SlideShare a Scribd company logo
WIFI SSID:SparkAISummit | Password: UnifiedAnalytics
Garren Staubli
Solutions Architect
Databricks + Snowflake:
Catalyzing Data and AI
#UnifiedAnalytics #SparkAISummit
Slides & Resources: garrens.com/DataSnowCat
garren@databricks.com | @gstaubli
Agenda
3#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Introductions
Scenario
Challenges
Solutions
Demo
4#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Introductions - Me
2011 2012 2013 2014 2015 2016 2017 2018 2019
MySQL
Ruby
AWS
Pig & Hive
Python
Linux
Scala, Python & Java
Apache Spark & ML
Hadoop
NoSQL
Databricks Delta
Databricks Workspace
Collaborative Notebooks, Production Jobs
Databricks Runtime
Transactions Indexing
ML FrameworksML Frameworks
Introductions - Databricks
Cloud
Data & ML
Lifecycle
Data Engineering Data Science
Accelerate innovation by unifying data science and engineering
6#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Introductions - Snowflake
7#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Forget Oil. Data is worth
more than Gold
8#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Scenario
9#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Data Mining Data Science ML Engineering
QADevOps
Production
Delivery*
* not Digiorno
Scenario - Annotated
10#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Scenario - Reality
11#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges
WAREHOUSES NOSQL
LAKES STREAMS
Sources
APIs Apps BI
Data-Driven
Production
12#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges - Reality
Partitions: 20
Rows per second: 10,000
Format: JSON
Extract Transform
ML
Load
Analysis
Insights
Flat, RDBMS, Streams, etc
Unified batch & stream APIs
Autoscaling with usage
Python, Scala, SQL, R & Java
JVM w/ optimization
Multilevel APIs (SQL + RDDs)
13#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges & Solutions - ETL
Partitions: 20
Rows per second: 10,000
Format: JSON
Sources
Syntax
Scale
Languages
Performance
Expressiveness
14#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges & Solutions - ETL
Partitions: 20
Rows per second: 10,000
Format: JSON
Malformed Records
Errors
Changing Fields
Writes
- Performance
- Semantics
- Reliability
Ignore/infer + log records
Handle + retry w/ checkpoint
Schema Evolution
Partitioned + optimized files
Exactly once
ACID transactions
15#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges & Solutions - ML
Partitions: 20
Rows per second: 10,000
Format: JSON
Data Access
Syntax
Collaboration
Models
- Iteration
- Reproducibility
- Deployment
Apache Spark + Delta
Koalas
Databricks Notebooks
- Tracking
- Projects
- Models
Interactive queries
Instant Scaling
SQL
Tableau, PowerBI, etc
Optimized DWaaS
Decoupled storage + compute
16#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Challenges & Solutions - Analysis
Partitions: 20
Rows per second: 10,000
Format: JSON
Time to value
Intermittent demand
Language
Common Tooling
Ease of Use
Cost control
17#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Final Solution Architecture
Partitions: 20
Rows per second: 10,000
Format: JSON
Machine Learning
BI Reporting
Dashboards
18#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Demo
Review
19#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Introductions
Scenario
Challenges
Solutions
Demo
20#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat
Solution
WAREHOUSES NOSQL
LAKES STREAMS
Sources
Processing
WAREHOUSES NOSQL
BI
Persistence
APIs Apps BI
LAKES
DELTA
Integration
DELTA
ML
DON’T FORGET TO RATE
AND REVIEW THE SESSIONS
SEARCH SPARK + AI SUMMIT
Databricks + Snowflake: Catalyzing Data and AI Initiatives
Ad

More Related Content

What's hot (20)

Building Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft AzureBuilding Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft Azure
Dmitry Anoshin
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure Databricks
James Serra
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
Databricks
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Cathrine Wilhelmsen
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
AWS VS AZURE VS GCP.pptx
AWS VS AZURE VS GCP.pptxAWS VS AZURE VS GCP.pptx
AWS VS AZURE VS GCP.pptx
Raneesh Ramesan
 
Snowflake Datawarehouse Architecturing
Snowflake Datawarehouse ArchitecturingSnowflake Datawarehouse Architecturing
Snowflake Datawarehouse Architecturing
Ishan Bhawantha Hewanayake
 
The Top 5 Apache Kafka Use Cases and Architectures in 2022
The Top 5 Apache Kafka Use Cases and Architectures in 2022The Top 5 Apache Kafka Use Cases and Architectures in 2022
The Top 5 Apache Kafka Use Cases and Architectures in 2022
Kai Wähner
 
Introduction to Azure Data Lake
Introduction to Azure Data LakeIntroduction to Azure Data Lake
Introduction to Azure Data Lake
Antonios Chatzipavlis
 
Delta lake and the delta architecture
Delta lake and the delta architectureDelta lake and the delta architecture
Delta lake and the delta architecture
Adam Doyle
 
SQL to Azure Migrations
SQL to Azure MigrationsSQL to Azure Migrations
SQL to Azure Migrations
Datavail
 
NOVA SQL User Group - Azure Synapse Analytics Overview - May 2020
NOVA SQL User Group - Azure Synapse Analytics Overview -  May 2020NOVA SQL User Group - Azure Synapse Analytics Overview -  May 2020
NOVA SQL User Group - Azure Synapse Analytics Overview - May 2020
Timothy McAliley
 
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Kai Wähner
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
James Serra
 
Snowflake Architecture.pptx
Snowflake Architecture.pptxSnowflake Architecture.pptx
Snowflake Architecture.pptx
chennakesava44
 
Free Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a Lakehouse
Databricks
 
Migrate to Microsoft Azure with Confidence
Migrate to Microsoft Azure with ConfidenceMigrate to Microsoft Azure with Confidence
Migrate to Microsoft Azure with Confidence
David J Rosenthal
 
Modern Data architecture Design
Modern Data architecture DesignModern Data architecture Design
Modern Data architecture Design
Kujambu Murugesan
 
Owning Your Own (Data) Lake House
Owning Your Own (Data) Lake HouseOwning Your Own (Data) Lake House
Owning Your Own (Data) Lake House
Data Con LA
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to Mesh
Jeffrey T. Pollock
 
Building Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft AzureBuilding Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft Azure
Dmitry Anoshin
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure Databricks
James Serra
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
Databricks
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Cathrine Wilhelmsen
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
AWS VS AZURE VS GCP.pptx
AWS VS AZURE VS GCP.pptxAWS VS AZURE VS GCP.pptx
AWS VS AZURE VS GCP.pptx
Raneesh Ramesan
 
The Top 5 Apache Kafka Use Cases and Architectures in 2022
The Top 5 Apache Kafka Use Cases and Architectures in 2022The Top 5 Apache Kafka Use Cases and Architectures in 2022
The Top 5 Apache Kafka Use Cases and Architectures in 2022
Kai Wähner
 
Delta lake and the delta architecture
Delta lake and the delta architectureDelta lake and the delta architecture
Delta lake and the delta architecture
Adam Doyle
 
SQL to Azure Migrations
SQL to Azure MigrationsSQL to Azure Migrations
SQL to Azure Migrations
Datavail
 
NOVA SQL User Group - Azure Synapse Analytics Overview - May 2020
NOVA SQL User Group - Azure Synapse Analytics Overview -  May 2020NOVA SQL User Group - Azure Synapse Analytics Overview -  May 2020
NOVA SQL User Group - Azure Synapse Analytics Overview - May 2020
Timothy McAliley
 
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Kai Wähner
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
James Serra
 
Snowflake Architecture.pptx
Snowflake Architecture.pptxSnowflake Architecture.pptx
Snowflake Architecture.pptx
chennakesava44
 
Free Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a Lakehouse
Databricks
 
Migrate to Microsoft Azure with Confidence
Migrate to Microsoft Azure with ConfidenceMigrate to Microsoft Azure with Confidence
Migrate to Microsoft Azure with Confidence
David J Rosenthal
 
Modern Data architecture Design
Modern Data architecture DesignModern Data architecture Design
Modern Data architecture Design
Kujambu Murugesan
 
Owning Your Own (Data) Lake House
Owning Your Own (Data) Lake HouseOwning Your Own (Data) Lake House
Owning Your Own (Data) Lake House
Data Con LA
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to Mesh
Jeffrey T. Pollock
 

Similar to Databricks + Snowflake: Catalyzing Data and AI Initiatives (20)

From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
Databricks
 
Architecting an Open Source AI Platform 2018 edition
Architecting an Open Source AI Platform   2018 editionArchitecting an Open Source AI Platform   2018 edition
Architecting an Open Source AI Platform 2018 edition
David Talby
 
Azure Databricks - An Introduction 2019 Roadshow.pptx
Azure Databricks - An Introduction 2019 Roadshow.pptxAzure Databricks - An Introduction 2019 Roadshow.pptx
Azure Databricks - An Introduction 2019 Roadshow.pptx
pascalsegoul
 
Lambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Lambda Architecture in the Cloud with Azure Databricks with Andrei VaranovichLambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Lambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Databricks
 
What's New in Upcoming Apache Spark 2.3
What's New in Upcoming Apache Spark 2.3What's New in Upcoming Apache Spark 2.3
What's New in Upcoming Apache Spark 2.3
Databricks
 
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Michael Rys
 
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Ivan Donev
 
Dev Ops Training
Dev Ops TrainingDev Ops Training
Dev Ops Training
Spark Summit
 
MongoDB and Azure Databricks
MongoDB and Azure DatabricksMongoDB and Azure Databricks
MongoDB and Azure Databricks
MongoDB
 
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Databricks
 
Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Data scientist vs Cloud engineer: who wins ? - 2024-09-19Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Alessandra Bilardi
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Paco Nathan
 
2018 02-08-what's-new-in-apache-spark-2.3
2018 02-08-what's-new-in-apache-spark-2.3 2018 02-08-what's-new-in-apache-spark-2.3
2018 02-08-what's-new-in-apache-spark-2.3
Chester Chen
 
Managing data analytics in a hybrid cloud
Managing data analytics in a hybrid cloudManaging data analytics in a hybrid cloud
Managing data analytics in a hybrid cloud
Karan Singh
 
Stargate, the gateway for some multi-models data API
Stargate, the gateway for some multi-models data APIStargate, the gateway for some multi-models data API
Stargate, the gateway for some multi-models data API
Data Con LA
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Anant Corporation
 
Austin Data Meetup 092014 - Spark
Austin Data Meetup 092014 - SparkAustin Data Meetup 092014 - Spark
Austin Data Meetup 092014 - Spark
Steve Blackmon
 
Deploying Data Science Engines to Production
Deploying Data Science Engines to ProductionDeploying Data Science Engines to Production
Deploying Data Science Engines to Production
Mostafa Majidpour
 
The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019
Amit Banerjee
 
Big data knolx
Big data knolxBig data knolx
Big data knolx
Knoldus Inc.
 
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
Databricks
 
Architecting an Open Source AI Platform 2018 edition
Architecting an Open Source AI Platform   2018 editionArchitecting an Open Source AI Platform   2018 edition
Architecting an Open Source AI Platform 2018 edition
David Talby
 
Azure Databricks - An Introduction 2019 Roadshow.pptx
Azure Databricks - An Introduction 2019 Roadshow.pptxAzure Databricks - An Introduction 2019 Roadshow.pptx
Azure Databricks - An Introduction 2019 Roadshow.pptx
pascalsegoul
 
Lambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Lambda Architecture in the Cloud with Azure Databricks with Andrei VaranovichLambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Lambda Architecture in the Cloud with Azure Databricks with Andrei Varanovich
Databricks
 
What's New in Upcoming Apache Spark 2.3
What's New in Upcoming Apache Spark 2.3What's New in Upcoming Apache Spark 2.3
What's New in Upcoming Apache Spark 2.3
Databricks
 
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...
Michael Rys
 
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019Discovery Day 2019 Sofia - What is new in SQL Server 2019
Discovery Day 2019 Sofia - What is new in SQL Server 2019
Ivan Donev
 
MongoDB and Azure Databricks
MongoDB and Azure DatabricksMongoDB and Azure Databricks
MongoDB and Azure Databricks
MongoDB
 
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Building an Enterprise Data Platform with Azure Databricks to Enable Machine ...
Databricks
 
Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Data scientist vs Cloud engineer: who wins ? - 2024-09-19Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Data scientist vs Cloud engineer: who wins ? - 2024-09-19
Alessandra Bilardi
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Paco Nathan
 
2018 02-08-what's-new-in-apache-spark-2.3
2018 02-08-what's-new-in-apache-spark-2.3 2018 02-08-what's-new-in-apache-spark-2.3
2018 02-08-what's-new-in-apache-spark-2.3
Chester Chen
 
Managing data analytics in a hybrid cloud
Managing data analytics in a hybrid cloudManaging data analytics in a hybrid cloud
Managing data analytics in a hybrid cloud
Karan Singh
 
Stargate, the gateway for some multi-models data API
Stargate, the gateway for some multi-models data APIStargate, the gateway for some multi-models data API
Stargate, the gateway for some multi-models data API
Data Con LA
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Anant Corporation
 
Austin Data Meetup 092014 - Spark
Austin Data Meetup 092014 - SparkAustin Data Meetup 092014 - Spark
Austin Data Meetup 092014 - Spark
Steve Blackmon
 
Deploying Data Science Engines to Production
Deploying Data Science Engines to ProductionDeploying Data Science Engines to Production
Deploying Data Science Engines to Production
Mostafa Majidpour
 
The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019The Roadmap for SQL Server 2019
The Roadmap for SQL Server 2019
Amit Banerjee
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Ad

Recently uploaded (20)

Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 

Databricks + Snowflake: Catalyzing Data and AI Initiatives

  • 1. WIFI SSID:SparkAISummit | Password: UnifiedAnalytics
  • 2. Garren Staubli Solutions Architect Databricks + Snowflake: Catalyzing Data and AI #UnifiedAnalytics #SparkAISummit Slides & Resources: garrens.com/DataSnowCat [email protected] | @gstaubli
  • 3. Agenda 3#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Introductions Scenario Challenges Solutions Demo
  • 4. 4#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Introductions - Me 2011 2012 2013 2014 2015 2016 2017 2018 2019 MySQL Ruby AWS Pig & Hive Python Linux Scala, Python & Java Apache Spark & ML Hadoop NoSQL
  • 5. Databricks Delta Databricks Workspace Collaborative Notebooks, Production Jobs Databricks Runtime Transactions Indexing ML FrameworksML Frameworks Introductions - Databricks Cloud Data & ML Lifecycle Data Engineering Data Science Accelerate innovation by unifying data science and engineering
  • 6. 6#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Introductions - Snowflake
  • 7. 7#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Forget Oil. Data is worth more than Gold
  • 8. 8#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Scenario
  • 9. 9#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Data Mining Data Science ML Engineering QADevOps Production Delivery* * not Digiorno Scenario - Annotated
  • 10. 10#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Scenario - Reality
  • 11. 11#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges WAREHOUSES NOSQL LAKES STREAMS Sources APIs Apps BI Data-Driven Production
  • 12. 12#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges - Reality Partitions: 20 Rows per second: 10,000 Format: JSON Extract Transform ML Load Analysis Insights
  • 13. Flat, RDBMS, Streams, etc Unified batch & stream APIs Autoscaling with usage Python, Scala, SQL, R & Java JVM w/ optimization Multilevel APIs (SQL + RDDs) 13#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges & Solutions - ETL Partitions: 20 Rows per second: 10,000 Format: JSON Sources Syntax Scale Languages Performance Expressiveness
  • 14. 14#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges & Solutions - ETL Partitions: 20 Rows per second: 10,000 Format: JSON Malformed Records Errors Changing Fields Writes - Performance - Semantics - Reliability Ignore/infer + log records Handle + retry w/ checkpoint Schema Evolution Partitioned + optimized files Exactly once ACID transactions
  • 15. 15#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges & Solutions - ML Partitions: 20 Rows per second: 10,000 Format: JSON Data Access Syntax Collaboration Models - Iteration - Reproducibility - Deployment Apache Spark + Delta Koalas Databricks Notebooks - Tracking - Projects - Models
  • 16. Interactive queries Instant Scaling SQL Tableau, PowerBI, etc Optimized DWaaS Decoupled storage + compute 16#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Challenges & Solutions - Analysis Partitions: 20 Rows per second: 10,000 Format: JSON Time to value Intermittent demand Language Common Tooling Ease of Use Cost control
  • 17. 17#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Final Solution Architecture Partitions: 20 Rows per second: 10,000 Format: JSON Machine Learning BI Reporting Dashboards
  • 18. 18#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Demo
  • 19. Review 19#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Introductions Scenario Challenges Solutions Demo
  • 20. 20#UnifiedAnalytics #SparkAISummit | Slides & Resources: garrens.com/DataSnowCat Solution WAREHOUSES NOSQL LAKES STREAMS Sources Processing WAREHOUSES NOSQL BI Persistence APIs Apps BI LAKES DELTA Integration DELTA ML
  • 21. DON’T FORGET TO RATE AND REVIEW THE SESSIONS SEARCH SPARK + AI SUMMIT