SlideShare a Scribd company logo
Alexander Hendorf
Databases for Data-Science
Alexander C. S. Hendorf
− Senior Consultant Information Technology
− Program Chair EuroPython, PyConDE & PyData Karlsruhe, 

EuroSciPy, PSF Managing Member
− PyData Frankfurt and PyData Südwest Organiser
− Program Committee Percona Live
− MongoDB Masters / MongoDB Certified DBA
− Speaker Europe & USA MongoDB World New York / San José,
PyCon Italy, CEBIT, BI Forum, IT-Tage FFM, PyData, PyParis,
PyCon UK, Budapest BI,….
ah@koenigsweg.com
@hendorf
Services
Data We guide our clients through development and implementation processes
of technologies and applications to analyse, evaluate and visualize
business data.
Strategy & Operations We advise SME, start-ups and public institutions on building efficient sales
structures, on process optimization and on business development.
Communication We provide sound communication strategies and creative campaigns to
communicate your content and messages authentically throughout all
channels.
Financial Service Technologies Our industry experts support clients in the financial sector in developing
powerful and compliant FinTech applications.
!
Let‘s get to know each other!
» What‘s your background?«
− Data scientist
− Database admin
− Curious Pythonista
− Consultant, decision maker (IT Executive, Consultant, Innovation
Manager, YouTube influencer) 
"
Let‘s get to know each other!
» What‘s your Experience in…«
− RDBSs
− none
− some
− a lot
− Hadoop et al.
− none
− some
− a lot
− NoSQL Systems 

without Hadoop et al.
− none
− some
− a lot
#
Let‘s get to know each other!
» What‘s are you looking for?«
− Integration for data science into existing ecosystems
− Learning about databases for data science projects
− General interest / curiosity
− Just killing time until PyFiorentina
− …?
Three Angles for Databases for Data Science
− Choosing a database for data science projects
− Evaluating an existing database for data science requirements
− How to integrate into an existing ecosystem
Databases for Data Science
$
„How deeply do data science &
data base understand each other?.“
$
Ask Google:
Data Scientist? Database Admin?
%#&'
()*+
,
Databases for Data Science
Databases for Data Science
https://xkcd.com/1838/
What are the Benefits of a Database for Data Science Anyway?
− Common source of data
− Avoiding redundancy (e.g. files)
− Persistence
− Optimized for handling and accessing data for decades
− Scalability
− Staying very close to the data
A Quick Recap on Database History
− 1960s, navigational DBMS (disks & drums)
− 1970s, relational DBMS
− 1980s, on the desktop
− 1990s, object-oriented
− 2000s, NoSQL
Relational Databases
− Records are organised into tables
− Rows of these table are identified by unique keys
− Data spans multiple tables, linked via ids
− Data is ideally normalised
− Data can be denormalized for performance
− Transactions are ACID [Atomic, Consistent , Isolated, Durable]
Databases for Data Science
https://xkcd.com/927/
Relational Databases Benefits
− Widely used and supported
− Normalized data
− Comprehensive querying via SQL language 

- though some differences between databases
− Well researched and optimized over decades
Databases for Data Science
Databases for Data Science
Databases for Data Science
Relational Databases Downsides
− Schemas are fixed and have to be pre-defined upfront (schema-first)
− Altering schema is not trivial
− Joining tables, depending on complexity, data volume may be costly,

also consider overhead understanding a schema with many tables
− Difficult to scale out
− Few data structures (tables, rows)
NoSQL Types
− Key-Value Store

simplest form of a NoSQL database (no big value for data science)
− Document databases (JSON style)

open schema

can handle complex data structures as arrays and list
− Wide column databases, most like relational DBs:

columns are not fixed, data is de-normalised, 

can handle complex data structures as arrays and lists
− Graph

network of connected entities linked by edges with properties, query on properties and links
NoSQL Databases Benefits
− No need to normalise data (schema-later)
− Maintain complex data structures
− Supports data sharding
− New ways to query
− Collections can be copied
NoSQL Databases Downsides
− Eventual Consistency (is this a real problem for data science at all?)
− Flexibility requires more responsibility (schema, attribute typos)
− Complexity
A Quick Bird’s Eye View
There are hundreds of databases around nowadays.
Let’s focus on the top database systems.
https://db-engines.com
NoSQL RDBMS
~10 years 40 years +
Points according to https://db-engines.com/de/ranking
Consistency Models of Databases
− A tomicity
− C onsistency
− I solation
− D urability
− B
− A asic Availability
− S oft-State
− E ventual consistency
Open Source Check
− Security
− Transparency
− Engaging Collaboration
− Quality
− Auditability
− Try Before You Buy (EE)
− Rule of Thumb: 

Open Software is way more
affordable than closed
* via vendors
Open Source Enterprise Editions
Oracle x +
MySQL +-?!? +
MicroSoft SQL Server +
PostgreSQL + +*
DB2 +
MongoDB + +
Redis + +*
Cassandra + +*
HBase + +*
Amazon DynamoDB DAAS
Neo4J + +
The Contenders
Type Chosen
PostgreSQL RDBMS Top OS RDBMS
MongoDB Document-store Top NoSQL (DS)
Cassandra Wide-column store Top NoSQL (WCS)
Neo4J Graph Top NoSQL (Graph)
Relational Database Management System
Dat
aba
se
Databases for Data Science
Cassandra
Graph Database
Gra
ph
https://neo4j.com/developer/guide-importing-data-and-etl/
Databases for Data Science
How Hard is it to Collect Data?
Data Collection, cleaning and
restructuring
Multiple data sources Data retention
PostgreSQL Depends on schema complexity Depends on schema complexity easy
MongoDB easy easy medium
Cassandra easy easy hard
Neo4J (easy) N/A easy
What about Data Types
enforced flexible enforceable
PostgreSQL yes (NoSQL feature) predefined
MongoDB possible yes yes
Cassandra yes untyped collection columns predefined
Neo4J (yes) N/A N/A
How Hard is it to Consolidate Data?
Linking Missing data Dirty data
Persisting cleaned
dataset
PostgreSQL built schema
pre-processing
recommended
pre-processing
recommended
easy
MongoDB easy (within db) flexible post-processing flexible post-processing easy
Cassandra partitioning hard hard easy
Neo4J yes* hard hard easy
How Hard is it to Write Queries Against These Databases?
Language Basic Queries Advanced Queries
PostgreSQL SQL easy hard
MongoDB MQL
query: easy
aggregation: medium
query: medium
aggregation: medium
Cassandra CSQL easy hard
Neo4J Cypher easy hard
How Hard is Querying to Learn?
Language Basic Queries Advanced Queries
PostgreSQL SQL easy hard
MongoDB MQL
query: easy
aggregation: easy
query: medium
aggregation: medium
Cassandra CSQL easy-medium hard
Neo4J Cypher medium hard
SQL Benefits and Downsides
− Common standard
− Long-established
− Mother of many others e.g. CSQL, ABAP,

Pig, SPARQL,…
− Set based logic
− Complexity increases fast
− Badly designed JOINs vs. performance
− Overhead understanding a large schema
− Set based logic
SELECT EmployeeID, FirstName, LastName, HireDate, City

FROM Employees

WHERE HireDate BETWEEN '1-june-1992' AND '15-december-1993'
SQL
SELECT A.SD1, B.ED1 FROM



(SELECT SD1, ROW_NUMBER() OVER (ORDER BY SD1) AS RN1 FROM (SELECT T1.Start_Date AS
SD1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1



LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2



ON T1.Start_Date=(T2.Start_Date+1)



ORDER BY T1.Start_Date) WHERE SD2 IS NULL) A



INNER JOIN



(SELECT ED1, ROW_NUMBER() OVER (ORDER BY ED1) AS RN2 FROM (SELECT T1.End_Date AS
ED1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1



LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2



ON T1.End_Date=(T2.Start_Date) ORDER BY T1.Start_Date) WHERE SD2 IS NULL) B



ON A.RN1=B.RN2



ORDER BY (B.ED1-A.SD1), A.SD1;
SELECT * FROM numberOfRequests

WHERE cluster = ‘cluster1’

AND date = ‘2015-06-05’

AND datacenter = 'US_WEST_COAST'

AND (hour, minute) IN ((14, 0), (15, 0));
Cassandra
MATCH (c:Customer {companyName:"Drachenblut Delikatessen"})

OPTIONAL MATCH (p:Product)<-[pu:PRODUCT]-(:Order)<-[:PURCHASED]-(c)

RETURN p.productName, toInt(sum(pu.unitPrice * pu.quantity)) AS volume

ORDER BY volume DESC;
Neo4J
pipeline = [
    {"$match": {"artistName": “Suppenstar"}},
    {"$sort": {„info.releaseDate: 1)])},
    {"$group": {
       "_id": {"$year": "$info.releaseDateEpoch"},
"count": {"$sum": "1}}},
    {"$project": {"year": "$_id.year", "count": 1}}},
]
MongoDB Aggregation Pipeline
Databases for Data Science
−$match
−$sort
−$limit
−$project
−$group
−$unwind
−$lookup
−WHERE | HAVING
−ORDER BY
−LIMIT
−SELECT
−GROUP BY
−(JOIN)
−LEFT OUTER JOIN
Aggregation Pipeline / SQL
How Hard is it to Run?
− Installation
− Maintenance
− Cleaning up
− Compacting
− Backup
− Replica (or continuous)
− File System backup
− Dump
Set-Up Maintenance Backup
PostgreSQL easy medium medium
MongoDB easy low
easy
(Replica / CS)
Cassandra easy intense
easy
(Replica)
Neo4J easy medium easy
How Hard is Run Analytics without Affecting Production Performance?
replica shard
PostgreSQL medium
medium

(if run on overnight backup)
MongoDB easy: hidden replica node
medium: hidden replica node with
shard-key
Cassandra
depends on number of nodes &
partitioning
depends on number of nodes &
partitioning
Neo4J medium medium
Collection
Shard1 Shard2 Shard3 Shard4
server-1 server-2 server-3 server-4
server
CollectionCollection
server server
Replica-Set
horizontal scaling: one primary + copies
Sharding
vertical scaling
split the data across nodes
one server - utilize multiple cpu + IO
"Micro-Sharding"
How Hard is it to Integrate into Existing Systems?
task type
PostgreSQL easy just an additional SQL database
MongoDB easy replica suggests multiple servers
Cassandra medium requires multiple servers
Neo4J easy just an additional database
How Hard is it to Access / Change These Systems (Authorization)?
User Auth Granularity
PostgreSQL Role-Model Field
MongoDB Role-Model Collection level
Cassandra Role-Model Table
Neo4J Fixed Roles Graph
How Hard is it to Add New Data?
Known attributes Unknown (ext.) data
PostgreSQL easy - medium medium - hard PostgreSQL also has a NoSQL feature
MongoDB easy easy
Cassandra easy easy
Neo4J easy N/A data needs to be graph
How Hard is it to Understand the Data Structure?
small system medium system extensive system
PostgreSQL easy medium (partitioned) hard
MongoDB easy easy easy - medium
Cassandra easy hard (highly partitioned) hard (highly partitioned)
Neo4J easy easy easy - medium
RowKey: john
=> (column=, value=, timestamp=1374683971220000)
=> (column=map1:doug, value='555-1579', timestamp=1374683971220000)
=> (column=map1:patricia, value='555-4326', timestamp=1374683971220000)
=> (column=list1:26017c10f48711e2801fdf9895e5d0f8, value='doug', timestamp=1374683971220000)
=> (column=list1:26017c12f48711e2801fdf9895e5d0f8, value='scott', timestamp=1374683971220000)
=> (column=set1:'patricia', value=, timestamp=1374683971220000) => (column=set1:'scott', value=,
timestamp=1374683971220000)
Cassandra
https://neo4j.com/blog/oscon-twitter-graph/
Neo4J
Relational Model Document Model
Databases for Data Science
https://neo4j.com/blog/neo4j-2-0-0-m06-introducing-neo4js-browser/
How Hard is it to Handle Growth?
read capacity
PostgreSQL medium advanced
MongoDB easy medium
Cassandra medium medium
Neo4J medium medium
Some More Use Cases for Databases in Data Science
− Storing model parameters (even models)
− Documenting experiments
− Collecting performance metrics of models
− …
Conclusion
− Analyse all your real needs and focus on those
− Chose an accessible, simple solution (don‘t reach out to high)
− Do not only focus on performance
− Try, play and test before making final decisions
− If you have a very specific use case go for the specialist system
− A good choice for general purpose is MongoDB
− If you work only on graphs use Neo4J
− If you have simple tables and know SQL got for a RDBMS
My Advise If You Are New in the Database Space.
− Document store is easy to understand and maintain
− Less querying overhead for multi-dimensional data
− Aggregation pipeline
− Grouping
− $relational (LO JOIN)
− $graphLookup
− Many built-in operators
− Easy install and replicate
− Compressed storage by default, in-memory avail.
− Learning at least Basic SQL and Set Theory is a MUST
− SQLAlchemy if you work with RDBMS
Thanks for Contributing
Databases for Data Science is still an actively discussed topic in the experts‘ community.
This presentation will be constantly updated.
Newer findings and updates will be added.
Stay informed:
Follow me on Twitter @hendorf or LinkedIn
Or drop me an email ah@koenigsweg.com
−Jens Dittrich, Professor bigdata.uni-saarland.de @jensdittrich
ah@koenigsweg.com
@hendorf
Thank you!
Q & A
Databases for Data Science
Ad

More Related Content

What's hot (20)

SQL vs. NoSQL Databases
SQL vs. NoSQL DatabasesSQL vs. NoSQL Databases
SQL vs. NoSQL Databases
Osama Jomaa
 
MYSQL
MYSQLMYSQL
MYSQL
Ankush Jain
 
Azure CosmosDb
Azure CosmosDbAzure CosmosDb
Azure CosmosDb
Marco Parenzan
 
SQL Queries
SQL QueriesSQL Queries
SQL Queries
Nilt1234
 
Chapter 5 Database Transaction Management
Chapter 5 Database Transaction ManagementChapter 5 Database Transaction Management
Chapter 5 Database Transaction Management
Eddyzulham Mahluzydde
 
SQL Database Performance Tuning for Developers
SQL Database Performance Tuning for DevelopersSQL Database Performance Tuning for Developers
SQL Database Performance Tuning for Developers
BRIJESH KUMAR
 
Activity Diagram
Activity DiagramActivity Diagram
Activity Diagram
Universitas Teknokrat Indonesia
 
NOSQL vs SQL
NOSQL vs SQLNOSQL vs SQL
NOSQL vs SQL
Mohammed Fazuluddin
 
An Introduction To Oracle Database
An Introduction To Oracle DatabaseAn Introduction To Oracle Database
An Introduction To Oracle Database
Meysam Javadi
 
SQL - Structured query language introduction
SQL - Structured query language introductionSQL - Structured query language introduction
SQL - Structured query language introduction
Smriti Jain
 
Oracle database introduction
Oracle database introductionOracle database introduction
Oracle database introduction
Mohammad Javad Beheshtian
 
Ms sql-server
Ms sql-serverMs sql-server
Ms sql-server
Md.Mojibul Hoque
 
Difference between star schema and snowflake schema
Difference between star schema and snowflake schemaDifference between star schema and snowflake schema
Difference between star schema and snowflake schema
Umar Ali
 
Date warehousing concepts
Date warehousing conceptsDate warehousing concepts
Date warehousing concepts
pcherukumalla
 
Sql Functions And Procedures
Sql Functions And ProceduresSql Functions And Procedures
Sql Functions And Procedures
DataminingTools Inc
 
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL databaseHBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
Edureka!
 
Uml
UmlUml
Uml
Vishwa Mohan
 
SQL Overview
SQL OverviewSQL Overview
SQL Overview
Stewart Rogers
 
Entity relationship diagram (erd)
Entity relationship diagram (erd)Entity relationship diagram (erd)
Entity relationship diagram (erd)
tameemyousaf
 
Alasql fast JavaScript in-memory SQL database
Alasql fast JavaScript in-memory SQL databaseAlasql fast JavaScript in-memory SQL database
Alasql fast JavaScript in-memory SQL database
Andrey Gershun
 
SQL vs. NoSQL Databases
SQL vs. NoSQL DatabasesSQL vs. NoSQL Databases
SQL vs. NoSQL Databases
Osama Jomaa
 
SQL Queries
SQL QueriesSQL Queries
SQL Queries
Nilt1234
 
Chapter 5 Database Transaction Management
Chapter 5 Database Transaction ManagementChapter 5 Database Transaction Management
Chapter 5 Database Transaction Management
Eddyzulham Mahluzydde
 
SQL Database Performance Tuning for Developers
SQL Database Performance Tuning for DevelopersSQL Database Performance Tuning for Developers
SQL Database Performance Tuning for Developers
BRIJESH KUMAR
 
An Introduction To Oracle Database
An Introduction To Oracle DatabaseAn Introduction To Oracle Database
An Introduction To Oracle Database
Meysam Javadi
 
SQL - Structured query language introduction
SQL - Structured query language introductionSQL - Structured query language introduction
SQL - Structured query language introduction
Smriti Jain
 
Difference between star schema and snowflake schema
Difference between star schema and snowflake schemaDifference between star schema and snowflake schema
Difference between star schema and snowflake schema
Umar Ali
 
Date warehousing concepts
Date warehousing conceptsDate warehousing concepts
Date warehousing concepts
pcherukumalla
 
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL databaseHBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
Edureka!
 
Entity relationship diagram (erd)
Entity relationship diagram (erd)Entity relationship diagram (erd)
Entity relationship diagram (erd)
tameemyousaf
 
Alasql fast JavaScript in-memory SQL database
Alasql fast JavaScript in-memory SQL databaseAlasql fast JavaScript in-memory SQL database
Alasql fast JavaScript in-memory SQL database
Andrey Gershun
 

Similar to Databases for Data Science (20)

Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
NoSQL_Night
NoSQL_NightNoSQL_Night
NoSQL_Night
Clarence J M Tauro
 
Cloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera Breakfast Series, Analytics Part 1: Use All Your DataCloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera, Inc.
 
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
Marcin Bielak
 
Introduction to asdfghjkln b vfgh n v
Introduction to asdfghjkln b vfgh n    vIntroduction to asdfghjkln b vfgh n    v
Introduction to asdfghjkln b vfgh n v
23mz02
 
managing big data
managing big datamanaging big data
managing big data
Suveeksha
 
Planning and Optimizing Data Lake Architecture - Milos Milovanovic
 Planning and Optimizing Data Lake Architecture - Milos Milovanovic Planning and Optimizing Data Lake Architecture - Milos Milovanovic
Planning and Optimizing Data Lake Architecture - Milos Milovanovic
Institute of Contemporary Sciences
 
Planing and optimizing data lake architecture
Planing and optimizing data lake architecturePlaning and optimizing data lake architecture
Planing and optimizing data lake architecture
Milos Milovanovic
 
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Facultad de Informática UCM
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Databricks
 
PostgreSQL as an Alternative to MSSQL
PostgreSQL as an Alternative to MSSQLPostgreSQL as an Alternative to MSSQL
PostgreSQL as an Alternative to MSSQL
Alexei Krasner
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Fontys Lecture - The Evolution of the Oracle Database 2016
Fontys Lecture -  The Evolution of the Oracle Database 2016Fontys Lecture -  The Evolution of the Oracle Database 2016
Fontys Lecture - The Evolution of the Oracle Database 2016
Lucas Jellema
 
2021 04-20 apache arrow and its impact on the database industry.pptx
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptx
Andrew Lamb
 
Microsoft Data Platform - What's included
Microsoft Data Platform - What's includedMicrosoft Data Platform - What's included
Microsoft Data Platform - What's included
James Serra
 
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
Felix Gessert
 
Evolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/SpecialistEvolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/Specialist
Tony Rogerson
 
CIKB - Software Architecture Analysis Design
CIKB - Software Architecture Analysis DesignCIKB - Software Architecture Analysis Design
CIKB - Software Architecture Analysis Design
Antonio Castellon
 
No sql and sql - open analytics summit
No sql and sql - open analytics summitNo sql and sql - open analytics summit
No sql and sql - open analytics summit
Open Analytics
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
Cloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera Breakfast Series, Analytics Part 1: Use All Your DataCloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera Breakfast Series, Analytics Part 1: Use All Your Data
Cloudera, Inc.
 
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
Marcin Bielak
 
Introduction to asdfghjkln b vfgh n v
Introduction to asdfghjkln b vfgh n    vIntroduction to asdfghjkln b vfgh n    v
Introduction to asdfghjkln b vfgh n v
23mz02
 
managing big data
managing big datamanaging big data
managing big data
Suveeksha
 
Planning and Optimizing Data Lake Architecture - Milos Milovanovic
 Planning and Optimizing Data Lake Architecture - Milos Milovanovic Planning and Optimizing Data Lake Architecture - Milos Milovanovic
Planning and Optimizing Data Lake Architecture - Milos Milovanovic
Institute of Contemporary Sciences
 
Planing and optimizing data lake architecture
Planing and optimizing data lake architecturePlaning and optimizing data lake architecture
Planing and optimizing data lake architecture
Milos Milovanovic
 
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Facultad de Informática UCM
 
Agile data lake? An oxymoron?
Agile data lake? An oxymoron?Agile data lake? An oxymoron?
Agile data lake? An oxymoron?
samthemonad
 
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Extending Apache Spark SQL Data Source APIs with Join Push Down with Ioana De...
Databricks
 
PostgreSQL as an Alternative to MSSQL
PostgreSQL as an Alternative to MSSQLPostgreSQL as an Alternative to MSSQL
PostgreSQL as an Alternative to MSSQL
Alexei Krasner
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Fontys Lecture - The Evolution of the Oracle Database 2016
Fontys Lecture -  The Evolution of the Oracle Database 2016Fontys Lecture -  The Evolution of the Oracle Database 2016
Fontys Lecture - The Evolution of the Oracle Database 2016
Lucas Jellema
 
2021 04-20 apache arrow and its impact on the database industry.pptx
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptx
Andrew Lamb
 
Microsoft Data Platform - What's included
Microsoft Data Platform - What's includedMicrosoft Data Platform - What's included
Microsoft Data Platform - What's included
James Serra
 
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
NoSQL Data Stores in Research and Practice - ICDE 2016 Tutorial - Extended Ve...
Felix Gessert
 
Evolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/SpecialistEvolution of the DBA to Data Platform Administrator/Specialist
Evolution of the DBA to Data Platform Administrator/Specialist
Tony Rogerson
 
CIKB - Software Architecture Analysis Design
CIKB - Software Architecture Analysis DesignCIKB - Software Architecture Analysis Design
CIKB - Software Architecture Analysis Design
Antonio Castellon
 
No sql and sql - open analytics summit
No sql and sql - open analytics summitNo sql and sql - open analytics summit
No sql and sql - open analytics summit
Open Analytics
 
Ad

More from Alexander Hendorf (12)

Deep Learning for Fun and Profit [PyConDE 2018]
Deep Learning for Fun and Profit [PyConDE 2018]Deep Learning for Fun and Profit [PyConDE 2018]
Deep Learning for Fun and Profit [PyConDE 2018]
Alexander Hendorf
 
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum MehrwertAgile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Alexander Hendorf
 
Einführung Datenanalyse mit Pandas [data2day]
Einführung Datenanalyse mit Pandas [data2day]Einführung Datenanalyse mit Pandas [data2day]
Einführung Datenanalyse mit Pandas [data2day]
Alexander Hendorf
 
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Alexander Hendorf
 
Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
Data Mangling with mongoDB the Right Way [PyData London] 2016]
Data Mangling with mongoDB the Right Way [PyData London] 2016]Data Mangling with mongoDB the Right Way [PyData London] 2016]
Data Mangling with mongoDB the Right Way [PyData London] 2016]
Alexander Hendorf
 
Introduction to Data Analtics with Pandas [PyCon Cz]
Introduction to Data Analtics with Pandas [PyCon Cz]Introduction to Data Analtics with Pandas [PyCon Cz]
Introduction to Data Analtics with Pandas [PyCon Cz]
Alexander Hendorf
 
NoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
NoSQL oder: Freiheit ist nicht schmerzfrei - IT TageNoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
NoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
Alexander Hendorf
 
Neat Analytics with Pandas 4 3 [PyParis]
Neat Analytics with Pandas 4 3 [PyParis]Neat Analytics with Pandas 4 3 [PyParis]
Neat Analytics with Pandas 4 3 [PyParis]
Alexander Hendorf
 
Data analysis and visualization with mongo db [mongodb world 2016]
Data analysis and visualization with mongo db [mongodb world 2016]Data analysis and visualization with mongo db [mongodb world 2016]
Data analysis and visualization with mongo db [mongodb world 2016]
Alexander Hendorf
 
Time travel and time series analysis with pandas + statsmodels
Time travel and time series analysis with pandas + statsmodelsTime travel and time series analysis with pandas + statsmodels
Time travel and time series analysis with pandas + statsmodels
Alexander Hendorf
 
Data mangling with mongo db the right way [pyconit 2016]
Data mangling with mongo db the right way [pyconit 2016]Data mangling with mongo db the right way [pyconit 2016]
Data mangling with mongo db the right way [pyconit 2016]
Alexander Hendorf
 
Deep Learning for Fun and Profit [PyConDE 2018]
Deep Learning for Fun and Profit [PyConDE 2018]Deep Learning for Fun and Profit [PyConDE 2018]
Deep Learning for Fun and Profit [PyConDE 2018]
Alexander Hendorf
 
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum MehrwertAgile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Alexander Hendorf
 
Einführung Datenanalyse mit Pandas [data2day]
Einführung Datenanalyse mit Pandas [data2day]Einführung Datenanalyse mit Pandas [data2day]
Einführung Datenanalyse mit Pandas [data2day]
Alexander Hendorf
 
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Introduction to Pandas and Time Series Analysis [Budapest BI Forum]
Alexander Hendorf
 
Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
Data Mangling with mongoDB the Right Way [PyData London] 2016]
Data Mangling with mongoDB the Right Way [PyData London] 2016]Data Mangling with mongoDB the Right Way [PyData London] 2016]
Data Mangling with mongoDB the Right Way [PyData London] 2016]
Alexander Hendorf
 
Introduction to Data Analtics with Pandas [PyCon Cz]
Introduction to Data Analtics with Pandas [PyCon Cz]Introduction to Data Analtics with Pandas [PyCon Cz]
Introduction to Data Analtics with Pandas [PyCon Cz]
Alexander Hendorf
 
NoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
NoSQL oder: Freiheit ist nicht schmerzfrei - IT TageNoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
NoSQL oder: Freiheit ist nicht schmerzfrei - IT Tage
Alexander Hendorf
 
Neat Analytics with Pandas 4 3 [PyParis]
Neat Analytics with Pandas 4 3 [PyParis]Neat Analytics with Pandas 4 3 [PyParis]
Neat Analytics with Pandas 4 3 [PyParis]
Alexander Hendorf
 
Data analysis and visualization with mongo db [mongodb world 2016]
Data analysis and visualization with mongo db [mongodb world 2016]Data analysis and visualization with mongo db [mongodb world 2016]
Data analysis and visualization with mongo db [mongodb world 2016]
Alexander Hendorf
 
Time travel and time series analysis with pandas + statsmodels
Time travel and time series analysis with pandas + statsmodelsTime travel and time series analysis with pandas + statsmodels
Time travel and time series analysis with pandas + statsmodels
Alexander Hendorf
 
Data mangling with mongo db the right way [pyconit 2016]
Data mangling with mongo db the right way [pyconit 2016]Data mangling with mongo db the right way [pyconit 2016]
Data mangling with mongo db the right way [pyconit 2016]
Alexander Hendorf
 
Ad

Recently uploaded (20)

Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 

Databases for Data Science

  • 2. Alexander C. S. Hendorf − Senior Consultant Information Technology − Program Chair EuroPython, PyConDE & PyData Karlsruhe, 
 EuroSciPy, PSF Managing Member − PyData Frankfurt and PyData Südwest Organiser − Program Committee Percona Live − MongoDB Masters / MongoDB Certified DBA − Speaker Europe & USA MongoDB World New York / San José, PyCon Italy, CEBIT, BI Forum, IT-Tage FFM, PyData, PyParis, PyCon UK, Budapest BI,…. [email protected] @hendorf
  • 3. Services Data We guide our clients through development and implementation processes of technologies and applications to analyse, evaluate and visualize business data. Strategy & Operations We advise SME, start-ups and public institutions on building efficient sales structures, on process optimization and on business development. Communication We provide sound communication strategies and creative campaigns to communicate your content and messages authentically throughout all channels. Financial Service Technologies Our industry experts support clients in the financial sector in developing powerful and compliant FinTech applications.
  • 4. ! Let‘s get to know each other! » What‘s your background?« − Data scientist − Database admin − Curious Pythonista − Consultant, decision maker (IT Executive, Consultant, Innovation Manager, YouTube influencer) 
  • 5. " Let‘s get to know each other! » What‘s your Experience in…« − RDBSs − none − some − a lot − Hadoop et al. − none − some − a lot − NoSQL Systems 
 without Hadoop et al. − none − some − a lot
  • 6. # Let‘s get to know each other! » What‘s are you looking for?« − Integration for data science into existing ecosystems − Learning about databases for data science projects − General interest / curiosity − Just killing time until PyFiorentina − …?
  • 7. Three Angles for Databases for Data Science − Choosing a database for data science projects − Evaluating an existing database for data science requirements − How to integrate into an existing ecosystem
  • 9. $ „How deeply do data science & data base understand each other?.“
  • 10. $ Ask Google: Data Scientist? Database Admin? %#&' ()*+ ,
  • 14. What are the Benefits of a Database for Data Science Anyway? − Common source of data − Avoiding redundancy (e.g. files) − Persistence − Optimized for handling and accessing data for decades − Scalability − Staying very close to the data
  • 15. A Quick Recap on Database History − 1960s, navigational DBMS (disks & drums) − 1970s, relational DBMS − 1980s, on the desktop − 1990s, object-oriented − 2000s, NoSQL
  • 16. Relational Databases − Records are organised into tables − Rows of these table are identified by unique keys − Data spans multiple tables, linked via ids − Data is ideally normalised − Data can be denormalized for performance − Transactions are ACID [Atomic, Consistent , Isolated, Durable]
  • 19. Relational Databases Benefits − Widely used and supported − Normalized data − Comprehensive querying via SQL language 
 - though some differences between databases − Well researched and optimized over decades
  • 23. Relational Databases Downsides − Schemas are fixed and have to be pre-defined upfront (schema-first) − Altering schema is not trivial − Joining tables, depending on complexity, data volume may be costly,
 also consider overhead understanding a schema with many tables − Difficult to scale out − Few data structures (tables, rows)
  • 24. NoSQL Types − Key-Value Store
 simplest form of a NoSQL database (no big value for data science) − Document databases (JSON style)
 open schema
 can handle complex data structures as arrays and list − Wide column databases, most like relational DBs:
 columns are not fixed, data is de-normalised, 
 can handle complex data structures as arrays and lists − Graph
 network of connected entities linked by edges with properties, query on properties and links
  • 25. NoSQL Databases Benefits − No need to normalise data (schema-later) − Maintain complex data structures − Supports data sharding − New ways to query − Collections can be copied
  • 26. NoSQL Databases Downsides − Eventual Consistency (is this a real problem for data science at all?) − Flexibility requires more responsibility (schema, attribute typos) − Complexity
  • 27. A Quick Bird’s Eye View There are hundreds of databases around nowadays. Let’s focus on the top database systems.
  • 29. NoSQL RDBMS ~10 years 40 years + Points according to https://db-engines.com/de/ranking
  • 30. Consistency Models of Databases − A tomicity − C onsistency − I solation − D urability − B − A asic Availability − S oft-State − E ventual consistency
  • 31. Open Source Check − Security − Transparency − Engaging Collaboration − Quality − Auditability − Try Before You Buy (EE) − Rule of Thumb: 
 Open Software is way more affordable than closed * via vendors Open Source Enterprise Editions Oracle x + MySQL +-?!? + MicroSoft SQL Server + PostgreSQL + +* DB2 + MongoDB + + Redis + +* Cassandra + +* HBase + +* Amazon DynamoDB DAAS Neo4J + +
  • 32. The Contenders Type Chosen PostgreSQL RDBMS Top OS RDBMS MongoDB Document-store Top NoSQL (DS) Cassandra Wide-column store Top NoSQL (WCS) Neo4J Graph Top NoSQL (Graph)
  • 33. Relational Database Management System Dat aba se
  • 38. How Hard is it to Collect Data? Data Collection, cleaning and restructuring Multiple data sources Data retention PostgreSQL Depends on schema complexity Depends on schema complexity easy MongoDB easy easy medium Cassandra easy easy hard Neo4J (easy) N/A easy
  • 39. What about Data Types enforced flexible enforceable PostgreSQL yes (NoSQL feature) predefined MongoDB possible yes yes Cassandra yes untyped collection columns predefined Neo4J (yes) N/A N/A
  • 40. How Hard is it to Consolidate Data? Linking Missing data Dirty data Persisting cleaned dataset PostgreSQL built schema pre-processing recommended pre-processing recommended easy MongoDB easy (within db) flexible post-processing flexible post-processing easy Cassandra partitioning hard hard easy Neo4J yes* hard hard easy
  • 41. How Hard is it to Write Queries Against These Databases? Language Basic Queries Advanced Queries PostgreSQL SQL easy hard MongoDB MQL query: easy aggregation: medium query: medium aggregation: medium Cassandra CSQL easy hard Neo4J Cypher easy hard
  • 42. How Hard is Querying to Learn? Language Basic Queries Advanced Queries PostgreSQL SQL easy hard MongoDB MQL query: easy aggregation: easy query: medium aggregation: medium Cassandra CSQL easy-medium hard Neo4J Cypher medium hard
  • 43. SQL Benefits and Downsides − Common standard − Long-established − Mother of many others e.g. CSQL, ABAP,
 Pig, SPARQL,… − Set based logic − Complexity increases fast − Badly designed JOINs vs. performance − Overhead understanding a large schema − Set based logic
  • 44. SELECT EmployeeID, FirstName, LastName, HireDate, City
 FROM Employees
 WHERE HireDate BETWEEN '1-june-1992' AND '15-december-1993' SQL
  • 45. SELECT A.SD1, B.ED1 FROM
 
 (SELECT SD1, ROW_NUMBER() OVER (ORDER BY SD1) AS RN1 FROM (SELECT T1.Start_Date AS SD1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1
 
 LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2
 
 ON T1.Start_Date=(T2.Start_Date+1)
 
 ORDER BY T1.Start_Date) WHERE SD2 IS NULL) A
 
 INNER JOIN
 
 (SELECT ED1, ROW_NUMBER() OVER (ORDER BY ED1) AS RN2 FROM (SELECT T1.End_Date AS ED1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1
 
 LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2
 
 ON T1.End_Date=(T2.Start_Date) ORDER BY T1.Start_Date) WHERE SD2 IS NULL) B
 
 ON A.RN1=B.RN2
 
 ORDER BY (B.ED1-A.SD1), A.SD1;
  • 46. SELECT * FROM numberOfRequests
 WHERE cluster = ‘cluster1’
 AND date = ‘2015-06-05’
 AND datacenter = 'US_WEST_COAST'
 AND (hour, minute) IN ((14, 0), (15, 0)); Cassandra
  • 47. MATCH (c:Customer {companyName:"Drachenblut Delikatessen"})
 OPTIONAL MATCH (p:Product)<-[pu:PRODUCT]-(:Order)<-[:PURCHASED]-(c)
 RETURN p.productName, toInt(sum(pu.unitPrice * pu.quantity)) AS volume
 ORDER BY volume DESC; Neo4J
  • 48. pipeline = [     {"$match": {"artistName": “Suppenstar"}},     {"$sort": {„info.releaseDate: 1)])},     {"$group": {        "_id": {"$year": "$info.releaseDateEpoch"}, "count": {"$sum": "1}}},     {"$project": {"year": "$_id.year", "count": 1}}}, ] MongoDB Aggregation Pipeline
  • 50. −$match −$sort −$limit −$project −$group −$unwind −$lookup −WHERE | HAVING −ORDER BY −LIMIT −SELECT −GROUP BY −(JOIN) −LEFT OUTER JOIN Aggregation Pipeline / SQL
  • 51. How Hard is it to Run? − Installation − Maintenance − Cleaning up − Compacting − Backup − Replica (or continuous) − File System backup − Dump Set-Up Maintenance Backup PostgreSQL easy medium medium MongoDB easy low easy (Replica / CS) Cassandra easy intense easy (Replica) Neo4J easy medium easy
  • 52. How Hard is Run Analytics without Affecting Production Performance? replica shard PostgreSQL medium medium
 (if run on overnight backup) MongoDB easy: hidden replica node medium: hidden replica node with shard-key Cassandra depends on number of nodes & partitioning depends on number of nodes & partitioning Neo4J medium medium
  • 53. Collection Shard1 Shard2 Shard3 Shard4 server-1 server-2 server-3 server-4 server CollectionCollection server server Replica-Set horizontal scaling: one primary + copies Sharding vertical scaling split the data across nodes one server - utilize multiple cpu + IO "Micro-Sharding"
  • 54. How Hard is it to Integrate into Existing Systems? task type PostgreSQL easy just an additional SQL database MongoDB easy replica suggests multiple servers Cassandra medium requires multiple servers Neo4J easy just an additional database
  • 55. How Hard is it to Access / Change These Systems (Authorization)? User Auth Granularity PostgreSQL Role-Model Field MongoDB Role-Model Collection level Cassandra Role-Model Table Neo4J Fixed Roles Graph
  • 56. How Hard is it to Add New Data? Known attributes Unknown (ext.) data PostgreSQL easy - medium medium - hard PostgreSQL also has a NoSQL feature MongoDB easy easy Cassandra easy easy Neo4J easy N/A data needs to be graph
  • 57. How Hard is it to Understand the Data Structure? small system medium system extensive system PostgreSQL easy medium (partitioned) hard MongoDB easy easy easy - medium Cassandra easy hard (highly partitioned) hard (highly partitioned) Neo4J easy easy easy - medium
  • 58. RowKey: john => (column=, value=, timestamp=1374683971220000) => (column=map1:doug, value='555-1579', timestamp=1374683971220000) => (column=map1:patricia, value='555-4326', timestamp=1374683971220000) => (column=list1:26017c10f48711e2801fdf9895e5d0f8, value='doug', timestamp=1374683971220000) => (column=list1:26017c12f48711e2801fdf9895e5d0f8, value='scott', timestamp=1374683971220000) => (column=set1:'patricia', value=, timestamp=1374683971220000) => (column=set1:'scott', value=, timestamp=1374683971220000) Cassandra
  • 63. How Hard is it to Handle Growth? read capacity PostgreSQL medium advanced MongoDB easy medium Cassandra medium medium Neo4J medium medium
  • 64. Some More Use Cases for Databases in Data Science − Storing model parameters (even models) − Documenting experiments − Collecting performance metrics of models − …
  • 65. Conclusion − Analyse all your real needs and focus on those − Chose an accessible, simple solution (don‘t reach out to high) − Do not only focus on performance − Try, play and test before making final decisions − If you have a very specific use case go for the specialist system − A good choice for general purpose is MongoDB − If you work only on graphs use Neo4J − If you have simple tables and know SQL got for a RDBMS
  • 66. My Advise If You Are New in the Database Space. − Document store is easy to understand and maintain − Less querying overhead for multi-dimensional data − Aggregation pipeline − Grouping − $relational (LO JOIN) − $graphLookup − Many built-in operators − Easy install and replicate − Compressed storage by default, in-memory avail. − Learning at least Basic SQL and Set Theory is a MUST − SQLAlchemy if you work with RDBMS
  • 67. Thanks for Contributing Databases for Data Science is still an actively discussed topic in the experts‘ community. This presentation will be constantly updated. Newer findings and updates will be added. Stay informed: Follow me on Twitter @hendorf or LinkedIn Or drop me an email [email protected] −Jens Dittrich, Professor bigdata.uni-saarland.de @jensdittrich