero to Hero (Middle East)Data Virtualization: From Zero to Hero (Middle East)
Data Virtualization: From Zero to Hero (Middle East)
Denodo
 
Data Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation AnalyticsData Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation Analytics
Denodo
 
Best Practices: Data Virtualization Perspectives and Best Practices
Best Practices: Data Virtualization Perspectives and Best PracticesBest Practices: Data Virtualization Perspectives and Best Practices
Best Practices: Data Virtualization Perspectives and Best Practices
Denodo
 
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Denodo
 
Data Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data LakeData Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Denodo
 
Why Data Virtualization? An Introduction.
Why Data Virtualization? An Introduction.Why Data Virtualization? An Introduction.
Why Data Virtualization? An Introduction.
Denodo
 
Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the FieldPartner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Partner Enablement: Key Differentiators of Denodo Platform 6.0 for the Field
Denodo
 
GDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data VirtualizationGDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data Virtualization
Denodo
 
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Parallel In-Memory Processing and Data Virtualization Redefine Analytics Arch...
Denodo
 
Secure your data with Virtual Data Fabric (Middle East)
Secure your data with Virtual Data Fabric (Middle East)Secure your data with Virtual Data Fabric (Middle East)
Secure your data with Virtual Data Fabric (Middle East)
Denodo
 
Why Data Virtualization? An Introduction
Why Data Virtualization? An IntroductionWhy Data Virtualization? An Introduction
Why Data Virtualization? An Introduction
Denodo
 
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo 6.0: Self Service Search, Discovery & Governance using an Universal Se...
Denodo
 
Where does Fast Data Strategy Fit within IT Projects
Where does Fast Data Strategy Fit within IT ProjectsWhere does Fast Data Strategy Fit within IT Projects
Where does Fast Data Strategy Fit within IT Projects
Denodo
 
In Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data ScenariosIn Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data Scenarios
Denodo
 
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
 Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Data Con LA
 
Why Data Virtualization Matters in Your Portfolio
Why Data Virtualization Matters in Your PortfolioWhy Data Virtualization Matters in Your Portfolio
Why Data Virtualization Matters in Your Portfolio
Denodo
 
Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)
Denodo
 
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Denodo
 
Denodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo DataFest 2017: Data Virtualization in the World of Edge ComputingDenodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo DataFest 2017: Data Virtualization in the World of Edge Computing
Denodo
 
Data Virtualization: From Zero to Hero (Middle East)
Data Virtualization: From Zero to Hero (Middle East)Data Virtualization: From Zero to Hero (Middle East)
Data Virtualization: From Zero to Hero (Middle East)
Denodo
 
Data Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation AnalyticsData Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation Analytics
Denodo
 
Best Practices: Data Virtualization Perspectives and Best Practices
Best Practices: Data Virtualization Perspectives and Best PracticesBest Practices: Data Virtualization Perspectives and Best Practices
Best Practices: Data Virtualization Perspectives and Best Practices
Denodo
 
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Rethink Your Data Governance - POPI Act Compliance Made Easy with Data Virtua...
Denodo
 
Data Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data LakeData Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Denodo
 
Why Data Virtualization? An Introduction.
Why Data Virtualization? An Introduction.Why Data Virtualization? An Introduction.
Why Data Virtualization? An Introduction.
Denodo
 

Similar to Data Virtualization for Data Architects (New Zealand) (20)

Data Virtualization for Data Architects (Australia)
Data Virtualization for Data Architects (Australia)Data Virtualization for Data Architects (Australia)
Data Virtualization for Data Architects (Australia)
Denodo
 
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0
Denodo
 
Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7
Denodo
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo
 
Connecting Silos in Real Time with Data Virtualization
Connecting Silos in Real Time with Data VirtualizationConnecting Silos in Real Time with Data Virtualization
Connecting Silos in Real Time with Data Virtualization
Denodo
 
Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)
Denodo
 
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Denodo
 
Microsoft SQL Server - Parallel Data Warehouse Presentation
Microsoft SQL Server - Parallel Data Warehouse PresentationMicrosoft SQL Server - Parallel Data Warehouse Presentation
Microsoft SQL Server - Parallel Data Warehouse Presentation
Microsoft Private Cloud
 
Big Data: It’s all about the Use Cases
Big Data: It’s all about the Use CasesBig Data: It’s all about the Use Cases
Big Data: It’s all about the Use Cases
James Serra
 
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATIONBig Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Matt Stubbs
 
Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?
Denodo
 
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Denodo
 
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
Amazon Web Services Korea
 
Accelerate Your B2B Supply Chain in the Cloud
Accelerate Your B2B Supply Chain in the CloudAccelerate Your B2B Supply Chain in the Cloud
Accelerate Your B2B Supply Chain in the Cloud
Jijesh Devan
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Denodo
 
Data Virtualization for Data Architects (Australia)
Data Virtualization for Data Architects (Australia)Data Virtualization for Data Architects (Australia)
Data Virtualization for Data Architects (Australia)
Denodo
 
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
¿Cómo modernizar una arquitectura de TI con la virtualización de datos?
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0
Denodo
 
Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7
Denodo
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo
 
Connecting Silos in Real Time with Data Virtualization
Connecting Silos in Real Time with Data VirtualizationConnecting Silos in Real Time with Data Virtualization
Connecting Silos in Real Time with Data Virtualization
Denodo
 
Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)
Denodo
 
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Denodo
 
Microsoft SQL Server - Parallel Data Warehouse Presentation
Microsoft SQL Server - Parallel Data Warehouse PresentationMicrosoft SQL Server - Parallel Data Warehouse Presentation
Microsoft SQL Server - Parallel Data Warehouse Presentation
Microsoft Private Cloud
 
Big Data: It’s all about the Use Cases
Big Data: It’s all about the Use CasesBig Data: It’s all about the Use Cases
Big Data: It’s all about the Use Cases
James Serra
 
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATIONBig Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Matt Stubbs
 
Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?
Denodo
 
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Denodo
 
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
클라우드에서의 데이터 웨어하우징 & 비즈니스 인텔리전스
Amazon Web Services Korea
 
Accelerate Your B2B Supply Chain in the Cloud
Accelerate Your B2B Supply Chain in the CloudAccelerate Your B2B Supply Chain in the Cloud
Accelerate Your B2B Supply Chain in the Cloud
Jijesh Devan
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Maximizing Oil and Gas (Data) Asset Utilization with a Logical Data Fabric (A...
Denodo
 
Ad

More from Denodo (20)

Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Denodo
 
Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Lunch and Learn ANZ: Shaping the Role of a Data Lake in a Modern Data Fabric ...
Denodo
 
Ad

Recently uploaded (20)

VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 

Data Virtualization for Data Architects (New Zealand)

  • 1. Allen Keyte Director - Mero Data Virtualization for Data Architects 21 October 2020 Chris Day Director Sales Engineering - Denodo
  • 2. Data Virtualization for Data Architects Mero & Denodo Extending your Data Architecture Questions Next Steps This Webinar - agenda
  • 3. Leader in data virtualization Combine disparate sources Consume with a data catalog Data engineering & analytics consulting Over 100 active clients Modern data platforms Data Virtualization for Data Architects New Zealand partnership
  • 5. 5 Gartner – The Rise of Logical Architectures This is a Second Major Cycle of Analytical Consolidation Operational Application Operational Application Operational Application IoT Data Other NewData Operational Application Operational Application Cube Operational Application Cube ? Operational Application Operational Application Operational Application IoT Data Other NewData 1980s Pre EDW 1990s EDW 2010s2000s Post EDW Time LDW Operational Application Operational Application Operational Application Data Warehouse Data Warehouse Data Lake ? Logical Data Warehouse Data Warehouse Data Lake Marts ODS Staging/Ingest Unified analysis › Consolidated data › "Collect the data" › Single server, multiple nodes › More analysis than any one server can provide ©2018 Gartner, Inc. Unified analysis › Logically consolidated view of all data › "Connect and collect" › Multiple servers, of multiple nodes › More analysis than any one system can provide ID: 342254 Fragmented/ nonexistent analysis › Multiple sources › Multiple structured sources Fragmented analysis › "Collect the data" (Into › different repositories) › New data types, › processing, requirements › Uncoordinated views
  • 6. 6 Gartner – The Rise of Logical Architectures This is a Second Major Cycle of Analytical Consolidation Operational Application Operational Application Operational Application IoT Data Other NewData Operational Application Operational Application Cube Operational Application Cube ? Operational Application Operational Application Operational Application IoT Data Other NewData 1980s Pre EDW 1990s EDW 2010s2000s Post EDW Time LDW Operational Application Operational Application Operational Application Data Warehouse Data Warehouse Data Lake ? Unified analysis › Consolidated data › "Collect the data" › Single server, multiple nodes › More analysis than any one server can provide ©2018 Gartner, Inc. Unified analysis › Logically consolidated view of all data › "Connect and collect" › Multiple servers, of multiple nodes › More analysis than any one system can provide ID: 342254 Fragmented/ nonexistent analysis › Multiple sources › Multiple structured sources Fragmented analysis › "Collect the data" (Into › different repositories) › New data types, › processing, requirements › Uncoordinated views Operational Application Operational Application Operational Application IoT Data Other NewData Logical Data Warehouse Data Warehouse Data Lake Marts ODS Staging/Ingest Data Virtualization √ Improved Time to Market by 50 to 90% √ Improved Report Consistency √ Reduce Duplication of Data √ Improve Transparency √ Reduced development Cost √ Future Proof the architecture against technology changes
  • 7. DATA CONSUMERS DISPARATE DATA SOURCES SQL Queries (JDBC, ODBC, ADO.NET) Web Services (SOAP, REST, OData) Web-based catalog & search Secure delivery (SSL/TLS) DATA CONSUMERS MPP Processing Relational Cache Corporate Security Monitoring & Auditing Metadata Repository Execution Engine & Optimizer Data Virtualization as a Data Access Layer DATA VIRTUALIZATION Consume Combine 2 3 Connect 1
  • 8. DATA CONSUMERS DISPARATE DATA SOURCES SQL Queries (JDBC, ODBC, ADO.NET) Web Services (SOAP, REST, OData) Web-based catalog & search Secure delivery (SSL/TLS) DATA CONSUMERS Data Virtualization in Action Consume Combine 2 3 Connect 1 Base/Raw views Standardized views Customer Product Order Business viewsFinance Operations Sales Less Structured Operational Each Layer of Views provides more refined Single Views of Truth
  • 10. 10 Demo Scenario ▪ Historical sales data offloaded to Hadoop cluster for cheaper storage ▪ Marketing campaigns managed in an external cloud app ▪ Country is part of the customer details table, stored in the DW Sources Combine, Transform & Integrate Consume Base View Source Abstraction join group by state join Sales Campaign Customer SaaS solution How effective are our marketing Campaigns?
  • 11. 11 Personas Denodo Developer Business User & BI Analyst Data Scientist Application-to-Application Administration & Operations
  • 12. Unified Web Administration: Central Web Portal Entry point for all users to all Denodo Environments. SSO to all tools with Kerberos, SAML or OAuth
  • 13. Data Virtualization: 1. Enables data re-use reducing costs & increasing collaboration 2. Unifies disparate data sources in real-time 3. Supports self-service & data discovery 4. Centralises governance & security of enterprise data assets Key Takeaways
  • 14. Data Virtualization for Data Architects Questions
  • 15. Wed Nov 11 | Data Virtualization for Business Consumption Workshop | Hands-on virtual workshops - [email protected] | +64 21 875 875 Data Virtualization for Data Architects Next Steps Webinar series continues Test Drive | Try it out on mero.co.nz/denodo/
  • 16. 16 What is the optimizer doing? SELECT c.state, AVG(s.amount) FROM customer c JOIN sales s ON c.id = s.customer_id GROUP BY c.state Sales Customer join group by Sales Customer Create temp table join group by Option 1? Option 2? Option 3? Temp_Customer Customer and Sales are in different sources. What is the best execution plan? Naïve Strategy Temporary Data Movement 300 M 2 M 2 M 50 M Sales Customer join group by ID Group by state Partial Aggregation Pushdown 2 M 2 M ‘Cost’ ~302 M ‘Cost’ ~52 M ‘Cost’ ~4 M
  • 17. 17 Why is this so important? SELECT c.name, AVG(s.amount) FROM customer c JOIN sales s ON c.id = s.customer_id GROUP BY c.state How Denodo works compared with other federation engines System Execution Time Data Transferred Optimization Technique Denodo 9 sec. 4 M Aggregation push-down Others 125 sec. 302 M None: full scan 300 M 2 M Sales Customer join group by 2 M 2 M Sales Customer join group by ID Group by state To maximize push down to the EDW the aggregation is split in 2 steps: • 1st by customerID • 2nd by state This significantly reduces network Traffic and processing In Denodo
  • 18. 18 Denodo Performance Strategies • Post-processing and Federation in the DV engine • Delegation ▪ Process as much as possible in the data sources • Temporary Tables ▪ Automatically move data to the biggest data source to optimize the execution • Summaries ▪ Based on the query the Denodo optimizer can use a “summary” for accelerating the execution • MPP Integration ▪ Move processing to an external MPP system on the fly • Caching ▪ Persist data beforehand in a relational database