SlideShare a Scribd company logo
www.r-squared.in/git-hub
dataCrunch Data Visualization With R
Learn To Modify Font Of Graphical Parameters
dataCrunch
Font
Slide 2
dataCrunchFont
Slide 3
The font argument can be used along with main, sub, axis and lab arguments to specify the font of
the title, subtitle, axes and the labels.
Feature Argument
Title font.main
Subtitle font.sub
Axis font.axis
Labels font.lab
The font argument takes values from 1 - 5. The font type represented by each value is shown in the
above table.
Value Font Type
1 Plain
2 Bold
3 Italic
4 Bold Italic
5 Symbol
dataCrunchFont: Title
Slide 4
# modify the font of the title
plot(mtcars$disp, mtcars$mpg,
main = "Displacement vs Miles Per Gallon",
font.main = 1)
Description
The font of the title can be modified using the font.
main argument in the plot() function.
Code
dataCrunchFont: Title
Slide 5
The below plot depicts the appearance of the title when different options for font type are applied:
dataCrunchFont: Subtitle
Slide 6
# modify the font of the subtitle
plot(mtcars$disp, mtcars$mpg,
sub= "Displacement vs Miles Per Gallon",
font.sub = 3)
Description
The font of the subtitle can be modified using the
font.sub argument in the plot() function.
Code
dataCrunchFont: Subtitle
Slide 7
The below plot depicts the appearance of the subtitle when different options for font type are applied:
dataCrunchFont: Axis
Slide 8
# modify the font of the axis
plot(mtcars$disp, mtcars$mpg,
font.axis = 3)
Description
The font of the axis can be modified using the
font.axis argument in the plot() function.
Code
dataCrunchFont: Axis
Slide 9
The below plot depicts the appearance of the axis when different options for font type are applied:
dataCrunchFont: Labels
Slide 10
# modify the font of the labels
plot(mtcars$disp, mtcars$mpg,
xlab = "Displacement",
ylab = "Miles Per Gallon",
font.lab = 3)
Description
The font of the labels can be modified using the
font.lab argument in the plot() function.
Code
dataCrunchFont: Labels
Slide 11
The below plot depicts the appearance of the labels when different options for font type are applied:
dataCrunch
Font Size
Slide 12
dataCrunchFont Size
Slide 13
The cex argument can be used along with main, sub, axis and lab arguments to specify the font size
of the title, subtitle, axes and the labels.
Feature Argument
Title cex.main
Subtitle cex.sub
Axis cex.axis
Labels cex.lab
The values taken by the cex argument are relative to 1 i.e the default size is represented by 1 and if
the supplied value is less than 1, the size of the font will be relatively smaller, and if the supplied value
is greater than 1, the size of the font will be relatively bigger.
dataCrunchFont Size: Title
Slide 14
# modify the font size of the title
plot(mtcars$disp, mtcars$mpg,
main = "Scatter Plot",
cex.main = 1.5)
Description
The font size of the title can be modified using the
cex.main argument in the plot() function.
Code
dataCrunchFont Size: Title
Slide 15
The below plot depicts the appearance of the title when different options for font size are applied:
dataCrunchFont Size: Subtitle
Slide 16
# modify the font size of the subtitle
plot(mtcars$disp, mtcars$mpg,
sub= "Scatter Plot",
cex.sub = 1.5)
Description
The font size of the subtitle can be modified using
the cex.sub argument in the plot() function.
Code
dataCrunchFont: Subtitle
Slide 17
The below plot depicts the appearance of the subtitle when different options for font size are applied:
dataCrunchFont Size: Axis
Slide 18
# modify the font size of the axis
plot(mtcars$disp, mtcars$mpg,
cex.axis = 1.5)
Description
The font size of the axis can be modified using the
cex.axis argument in the plot() function.
Code
dataCrunchFont Size: Axis
Slide 19
The below plot depicts the appearance of the axis when different options for font size are applied:
dataCrunchFont Size: Labels
Slide 20
# modify the font size of the labels
plot(mtcars$disp, mtcars$mpg,
xlab = "Displacement",
ylab = "Miles Per Gallon",
cex.lab = 1.5)
Description
The font size of the labels can be modified using the
cex.lab argument in the plot() function.
Code
dataCrunchFont Size: Labels
Slide 21
The below plot depicts the appearance of the subtitle when different options for font size are applied:
dataCrunch
Slide 22
Visit dataCrunch for
tutorials on:
→ R Programming
→ Business Analytics
→ Data Visualization
→ Web Applications
→ Package Development
→ Git & GitHub
Ad

More Related Content

What's hot (18)

Access intermediate 2010 final project new
Access intermediate 2010 final project newAccess intermediate 2010 final project new
Access intermediate 2010 final project new
clscott1
 
R Programming: Numeric Functions In R
R Programming: Numeric Functions In RR Programming: Numeric Functions In R
R Programming: Numeric Functions In R
Rsquared Academy
 
An introduction to matlab
An introduction to matlabAn introduction to matlab
An introduction to matlab
Dr. Andrew Wallace PhD
 
Chapter13 two-dimensional-array
Chapter13 two-dimensional-arrayChapter13 two-dimensional-array
Chapter13 two-dimensional-array
Deepak Singh
 
Extreme querying with_analytics
Extreme querying with_analyticsExtreme querying with_analytics
Extreme querying with_analytics
Gary Myers
 
R studio
R studio R studio
R studio
Kinza Irshad
 
Excel/R
Excel/RExcel/R
Excel/R
Andrija Djurovic
 
statistical computation using R- an intro..
statistical computation using R- an intro..statistical computation using R- an intro..
statistical computation using R- an intro..
Kamarudheen KV
 
Lecture 1 mte 407
Lecture 1 mte 407Lecture 1 mte 407
Lecture 1 mte 407
rumanatasnim415
 
Lecture 1 mte 407
Lecture 1 mte 407Lecture 1 mte 407
Lecture 1 mte 407
rumanatasnim415
 
R-Excel Integration
R-Excel IntegrationR-Excel Integration
R-Excel Integration
Andrija Djurovic
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Sourabh Bhattacharya
 
Doc 20180130-wa0004
Doc 20180130-wa0004Doc 20180130-wa0004
Doc 20180130-wa0004
HarithaRanasinghe
 
Assignment3
Assignment3Assignment3
Assignment3
Mahmoud
 
Assigment 3
Assigment 3Assigment 3
Assigment 3
sukumaraser
 
Conversion from infix to prefix using stack
Conversion from infix to prefix using stackConversion from infix to prefix using stack
Conversion from infix to prefix using stack
Haqnawaz Ch
 
The matplotlib Library
The matplotlib LibraryThe matplotlib Library
The matplotlib Library
Haim Michael
 
Day 2 examples u6w14
Day 2 examples u6w14Day 2 examples u6w14
Day 2 examples u6w14
jchartiersjsd
 
Access intermediate 2010 final project new
Access intermediate 2010 final project newAccess intermediate 2010 final project new
Access intermediate 2010 final project new
clscott1
 
R Programming: Numeric Functions In R
R Programming: Numeric Functions In RR Programming: Numeric Functions In R
R Programming: Numeric Functions In R
Rsquared Academy
 
Chapter13 two-dimensional-array
Chapter13 two-dimensional-arrayChapter13 two-dimensional-array
Chapter13 two-dimensional-array
Deepak Singh
 
Extreme querying with_analytics
Extreme querying with_analyticsExtreme querying with_analytics
Extreme querying with_analytics
Gary Myers
 
statistical computation using R- an intro..
statistical computation using R- an intro..statistical computation using R- an intro..
statistical computation using R- an intro..
Kamarudheen KV
 
Assignment3
Assignment3Assignment3
Assignment3
Mahmoud
 
Conversion from infix to prefix using stack
Conversion from infix to prefix using stackConversion from infix to prefix using stack
Conversion from infix to prefix using stack
Haqnawaz Ch
 
The matplotlib Library
The matplotlib LibraryThe matplotlib Library
The matplotlib Library
Haim Michael
 
Day 2 examples u6w14
Day 2 examples u6w14Day 2 examples u6w14
Day 2 examples u6w14
jchartiersjsd
 

Similar to Data Visualization With R: Learn To Modify Font Of Graphical Parameters (20)

Lecture_3.pptx
Lecture_3.pptxLecture_3.pptx
Lecture_3.pptx
SungaleliYuen
 
Sterling Integrator Map Editor
Sterling Integrator Map EditorSterling Integrator Map Editor
Sterling Integrator Map Editor
Jeyhind M
 
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
RamanathanSabesan
 
Background This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docxBackground This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docx
rosemaryralphs52525
 
Abap programming overview
Abap programming overview Abap programming overview
Abap programming overview
k kartheek
 
Introduction to r
Introduction to rIntroduction to r
Introduction to r
Golden Julie Jesus
 
charts
chartscharts
charts
pipalmetto
 
M2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdfM2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdf
HebaEng
 
Computation Assignment Help
Computation Assignment Help Computation Assignment Help
Computation Assignment Help
Programming Homework Help
 
Ppt lesson 07
Ppt lesson 07Ppt lesson 07
Ppt lesson 07
Linda Bodrie
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Sourabh Bhattacharya
 
7th cs june 2013
7th cs   june 20137th cs   june 2013
7th cs june 2013
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
2013-June: 7th Semester CSE Question Papers
2013-June: 7th  Semester CSE Question Papers2013-June: 7th  Semester CSE Question Papers
2013-June: 7th Semester CSE Question Papers
B G S Institute of Technolgy
 
7th Semester Computer Science (2013-June) Question Papers
7th Semester Computer Science (2013-June) Question Papers7th Semester Computer Science (2013-June) Question Papers
7th Semester Computer Science (2013-June) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Here is The code in C language .pdf
Here is The code in C language  .pdfHere is The code in C language  .pdf
Here is The code in C language .pdf
geetakannupillai1
 
Chapter 1abapprogrammingoverview-091205081953-phpapp01
Chapter 1abapprogrammingoverview-091205081953-phpapp01Chapter 1abapprogrammingoverview-091205081953-phpapp01
Chapter 1abapprogrammingoverview-091205081953-phpapp01
tabish
 
Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02
tabish
 
Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02
wingsrai
 
ABAP Programming Overview
ABAP Programming OverviewABAP Programming Overview
ABAP Programming Overview
sapdocs. info
 
chapter-1abapprogrammingoverview-091205081953-phpapp01
chapter-1abapprogrammingoverview-091205081953-phpapp01chapter-1abapprogrammingoverview-091205081953-phpapp01
chapter-1abapprogrammingoverview-091205081953-phpapp01
tabish
 
Sterling Integrator Map Editor
Sterling Integrator Map EditorSterling Integrator Map Editor
Sterling Integrator Map Editor
Jeyhind M
 
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
2GKS, Open GL and IGES_Video Lect Given by Renjin.pptx
RamanathanSabesan
 
Background This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docxBackground This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docx
rosemaryralphs52525
 
Abap programming overview
Abap programming overview Abap programming overview
Abap programming overview
k kartheek
 
M2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdfM2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdf
HebaEng
 
Here is The code in C language .pdf
Here is The code in C language  .pdfHere is The code in C language  .pdf
Here is The code in C language .pdf
geetakannupillai1
 
Chapter 1abapprogrammingoverview-091205081953-phpapp01
Chapter 1abapprogrammingoverview-091205081953-phpapp01Chapter 1abapprogrammingoverview-091205081953-phpapp01
Chapter 1abapprogrammingoverview-091205081953-phpapp01
tabish
 
Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02
tabish
 
Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02Abapprogrammingoverview 090715081305-phpapp02
Abapprogrammingoverview 090715081305-phpapp02
wingsrai
 
ABAP Programming Overview
ABAP Programming OverviewABAP Programming Overview
ABAP Programming Overview
sapdocs. info
 
chapter-1abapprogrammingoverview-091205081953-phpapp01
chapter-1abapprogrammingoverview-091205081953-phpapp01chapter-1abapprogrammingoverview-091205081953-phpapp01
chapter-1abapprogrammingoverview-091205081953-phpapp01
tabish
 
Ad

More from Rsquared Academy (20)

Handling Date & Time in R
Handling Date & Time in RHandling Date & Time in R
Handling Date & Time in R
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in RMarket Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using RPractical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Joining Data with dplyr
Joining Data with dplyrJoining Data with dplyr
Joining Data with dplyr
Rsquared Academy
 
Explore Data using dplyr
Explore Data using dplyrExplore Data using dplyr
Explore Data using dplyr
Rsquared Academy
 
Data Wrangling with dplyr
Data Wrangling with dplyrData Wrangling with dplyr
Data Wrangling with dplyr
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with PipesWriting Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Introduction to tibbles
Introduction to tibblesIntroduction to tibbles
Introduction to tibbles
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into RRead data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into RRead/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in RVariables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
How to get help in R?
How to get help in R?How to get help in R?
How to get help in R?
Rsquared Academy
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
Rsquared Academy
 
RMySQL Tutorial For Beginners
RMySQL Tutorial For BeginnersRMySQL Tutorial For Beginners
RMySQL Tutorial For Beginners
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For BeginnersR Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to MatricesR Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to VectorsR Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
R Programming: Variables & Data Types
R Programming: Variables & Data TypesR Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In RR Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in RMarket Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using RPractical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with PipesWriting Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into RRead data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into RRead/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in RVariables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
RMySQL Tutorial For Beginners
RMySQL Tutorial For BeginnersRMySQL Tutorial For Beginners
RMySQL Tutorial For Beginners
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For BeginnersR Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to MatricesR Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to VectorsR Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
R Programming: Variables & Data Types
R Programming: Variables & Data TypesR Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In RR Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
Ad

Recently uploaded (20)

文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789
Ghh
 
Process Mining at AE - Key success factors
Process Mining at AE - Key success factorsProcess Mining at AE - Key success factors
Process Mining at AE - Key success factors
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789
Ghh
 

Data Visualization With R: Learn To Modify Font Of Graphical Parameters

  • 1. www.r-squared.in/git-hub dataCrunch Data Visualization With R Learn To Modify Font Of Graphical Parameters
  • 3. dataCrunchFont Slide 3 The font argument can be used along with main, sub, axis and lab arguments to specify the font of the title, subtitle, axes and the labels. Feature Argument Title font.main Subtitle font.sub Axis font.axis Labels font.lab The font argument takes values from 1 - 5. The font type represented by each value is shown in the above table. Value Font Type 1 Plain 2 Bold 3 Italic 4 Bold Italic 5 Symbol
  • 4. dataCrunchFont: Title Slide 4 # modify the font of the title plot(mtcars$disp, mtcars$mpg, main = "Displacement vs Miles Per Gallon", font.main = 1) Description The font of the title can be modified using the font. main argument in the plot() function. Code
  • 5. dataCrunchFont: Title Slide 5 The below plot depicts the appearance of the title when different options for font type are applied:
  • 6. dataCrunchFont: Subtitle Slide 6 # modify the font of the subtitle plot(mtcars$disp, mtcars$mpg, sub= "Displacement vs Miles Per Gallon", font.sub = 3) Description The font of the subtitle can be modified using the font.sub argument in the plot() function. Code
  • 7. dataCrunchFont: Subtitle Slide 7 The below plot depicts the appearance of the subtitle when different options for font type are applied:
  • 8. dataCrunchFont: Axis Slide 8 # modify the font of the axis plot(mtcars$disp, mtcars$mpg, font.axis = 3) Description The font of the axis can be modified using the font.axis argument in the plot() function. Code
  • 9. dataCrunchFont: Axis Slide 9 The below plot depicts the appearance of the axis when different options for font type are applied:
  • 10. dataCrunchFont: Labels Slide 10 # modify the font of the labels plot(mtcars$disp, mtcars$mpg, xlab = "Displacement", ylab = "Miles Per Gallon", font.lab = 3) Description The font of the labels can be modified using the font.lab argument in the plot() function. Code
  • 11. dataCrunchFont: Labels Slide 11 The below plot depicts the appearance of the labels when different options for font type are applied:
  • 13. dataCrunchFont Size Slide 13 The cex argument can be used along with main, sub, axis and lab arguments to specify the font size of the title, subtitle, axes and the labels. Feature Argument Title cex.main Subtitle cex.sub Axis cex.axis Labels cex.lab The values taken by the cex argument are relative to 1 i.e the default size is represented by 1 and if the supplied value is less than 1, the size of the font will be relatively smaller, and if the supplied value is greater than 1, the size of the font will be relatively bigger.
  • 14. dataCrunchFont Size: Title Slide 14 # modify the font size of the title plot(mtcars$disp, mtcars$mpg, main = "Scatter Plot", cex.main = 1.5) Description The font size of the title can be modified using the cex.main argument in the plot() function. Code
  • 15. dataCrunchFont Size: Title Slide 15 The below plot depicts the appearance of the title when different options for font size are applied:
  • 16. dataCrunchFont Size: Subtitle Slide 16 # modify the font size of the subtitle plot(mtcars$disp, mtcars$mpg, sub= "Scatter Plot", cex.sub = 1.5) Description The font size of the subtitle can be modified using the cex.sub argument in the plot() function. Code
  • 17. dataCrunchFont: Subtitle Slide 17 The below plot depicts the appearance of the subtitle when different options for font size are applied:
  • 18. dataCrunchFont Size: Axis Slide 18 # modify the font size of the axis plot(mtcars$disp, mtcars$mpg, cex.axis = 1.5) Description The font size of the axis can be modified using the cex.axis argument in the plot() function. Code
  • 19. dataCrunchFont Size: Axis Slide 19 The below plot depicts the appearance of the axis when different options for font size are applied:
  • 20. dataCrunchFont Size: Labels Slide 20 # modify the font size of the labels plot(mtcars$disp, mtcars$mpg, xlab = "Displacement", ylab = "Miles Per Gallon", cex.lab = 1.5) Description The font size of the labels can be modified using the cex.lab argument in the plot() function. Code
  • 21. dataCrunchFont Size: Labels Slide 21 The below plot depicts the appearance of the subtitle when different options for font size are applied:
  • 22. dataCrunch Slide 22 Visit dataCrunch for tutorials on: → R Programming → Business Analytics → Data Visualization → Web Applications → Package Development → Git & GitHub