SlideShare a Scribd company logo
Data Wrangling
with dplyr and tidyr
Cheat Sheet
RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com
Syntax - Helpful conventions for wrangling
dplyr::tbl_df(iris)
Converts data to tbl class. tbl’s are easier to examine than
data frames. R displays only the data that fits onscreen:
dplyr::glimpse(iris)
Information dense summary of tbl data.
utils::View(iris)
View data set in spreadsheet-like display (note capital V).
Source: local data frame [150 x 5]
Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
.. ... ... ...
Variables not shown: Petal.Width (dbl),
Species (fctr)
dplyr::%>%
Passes object on left hand side as first argument (or .
argument) of function on righthand side.
"Piping" with %>% makes code more readable, e.g.
iris %>%
group_by(Species) %>%
summarise(avg = mean(Sepal.Width)) %>%
arrange(avg)
x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z )
Reshaping Data - Change the layout of a data set
Subset Observations (Rows) Subset Variables (Columns)
F M A
Each variable is saved
in its own column
F M A
Each observation is
saved in its own row
In a tidy
data set: &
Tidy Data - A foundation for wrangling in R
Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.
FAM
M * A
*
tidyr::gather(cases, "year", "n", 2:4)
Gather columns into rows.
tidyr::unite(data, col, ..., sep)
Unite several columns into one.
dplyr::data_frame(a = 1:3, b = 4:6)
Combine vectors into data frame
(optimized).
dplyr::arrange(mtcars, mpg)
Order rows by values of a column
(low to high).
dplyr::arrange(mtcars, desc(mpg))
Order rows by values of a column
(high to low).
dplyr::rename(tb, y = year)
Rename the columns of a data
frame.
tidyr::spread(pollution, size, amount)
Spread rows into columns.
tidyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.
wwwwwwA1005A1013A1010A1010
wwp110110100745451009
wwp110110100745451009 wwp110110100745451009wwp110110100745451009
wppw11010071007110451009100945
wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7)
Extract rows that meet logical criteria.
dplyr::distinct(iris)
Remove duplicate rows.
dplyr::sample_frac(iris, 0.5, replace = TRUE)
Randomly select fraction of rows.
dplyr::sample_n(iris, 10, replace = TRUE)
Randomly select n rows.
dplyr::slice(iris, 10:15)
Select rows by position.
dplyr::top_n(storms, 2, date)
Select and order top n entries (by group if grouped data).
< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators
Logic in R - ?Comparison, ?base::Logic
dplyr::select(iris, Sepal.Width, Petal.Length, Species)
Select columns by name or helper function.
Helper functions for select - ?select
select(iris, contains("."))
Select columns whose name contains a character string.
select(iris, ends_with("Length"))
Select columns whose name ends with a character string.
select(iris, everything())
Select every column.
select(iris, matches(".t."))
Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))
Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))
Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))
Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)
Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)
Select all columns except Species.
Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15
wwwwwwA1005A1013A1010A1010
devtools::install_github("rstudio/EDAWR") for data sets
dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.
dplyr::ungroup(iris)
Remove grouping information from data frame.
iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.
Combine Data Sets
Group Data
Summarise Data Make New Variables
ir ir
C
dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.
dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.
dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).
dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.
dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.
dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.
Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:
Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:
window
function
summary
function
dplyr::first
First value of a vector.
dplyr::last
Last value of a vector.
dplyr::nth
Nth value of a vector.
dplyr::n
# of values in a vector.
dplyr::n_distinct
# of distinct values in
a vector.
IQR
IQR of a vector.
min
Minimum value in a vector.
max
Maximum value in a vector.
mean
Mean value of a vector.
median
Median value of a vector.
var
Variance of a vector.
sd
Standard deviation of a
vector.
dplyr::lead
Copy with values shifted by 1.
dplyr::lag
Copy with values lagged by 1.
dplyr::dense_rank
Ranks with no gaps.
dplyr::min_rank
Ranks. Ties get min rank.
dplyr::percent_rank
Ranks rescaled to [0, 1].
dplyr::row_number
Ranks. Ties got to first value.
dplyr::ntile
Bin vector into n buckets.
dplyr::between
Are values between a and b?
dplyr::cume_dist
Cumulative distribution.
dplyr::cumall
Cumulative all
dplyr::cumany
Cumulative any
dplyr::cummean
Cumulative mean
cumsum
Cumulative sum
cummax
Cumulative max
cummin
Cumulative min
cumprod
Cumulative prod
pmax
Element-wise max
pmin
Element-wise min
iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.
x1 x2
A 1
B 2
C 3
x1 x3
A T
B F
D T+ =
x1 x2 x3
A 1 T
B 2 F
C 3 NA
x1 x3 x2
A T 1
B F 2
D T NA
x1 x2 x3
A 1 T
B 2 F
x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T
x1 x2
A 1
B 2
C 3
x1 x2
B 2
C 3
D 4+ =
x1 x2
B 2
C 3
x1 x2
A 1
B 2
C 3
D 4
x1 x2
A 1
x1 x2
A 1
B 2
C 3
B 2
C 3
D 4
x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4
Mutating Joins
Filtering Joins
Binding
Set Operations
dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.
a b
dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.
dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.
dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.
x1 x2
A 1
B 2
x1 x2
C 3
y z
dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.
dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.
dplyr::intersect(y, z)
Rows that appear in both y and z.
dplyr::union(y, z)
Rows that appear in either or both y and z.
dplyr::setdiff(y, z)
Rows that appear in y but not z.
dplyr::bind_rows(y, z)
Append z to y as new rows.
dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.
RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets
Ad

More Related Content

What's hot (20)

Presentation on K-Means Clustering
Presentation on K-Means ClusteringPresentation on K-Means Clustering
Presentation on K-Means Clustering
Pabna University of Science & Technology
 
Missing data handling
Missing data handlingMissing data handling
Missing data handling
QuantUniversity
 
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting MachinesDecision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Deepak George
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Confusion Matrix
Confusion MatrixConfusion Matrix
Confusion Matrix
Rajat Gupta
 
Machine Learning with R
Machine Learning with RMachine Learning with R
Machine Learning with R
Barbara Fusinska
 
Introduction to Linear Discriminant Analysis
Introduction to Linear Discriminant AnalysisIntroduction to Linear Discriminant Analysis
Introduction to Linear Discriminant Analysis
Jaclyn Kokx
 
Introduction to R for data science
Introduction to R for data scienceIntroduction to R for data science
Introduction to R for data science
Long Nguyen
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
Sivam Chinna
 
A quick introduction to R
A quick introduction to RA quick introduction to R
A quick introduction to R
Angshuman Saha
 
Introduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data AnalyticsIntroduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data Analytics
Phoenix
 
Association Rule.ppt
Association Rule.pptAssociation Rule.ppt
Association Rule.ppt
SowmyaJyothi3
 
Clustering
ClusteringClustering
Clustering
Dr. C.V. Suresh Babu
 
Data Analysis and Statistics in Python using pandas and statsmodels
Data Analysis and Statistics in Python using pandas and statsmodelsData Analysis and Statistics in Python using pandas and statsmodels
Data Analysis and Statistics in Python using pandas and statsmodels
Wes McKinney
 
Ensemble methods in machine learning
Ensemble methods in machine learningEnsemble methods in machine learning
Ensemble methods in machine learning
SANTHOSH RAJA M G
 
Clustering
ClusteringClustering
Clustering
NLPseminar
 
Apriori algorithm
Apriori algorithmApriori algorithm
Apriori algorithm
nouraalkhatib
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
izahn
 
Data visualization in Python
Data visualization in PythonData visualization in Python
Data visualization in Python
Marc Garcia
 
Optics ordering points to identify the clustering structure
Optics ordering points to identify the clustering structureOptics ordering points to identify the clustering structure
Optics ordering points to identify the clustering structure
Rajesh Piryani
 
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting MachinesDecision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Deepak George
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Confusion Matrix
Confusion MatrixConfusion Matrix
Confusion Matrix
Rajat Gupta
 
Introduction to Linear Discriminant Analysis
Introduction to Linear Discriminant AnalysisIntroduction to Linear Discriminant Analysis
Introduction to Linear Discriminant Analysis
Jaclyn Kokx
 
Introduction to R for data science
Introduction to R for data scienceIntroduction to R for data science
Introduction to R for data science
Long Nguyen
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
Sivam Chinna
 
A quick introduction to R
A quick introduction to RA quick introduction to R
A quick introduction to R
Angshuman Saha
 
Introduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data AnalyticsIntroduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data Analytics
Phoenix
 
Association Rule.ppt
Association Rule.pptAssociation Rule.ppt
Association Rule.ppt
SowmyaJyothi3
 
Data Analysis and Statistics in Python using pandas and statsmodels
Data Analysis and Statistics in Python using pandas and statsmodelsData Analysis and Statistics in Python using pandas and statsmodels
Data Analysis and Statistics in Python using pandas and statsmodels
Wes McKinney
 
Ensemble methods in machine learning
Ensemble methods in machine learningEnsemble methods in machine learning
Ensemble methods in machine learning
SANTHOSH RAJA M G
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
izahn
 
Data visualization in Python
Data visualization in PythonData visualization in Python
Data visualization in Python
Marc Garcia
 
Optics ordering points to identify the clustering structure
Optics ordering points to identify the clustering structureOptics ordering points to identify the clustering structure
Optics ordering points to identify the clustering structure
Rajesh Piryani
 

Similar to Data Wrangling with dplyr and tidyr Cheat Sheet (20)

Next Generation Programming in R
Next Generation Programming in RNext Generation Programming in R
Next Generation Programming in R
Florian Uhlitz
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
R gráfico
R gráficoR gráfico
R gráfico
stryper1968
 
tidyr.pdf
tidyr.pdftidyr.pdf
tidyr.pdf
Mateus S. Xavier
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
 
Data transformation-cheatsheet
Data transformation-cheatsheetData transformation-cheatsheet
Data transformation-cheatsheet
Dieudonne Nahigombeye
 
4 R Tutorial DPLYR Apply Function
4 R Tutorial DPLYR Apply Function4 R Tutorial DPLYR Apply Function
4 R Tutorial DPLYR Apply Function
Sakthi Dasans
 
Introduction to r
Introduction to rIntroduction to r
Introduction to r
Golden Julie Jesus
 
Data Cleaning in R language basic concepts.pptx
Data Cleaning in R language basic concepts.pptxData Cleaning in R language basic concepts.pptx
Data Cleaning in R language basic concepts.pptx
gameyug28
 
Basic R Data Manipulation
Basic R Data ManipulationBasic R Data Manipulation
Basic R Data Manipulation
Chu An
 
Data import-cheatsheet
Data import-cheatsheetData import-cheatsheet
Data import-cheatsheet
Dieudonne Nahigombeye
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptx
kalai75
 
Lecture 9.pptx
Lecture 9.pptxLecture 9.pptx
Lecture 9.pptx
MathewJohnSinoCruz
 
R Programming Homework Help
R Programming Homework HelpR Programming Homework Help
R Programming Homework Help
Statistics Homework Helper
 
Pandas,scipy,numpy cheatsheet
Pandas,scipy,numpy cheatsheetPandas,scipy,numpy cheatsheet
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
Khaled Al-Shamaa
 
R_CheatSheet.pdf
R_CheatSheet.pdfR_CheatSheet.pdf
R_CheatSheet.pdf
MariappanR3
 
R for Statistical Computing
R for Statistical ComputingR for Statistical Computing
R for Statistical Computing
Mohammed El Rafie Tarabay
 
Practical data science_public
Practical data science_publicPractical data science_public
Practical data science_public
Long Nguyen
 
Next Generation Programming in R
Next Generation Programming in RNext Generation Programming in R
Next Generation Programming in R
Florian Uhlitz
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
 
4 R Tutorial DPLYR Apply Function
4 R Tutorial DPLYR Apply Function4 R Tutorial DPLYR Apply Function
4 R Tutorial DPLYR Apply Function
Sakthi Dasans
 
Data Cleaning in R language basic concepts.pptx
Data Cleaning in R language basic concepts.pptxData Cleaning in R language basic concepts.pptx
Data Cleaning in R language basic concepts.pptx
gameyug28
 
Basic R Data Manipulation
Basic R Data ManipulationBasic R Data Manipulation
Basic R Data Manipulation
Chu An
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptx
kalai75
 
Pandas,scipy,numpy cheatsheet
Pandas,scipy,numpy cheatsheetPandas,scipy,numpy cheatsheet
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
 
R_CheatSheet.pdf
R_CheatSheet.pdfR_CheatSheet.pdf
R_CheatSheet.pdf
MariappanR3
 
Practical data science_public
Practical data science_publicPractical data science_public
Practical data science_public
Long Nguyen
 
Ad

More from Dr. Volkan OBAN (20)

Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
 
Covid19py Python Package - Example
Covid19py  Python Package - ExampleCovid19py  Python Package - Example
Covid19py Python Package - Example
Dr. Volkan OBAN
 
Object detection with Python
Object detection with Python Object detection with Python
Object detection with Python
Dr. Volkan OBAN
 
Python - Rastgele Orman(Random Forest) Parametreleri
Python - Rastgele Orman(Random Forest) ParametreleriPython - Rastgele Orman(Random Forest) Parametreleri
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
 
Linear Programming wi̇th R - Examples
Linear Programming wi̇th R - ExamplesLinear Programming wi̇th R - Examples
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
 
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ..."optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
 
k-means Clustering in Python
k-means Clustering in Pythonk-means Clustering in Python
k-means Clustering in Python
Dr. Volkan OBAN
 
Naive Bayes Example using R
Naive Bayes Example using  R Naive Bayes Example using  R
Naive Bayes Example using R
Dr. Volkan OBAN
 
R forecasting Example
R forecasting ExampleR forecasting Example
R forecasting Example
Dr. Volkan OBAN
 
k-means Clustering and Custergram with R
k-means Clustering and Custergram with Rk-means Clustering and Custergram with R
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Data Science and its Relationship to Big Data and Data-Driven Decision MakingData Science and its Relationship to Big Data and Data-Driven Decision Making
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Scikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-PythonScikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an exampleReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an exampleReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
R Machine Learning packages( generally used)
R Machine Learning packages( generally used)R Machine Learning packages( generally used)
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
treemap package in R and examples.
treemap package in R and examples.treemap package in R and examples.
treemap package in R and examples.
Dr. Volkan OBAN
 
Mosaic plot in R.
Mosaic plot in R.Mosaic plot in R.
Mosaic plot in R.
Dr. Volkan OBAN
 
imager package in R and examples..
imager package in R and examples..imager package in R and examples..
imager package in R and examples..
Dr. Volkan OBAN
 
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
 
Covid19py Python Package - Example
Covid19py  Python Package - ExampleCovid19py  Python Package - Example
Covid19py Python Package - Example
Dr. Volkan OBAN
 
Object detection with Python
Object detection with Python Object detection with Python
Object detection with Python
Dr. Volkan OBAN
 
Python - Rastgele Orman(Random Forest) Parametreleri
Python - Rastgele Orman(Random Forest) ParametreleriPython - Rastgele Orman(Random Forest) Parametreleri
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
 
Linear Programming wi̇th R - Examples
Linear Programming wi̇th R - ExamplesLinear Programming wi̇th R - Examples
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
 
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ..."optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
 
k-means Clustering in Python
k-means Clustering in Pythonk-means Clustering in Python
k-means Clustering in Python
Dr. Volkan OBAN
 
Naive Bayes Example using R
Naive Bayes Example using  R Naive Bayes Example using  R
Naive Bayes Example using R
Dr. Volkan OBAN
 
k-means Clustering and Custergram with R
k-means Clustering and Custergram with Rk-means Clustering and Custergram with R
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Data Science and its Relationship to Big Data and Data-Driven Decision MakingData Science and its Relationship to Big Data and Data-Driven Decision Making
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Scikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-PythonScikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an exampleReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an exampleReporteRs package in R. forming powerpoint documents-an example
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
R Machine Learning packages( generally used)
R Machine Learning packages( generally used)R Machine Learning packages( generally used)
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
treemap package in R and examples.
treemap package in R and examples.treemap package in R and examples.
treemap package in R and examples.
Dr. Volkan OBAN
 
imager package in R and examples..
imager package in R and examples..imager package in R and examples..
imager package in R and examples..
Dr. Volkan OBAN
 
Ad

Recently uploaded (20)

Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
shit yudh slideshare power likha point presen
shit yudh slideshare power likha point presenshit yudh slideshare power likha point presen
shit yudh slideshare power likha point presen
vishalgurjar11229
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
History of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptxHistory of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptx
balongcastrojo
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
shit yudh slideshare power likha point presen
shit yudh slideshare power likha point presenshit yudh slideshare power likha point presen
shit yudh slideshare power likha point presen
vishalgurjar11229
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
History of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptxHistory of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptx
balongcastrojo
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 

Data Wrangling with dplyr and tidyr Cheat Sheet

  • 1. Data Wrangling with dplyr and tidyr Cheat Sheet RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • [email protected] • 844-448-1212 • rstudio.com Syntax - Helpful conventions for wrangling dplyr::tbl_df(iris) Converts data to tbl class. tbl’s are easier to examine than data frames. R displays only the data that fits onscreen: dplyr::glimpse(iris) Information dense summary of tbl data. utils::View(iris) View data set in spreadsheet-like display (note capital V). Source: local data frame [150 x 5] Sepal.Length Sepal.Width Petal.Length 1 5.1 3.5 1.4 2 4.9 3.0 1.4 3 4.7 3.2 1.3 4 4.6 3.1 1.5 5 5.0 3.6 1.4 .. ... ... ... Variables not shown: Petal.Width (dbl), Species (fctr) dplyr::%>% Passes object on left hand side as first argument (or . argument) of function on righthand side. "Piping" with %>% makes code more readable, e.g. iris %>% group_by(Species) %>% summarise(avg = mean(Sepal.Width)) %>% arrange(avg) x %>% f(y) is the same as f(x, y) y %>% f(x, ., z) is the same as f(x, y, z ) Reshaping Data - Change the layout of a data set Subset Observations (Rows) Subset Variables (Columns) F M A Each variable is saved in its own column F M A Each observation is saved in its own row In a tidy data set: & Tidy Data - A foundation for wrangling in R Tidy data complements R’s vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R. FAM M * A * tidyr::gather(cases, "year", "n", 2:4) Gather columns into rows. tidyr::unite(data, col, ..., sep) Unite several columns into one. dplyr::data_frame(a = 1:3, b = 4:6) Combine vectors into data frame (optimized). dplyr::arrange(mtcars, mpg) Order rows by values of a column (low to high). dplyr::arrange(mtcars, desc(mpg)) Order rows by values of a column (high to low). dplyr::rename(tb, y = year) Rename the columns of a data frame. tidyr::spread(pollution, size, amount) Spread rows into columns. tidyr::separate(storms, date, c("y", "m", "d")) Separate one column into several. wwwwwwA1005A1013A1010A1010 wwp110110100745451009 wwp110110100745451009 wwp110110100745451009wwp110110100745451009 wppw11010071007110451009100945 wwwww110110110110110 wwww dplyr::filter(iris, Sepal.Length > 7) Extract rows that meet logical criteria. dplyr::distinct(iris) Remove duplicate rows. dplyr::sample_frac(iris, 0.5, replace = TRUE) Randomly select fraction of rows. dplyr::sample_n(iris, 10, replace = TRUE) Randomly select n rows. dplyr::slice(iris, 10:15) Select rows by position. dplyr::top_n(storms, 2, date) Select and order top n entries (by group if grouped data). < Less than != Not equal to > Greater than %in% Group membership == Equal to is.na Is NA <= Less than or equal to !is.na Is not NA >= Greater than or equal to &,|,!,xor,any,all Boolean operators Logic in R - ?Comparison, ?base::Logic dplyr::select(iris, Sepal.Width, Petal.Length, Species) Select columns by name or helper function. Helper functions for select - ?select select(iris, contains(".")) Select columns whose name contains a character string. select(iris, ends_with("Length")) Select columns whose name ends with a character string. select(iris, everything()) Select every column. select(iris, matches(".t.")) Select columns whose name matches a regular expression. select(iris, num_range("x", 1:5)) Select columns named x1, x2, x3, x4, x5. select(iris, one_of(c("Species", "Genus"))) Select columns whose names are in a group of names. select(iris, starts_with("Sepal")) Select columns whose name starts with a character string. select(iris, Sepal.Length:Petal.Width) Select all columns between Sepal.Length and Petal.Width (inclusive). select(iris, -Species) Select all columns except Species. Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15 wwwwwwA1005A1013A1010A1010 devtools::install_github("rstudio/EDAWR") for data sets
  • 2. dplyr::group_by(iris, Species) Group data into rows with the same value of Species. dplyr::ungroup(iris) Remove grouping information from data frame. iris %>% group_by(Species) %>% summarise(…) Compute separate summary row for each group. Combine Data Sets Group Data Summarise Data Make New Variables ir ir C dplyr::summarise(iris, avg = mean(Sepal.Length)) Summarise data into single row of values. dplyr::summarise_each(iris, funs(mean)) Apply summary function to each column. dplyr::count(iris, Species, wt = Sepal.Length) Count number of rows with each unique value of variable (with or without weights). dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width) Compute and append one or more new columns. dplyr::mutate_each(iris, funs(min_rank)) Apply window function to each column. dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width) Compute one or more new columns. Drop original columns. Summarise uses summary functions, functions that take a vector of values and return a single value, such as: Mutate uses window functions, functions that take a vector of values and return another vector of values, such as: window function summary function dplyr::first First value of a vector. dplyr::last Last value of a vector. dplyr::nth Nth value of a vector. dplyr::n # of values in a vector. dplyr::n_distinct # of distinct values in a vector. IQR IQR of a vector. min Minimum value in a vector. max Maximum value in a vector. mean Mean value of a vector. median Median value of a vector. var Variance of a vector. sd Standard deviation of a vector. dplyr::lead Copy with values shifted by 1. dplyr::lag Copy with values lagged by 1. dplyr::dense_rank Ranks with no gaps. dplyr::min_rank Ranks. Ties get min rank. dplyr::percent_rank Ranks rescaled to [0, 1]. dplyr::row_number Ranks. Ties got to first value. dplyr::ntile Bin vector into n buckets. dplyr::between Are values between a and b? dplyr::cume_dist Cumulative distribution. dplyr::cumall Cumulative all dplyr::cumany Cumulative any dplyr::cummean Cumulative mean cumsum Cumulative sum cummax Cumulative max cummin Cumulative min cumprod Cumulative prod pmax Element-wise max pmin Element-wise min iris %>% group_by(Species) %>% mutate(…) Compute new variables by group. x1 x2 A 1 B 2 C 3 x1 x3 A T B F D T+ = x1 x2 x3 A 1 T B 2 F C 3 NA x1 x3 x2 A T 1 B F 2 D T NA x1 x2 x3 A 1 T B 2 F x1 x2 x3 A 1 T B 2 F C 3 NA D NA T x1 x2 A 1 B 2 C 3 x1 x2 B 2 C 3 D 4+ = x1 x2 B 2 C 3 x1 x2 A 1 B 2 C 3 D 4 x1 x2 A 1 x1 x2 A 1 B 2 C 3 B 2 C 3 D 4 x1 x2 x1 x2 A 1 B 2 B 2 C 3 C 3 D 4 Mutating Joins Filtering Joins Binding Set Operations dplyr::left_join(a, b, by = "x1") Join matching rows from b to a. a b dplyr::right_join(a, b, by = "x1") Join matching rows from a to b. dplyr::inner_join(a, b, by = "x1") Join data. Retain only rows in both sets. dplyr::full_join(a, b, by = "x1") Join data. Retain all values, all rows. x1 x2 A 1 B 2 x1 x2 C 3 y z dplyr::semi_join(a, b, by = "x1") All rows in a that have a match in b. dplyr::anti_join(a, b, by = "x1") All rows in a that do not have a match in b. dplyr::intersect(y, z) Rows that appear in both y and z. dplyr::union(y, z) Rows that appear in either or both y and z. dplyr::setdiff(y, z) Rows that appear in y but not z. dplyr::bind_rows(y, z) Append z to y as new rows. dplyr::bind_cols(y, z) Append z to y as new columns. Caution: matches rows by position. RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • [email protected] • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets