SlideShare a Scribd company logo
330
B.Tech / M.Tech (Integrated) Programmes-Regulations 2021-Volume-20-Common Courses-Syllabi-Control Copy
Course
Code
21CSS303T
Course
Name
DATA SCIENCE
Course
Category
S ENGINEERING SCIENCES
L T P C
2 0 0 2
Pre-requisite
Courses
Nil
Co- requisite
Courses
Nil
Progressive
Courses
Nil
Course Offering Department Data Science and Business Systems Data Book / Codes / Standards Nil
Course Learning Rationale (CLR): The purpose of learning this course is to: Program Outcomes (PO) Program
Specific
Outcomes
CLR-1: understand the basics of data 1 2 3 4 5 6 7 8 9 10 11 12
CLR-2: learn the Pandas library to analyze data frames
Engineering
Knowledge
Problem
Analysis
Design/development
of
solutions
Conduct
investigations
of
complex
problems
Modern
Tool
Usage
The
engineer
and
society
Environment
&
Sustainability
Ethics
Individual
&
Team
Work
Communication
Project
Mgt.
&
Finance
Life
Long
Learning
PSO-1
PSO-2
PSO-3
CLR-3: utilize different methods of data acquisition and data cleaning
CLR-4: explore the visualization tools for different kinds of input data formats
CLR-5:
apply supervised and unsupervised learning to learn the hidden patterns from the data and predict the
output
Course Outcomes (CO): At the end of this course, learners will be able to:
CO-1: understand the relationship between data - - - - 1 - - - - - - - - - -
CO-2: identify the different data structures to represent data - - - - 1 - - - - - - - - - -
CO-3: identify data manipulation and cleaning techniques using pandas - - - - 1 - - - - - - - - - -
CO-4: constructs the Graphs and plots to represent the data using python packages - - - - 1 - - - - - - - - - -
CO-5:
apply the principles of the data science techniques to predict and forecast the outcome of real-world
problem
- - - - 1 - - - - - - - - - -
Unit-1 - Introduction to Data Science, Numpy and Pandas 10 Hour
Introduction to Data science: Facets of data, Data Science Process Introduction to Numpy: Numpy, creating array, attributes, Numpy Arrays objects: Creating Arrays, basic operations (Array Join, split, search, sort),
Indexing, Slicing and iterating, copying arrays, Arrays shape manipulation, Identity array, eye function Pandas: Exploring Data using Series, Exploring Data using DataFrames, Index objects, Re index, Drop Entry,
Selecting Entries, Data Alignment, Rank and Sort, Summary Statistics, Index Hierarchy Data Acquisition: Gather information from different sources, Web APIs, Open Data Sources, Web Scrapping.
Unit-2 - Data Wrangling, Data Cleaning and Preparation 10 Hour
Data Handling: Problem faced when handling large data-General techniques for handling large volume of data- General programming tips for dealing large data sets Data Wrangling: Clean, Transform, Merge,
Reshape: Combining and Merging Datasets, Merging on Index, Concatenate, Combining with overlap, Reshaping, Pivoting Data Cleaning and Preparation: Handling Missing Data, Data Transformation, String
Manipulation, summarizing, Binning, classing and Standardization, outlier/Noise& Anomalies.
Unit-3 - Visualization 10 Hour
Customizing Plots: Introduction to Matplotlib, Plots, making subplots, controlling axes, Ticks, Labels and legends, annotations and drawing on subplots, saving plots to files, matplotlib configuration using different
plot styles, Seaborn library. Making sense of data through advanced visualization: Controlling line properties of chart, creating multiple plots, Scatter plot, Line plot, bar plot, Histogram, Box plot, Pair plot, playing
with text, styling your plot, 3d plot of surface
331
B.Tech / M.Tech (Integrated) Programmes-Regulations 2021-Volume-20-Common Courses-Syllabi-Control Copy
Learning
Resources
1. Grus, J. (2019). Data Science from Scratch, 2nd Edition. O'Reilly Media, Inc.
2. Jiawei Han, Micheline Kamber and Jian Pei (2012), Data Mining Concepts and
Techniques, Third Edition, Elsevier.
3. Davy Cielen, Arno D. B. Meysman, and Mohamed Ali (2016), Introducing Data Science:
Big data, machine learning, and more, using Python tools, Manning Publications.
4. McKinney, W. (2018). Python for data analysis: Data wrangling with pandas, NumPy,
and IPython. O'Reilly Media, Inc.
5. Vanderplas, J. T. (2017). Python data science handbook: Essential tools for working with data.
O'Reilly Media, Inc.
6. Jeffrey S. Saltz and Jeffrey M. Stanton (2018), An Introduction to Data Science, Sage Publication.
7. Shai Vaingast (2014), “Beginning Python Visualization Crafting Visual Transformation Scripts”,
Second Edition, Apress.
8. Wes Mc Kinney (2012). “Python for Data Analysis”, O'Reilly Media.
Learning Assessment
Bloom’s
Level of Thinking
Continuous Learning Assessment (CLA)
Summative
Final Examination
(40% weightage)
Formative
CLA-1 Average of unit test
(50%)
Life-Long Learning
CLA-2
(10%)
Theory Practice Theory Practice Theory Practice
Level 1 Remember 40% - 20% - 40% -
Level 2 Understand 40% - 20% - 40% -
Level 3 Apply 10% - 20% - 10% -
Level 4 Analyze 10% - 20% - 10% -
Level 5 Evaluate - - 10% - - -
Level 6 Create - - 10% - - -
Total 100 % 100 % 100 %
Course Designers
Experts from Industry Experts from Higher Technical Institutions Internal Experts
1. Dr. Veeramanickam. M.R.M, Associate Professor
Chitkara University Institute of Engineering and Technology
1. Mr. Snehith Allam Raju Senior Manager Advanced Analytics
& Architecture Envista Holdings Corporation, Hyderabad.
1. Dr.V.Kalpana, SRMIST
2. Dr.G.Vadivu, SRMIST
Ad

More Related Content

Similar to Datascience syllabus covers datascience topics (20)

Ci2004-10.doc
Ci2004-10.docCi2004-10.doc
Ci2004-10.doc
butest
 
CSE NEW_4th yr w.e.f. 2018-19.pdf
CSE NEW_4th yr w.e.f. 2018-19.pdfCSE NEW_4th yr w.e.f. 2018-19.pdf
CSE NEW_4th yr w.e.f. 2018-19.pdf
ssuser5a7261
 
Data Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notesData Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notes
asnaparveen414
 
01Intro.ppt data analytics r language slide 1
01Intro.ppt data analytics r language  slide 101Intro.ppt data analytics r language  slide 1
01Intro.ppt data analytics r language slide 1
MuhammadjunaidgulMuh1
 
Cse 8th sem syllabus
Cse 8th sem syllabusCse 8th sem syllabus
Cse 8th sem syllabus
Akshatha Nair
 
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
dimpuk1
 
A New Paradigm on Analytic-Driven Information and Automation V2.pdf
A New Paradigm on Analytic-Driven Information and Automation V2.pdfA New Paradigm on Analytic-Driven Information and Automation V2.pdf
A New Paradigm on Analytic-Driven Information and Automation V2.pdf
ArmyTrilidiaDevegaSK
 
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
HendraPerdana7
 
DATA MINING: INTRODUCTION TO DATA MINING
DATA MINING: INTRODUCTION TO DATA MININGDATA MINING: INTRODUCTION TO DATA MINING
DATA MINING: INTRODUCTION TO DATA MINING
oceanchaudhary2004
 
FDS_dept_ppt.pptx
FDS_dept_ppt.pptxFDS_dept_ppt.pptx
FDS_dept_ppt.pptx
SatyajitPatil42
 
Semester V-converted.pdf
Semester V-converted.pdfSemester V-converted.pdf
Semester V-converted.pdf
GayathriRHICETCSESTA
 
isd314-01
isd314-01isd314-01
isd314-01
Anung Ariwibowo
 
Dwdm
DwdmDwdm
Dwdm
solairajAnandappan
 
Data-centric AI and the convergence of data and model engineering: opportunit...
Data-centric AI and the convergence of data and model engineering:opportunit...Data-centric AI and the convergence of data and model engineering:opportunit...
Data-centric AI and the convergence of data and model engineering: opportunit...
Paolo Missier
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 
Data science syllabus
Data science syllabusData science syllabus
Data science syllabus
anoop bk
 
Big Data Analytics Lecture notes pdf notes
Big Data Analytics Lecture notes pdf notesBig Data Analytics Lecture notes pdf notes
Big Data Analytics Lecture notes pdf notes
cseshahinfatima
 
Open elective iii & iv list 2021 22
Open elective iii & iv list 2021 22Open elective iii & iv list 2021 22
Open elective iii & iv list 2021 22
pcjoshi02
 
dataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptxdataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptx
NagendraK18
 
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptxDWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
KVIJAYKUMAR29
 
Ci2004-10.doc
Ci2004-10.docCi2004-10.doc
Ci2004-10.doc
butest
 
CSE NEW_4th yr w.e.f. 2018-19.pdf
CSE NEW_4th yr w.e.f. 2018-19.pdfCSE NEW_4th yr w.e.f. 2018-19.pdf
CSE NEW_4th yr w.e.f. 2018-19.pdf
ssuser5a7261
 
Data Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notesData Mining mod1 ppt.pdf bca sixth semester notes
Data Mining mod1 ppt.pdf bca sixth semester notes
asnaparveen414
 
01Intro.ppt data analytics r language slide 1
01Intro.ppt data analytics r language  slide 101Intro.ppt data analytics r language  slide 1
01Intro.ppt data analytics r language slide 1
MuhammadjunaidgulMuh1
 
Cse 8th sem syllabus
Cse 8th sem syllabusCse 8th sem syllabus
Cse 8th sem syllabus
Akshatha Nair
 
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
3RD B.TECH-DATAMINING-INTRODUCTION-UNIT1 .ppt
dimpuk1
 
A New Paradigm on Analytic-Driven Information and Automation V2.pdf
A New Paradigm on Analytic-Driven Information and Automation V2.pdfA New Paradigm on Analytic-Driven Information and Automation V2.pdf
A New Paradigm on Analytic-Driven Information and Automation V2.pdf
ArmyTrilidiaDevegaSK
 
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
01Intro.ppt data mining dahauuehuwhuwrwhrurhuqhuahura
HendraPerdana7
 
DATA MINING: INTRODUCTION TO DATA MINING
DATA MINING: INTRODUCTION TO DATA MININGDATA MINING: INTRODUCTION TO DATA MINING
DATA MINING: INTRODUCTION TO DATA MINING
oceanchaudhary2004
 
Data-centric AI and the convergence of data and model engineering: opportunit...
Data-centric AI and the convergence of data and model engineering:opportunit...Data-centric AI and the convergence of data and model engineering:opportunit...
Data-centric AI and the convergence of data and model engineering: opportunit...
Paolo Missier
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 
Data science syllabus
Data science syllabusData science syllabus
Data science syllabus
anoop bk
 
Big Data Analytics Lecture notes pdf notes
Big Data Analytics Lecture notes pdf notesBig Data Analytics Lecture notes pdf notes
Big Data Analytics Lecture notes pdf notes
cseshahinfatima
 
Open elective iii & iv list 2021 22
Open elective iii & iv list 2021 22Open elective iii & iv list 2021 22
Open elective iii & iv list 2021 22
pcjoshi02
 
dataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptxdataminingintroductionpptpptpptptro.pptx
dataminingintroductionpptpptpptptro.pptx
NagendraK18
 
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptxDWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
DWDM 3rd EDITION TEXT BOOK SLIDES24.pptx
KVIJAYKUMAR29
 

More from DurgaDeviP2 (6)

software engineering metrics concpets in advanced sotwrae
software engineering metrics concpets in advanced sotwraesoftware engineering metrics concpets in advanced sotwrae
software engineering metrics concpets in advanced sotwrae
DurgaDeviP2
 
ch05 forensics cyber topics covers tools of forensics
ch05  forensics cyber topics covers tools of forensicsch05  forensics cyber topics covers tools of forensics
ch05 forensics cyber topics covers tools of forensics
DurgaDeviP2
 
434832905-392582079-python-turtle-cheat-sheets.pdf
434832905-392582079-python-turtle-cheat-sheets.pdf434832905-392582079-python-turtle-cheat-sheets.pdf
434832905-392582079-python-turtle-cheat-sheets.pdf
DurgaDeviP2
 
Machine learning topics machine learning algorithm into three main parts.
Machine learning topics  machine learning algorithm into three main parts.Machine learning topics  machine learning algorithm into three main parts.
Machine learning topics machine learning algorithm into three main parts.
DurgaDeviP2
 
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
DurgaDeviP2
 
communication_technologies_Internet of things topic
communication_technologies_Internet of things topiccommunication_technologies_Internet of things topic
communication_technologies_Internet of things topic
DurgaDeviP2
 
software engineering metrics concpets in advanced sotwrae
software engineering metrics concpets in advanced sotwraesoftware engineering metrics concpets in advanced sotwrae
software engineering metrics concpets in advanced sotwrae
DurgaDeviP2
 
ch05 forensics cyber topics covers tools of forensics
ch05  forensics cyber topics covers tools of forensicsch05  forensics cyber topics covers tools of forensics
ch05 forensics cyber topics covers tools of forensics
DurgaDeviP2
 
434832905-392582079-python-turtle-cheat-sheets.pdf
434832905-392582079-python-turtle-cheat-sheets.pdf434832905-392582079-python-turtle-cheat-sheets.pdf
434832905-392582079-python-turtle-cheat-sheets.pdf
DurgaDeviP2
 
Machine learning topics machine learning algorithm into three main parts.
Machine learning topics  machine learning algorithm into three main parts.Machine learning topics  machine learning algorithm into three main parts.
Machine learning topics machine learning algorithm into three main parts.
DurgaDeviP2
 
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
5p.pdfsadasdasdaasdfffffffffffffffffffffffffffffffffffffffffffffff
DurgaDeviP2
 
communication_technologies_Internet of things topic
communication_technologies_Internet of things topiccommunication_technologies_Internet of things topic
communication_technologies_Internet of things topic
DurgaDeviP2
 
Ad

Recently uploaded (20)

FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Ad

Datascience syllabus covers datascience topics

  • 1. 330 B.Tech / M.Tech (Integrated) Programmes-Regulations 2021-Volume-20-Common Courses-Syllabi-Control Copy Course Code 21CSS303T Course Name DATA SCIENCE Course Category S ENGINEERING SCIENCES L T P C 2 0 0 2 Pre-requisite Courses Nil Co- requisite Courses Nil Progressive Courses Nil Course Offering Department Data Science and Business Systems Data Book / Codes / Standards Nil Course Learning Rationale (CLR): The purpose of learning this course is to: Program Outcomes (PO) Program Specific Outcomes CLR-1: understand the basics of data 1 2 3 4 5 6 7 8 9 10 11 12 CLR-2: learn the Pandas library to analyze data frames Engineering Knowledge Problem Analysis Design/development of solutions Conduct investigations of complex problems Modern Tool Usage The engineer and society Environment & Sustainability Ethics Individual & Team Work Communication Project Mgt. & Finance Life Long Learning PSO-1 PSO-2 PSO-3 CLR-3: utilize different methods of data acquisition and data cleaning CLR-4: explore the visualization tools for different kinds of input data formats CLR-5: apply supervised and unsupervised learning to learn the hidden patterns from the data and predict the output Course Outcomes (CO): At the end of this course, learners will be able to: CO-1: understand the relationship between data - - - - 1 - - - - - - - - - - CO-2: identify the different data structures to represent data - - - - 1 - - - - - - - - - - CO-3: identify data manipulation and cleaning techniques using pandas - - - - 1 - - - - - - - - - - CO-4: constructs the Graphs and plots to represent the data using python packages - - - - 1 - - - - - - - - - - CO-5: apply the principles of the data science techniques to predict and forecast the outcome of real-world problem - - - - 1 - - - - - - - - - - Unit-1 - Introduction to Data Science, Numpy and Pandas 10 Hour Introduction to Data science: Facets of data, Data Science Process Introduction to Numpy: Numpy, creating array, attributes, Numpy Arrays objects: Creating Arrays, basic operations (Array Join, split, search, sort), Indexing, Slicing and iterating, copying arrays, Arrays shape manipulation, Identity array, eye function Pandas: Exploring Data using Series, Exploring Data using DataFrames, Index objects, Re index, Drop Entry, Selecting Entries, Data Alignment, Rank and Sort, Summary Statistics, Index Hierarchy Data Acquisition: Gather information from different sources, Web APIs, Open Data Sources, Web Scrapping. Unit-2 - Data Wrangling, Data Cleaning and Preparation 10 Hour Data Handling: Problem faced when handling large data-General techniques for handling large volume of data- General programming tips for dealing large data sets Data Wrangling: Clean, Transform, Merge, Reshape: Combining and Merging Datasets, Merging on Index, Concatenate, Combining with overlap, Reshaping, Pivoting Data Cleaning and Preparation: Handling Missing Data, Data Transformation, String Manipulation, summarizing, Binning, classing and Standardization, outlier/Noise& Anomalies. Unit-3 - Visualization 10 Hour Customizing Plots: Introduction to Matplotlib, Plots, making subplots, controlling axes, Ticks, Labels and legends, annotations and drawing on subplots, saving plots to files, matplotlib configuration using different plot styles, Seaborn library. Making sense of data through advanced visualization: Controlling line properties of chart, creating multiple plots, Scatter plot, Line plot, bar plot, Histogram, Box plot, Pair plot, playing with text, styling your plot, 3d plot of surface
  • 2. 331 B.Tech / M.Tech (Integrated) Programmes-Regulations 2021-Volume-20-Common Courses-Syllabi-Control Copy Learning Resources 1. Grus, J. (2019). Data Science from Scratch, 2nd Edition. O'Reilly Media, Inc. 2. Jiawei Han, Micheline Kamber and Jian Pei (2012), Data Mining Concepts and Techniques, Third Edition, Elsevier. 3. Davy Cielen, Arno D. B. Meysman, and Mohamed Ali (2016), Introducing Data Science: Big data, machine learning, and more, using Python tools, Manning Publications. 4. McKinney, W. (2018). Python for data analysis: Data wrangling with pandas, NumPy, and IPython. O'Reilly Media, Inc. 5. Vanderplas, J. T. (2017). Python data science handbook: Essential tools for working with data. O'Reilly Media, Inc. 6. Jeffrey S. Saltz and Jeffrey M. Stanton (2018), An Introduction to Data Science, Sage Publication. 7. Shai Vaingast (2014), “Beginning Python Visualization Crafting Visual Transformation Scripts”, Second Edition, Apress. 8. Wes Mc Kinney (2012). “Python for Data Analysis”, O'Reilly Media. Learning Assessment Bloom’s Level of Thinking Continuous Learning Assessment (CLA) Summative Final Examination (40% weightage) Formative CLA-1 Average of unit test (50%) Life-Long Learning CLA-2 (10%) Theory Practice Theory Practice Theory Practice Level 1 Remember 40% - 20% - 40% - Level 2 Understand 40% - 20% - 40% - Level 3 Apply 10% - 20% - 10% - Level 4 Analyze 10% - 20% - 10% - Level 5 Evaluate - - 10% - - - Level 6 Create - - 10% - - - Total 100 % 100 % 100 % Course Designers Experts from Industry Experts from Higher Technical Institutions Internal Experts 1. Dr. Veeramanickam. M.R.M, Associate Professor Chitkara University Institute of Engineering and Technology 1. Mr. Snehith Allam Raju Senior Manager Advanced Analytics & Architecture Envista Holdings Corporation, Hyderabad. 1. Dr.V.Kalpana, SRMIST 2. Dr.G.Vadivu, SRMIST