SlideShare a Scribd company logo
©2013 DataStax Confidential. Do not distribute without consent.
Old dog, new tricks
1
@PatrickMcFadin
Patrick McFadin

Chief Evangelist for Apache Cassandra at DataStax
Oracle Architecture
More CPU
More memory
More disk
DBRM
Clusterware
FAN
RAC
Data Guard
Golden Gate
Cache Fusion
Active?
Standby?
TimesTen
Scale
Hadoop
Scale
Scale
Uptime
Uptime
Uptime
ASM
• Think a YouTube competitor
– Users add videos, rate them, comment on them, etc.
– Can search for videos by tag
DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch
DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch
CREATE TABLE users (

id number(12) NOT NULL ,

firstname nvarchar2(25) NOT NULL ,

lastname nvarchar2(25) NOT NULL,

email nvarchar2(50) NOT NULL,

password nvarchar2(255) NOT NULL,

created_date timestamp(6),

PRIMARY KEY (id),

CONSTRAINT email_uq UNIQUE (email)

);
-- Users by email address index

CREATE INDEX idx_users_email ON users (email);
• Create entity table
• Add constraints
• Index fields
• Foreign Key relationships
CREATE TABLE videos (

id number(12),

userid number(12) NOT NULL,

name nvarchar2(255),

description nvarchar2(500),

location nvarchar2(255),

location_type int,

added_date timestamp,

CONSTRAINT users_userid_fk
FOREIGN KEY (userid)
REFERENCES users (Id) ON DELETE CASCADE,

PRIMARY KEY (id)

);
“Static” Table
CREATE TABLE videos (

videoid uuid,

userid uuid,

name varchar,

description varchar,

location text,

location_type int,

preview_thumbnails map<text,text>,

tags set<varchar>,

added_date timestamp,

PRIMARY KEY (videoid)

);
Table Name
Column Name
Column CQL Type
Primary Key Designation Partition Key
Row
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Partition
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Table Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Column
2
Column
3
Column
4
Column
1
Column
2
Column
3
Column
4
Column
1
Column
2
Column
3
Column
4
Partition
Key 2
Partition
Key 2
Partition
Key 2
Keyspace
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 1
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Column
1
Partition
Key 2
Column
2
Column
3
Column
4
Table 1 Table 2
Keyspace 1
Insert
INSERT INTO videos (videoid, name, userid, description, location, location_type, preview_thumbnails, tags, added_date, metadata)

VALUES (06049cbb-dfed-421f-b889-5f649a0de1ed,'The data model is dead. Long live the data model.',
9761d3d7-7fbd-4269-9988-6cfd4e188678, 

'First in a three part series for Cassandra Data Modeling','http://www.youtube.com/watch?v=px6U2n74q3g',1,

{'YouTube':'http://www.youtube.com/watch?v=px6U2n74q3g'},{'cassandra','data model','relational','instruction'},

'2013-05-02 12:30:29');
Table Name
Fields
Values
Partition Key: Required
Partition keys
06049cbb-dfed-421f-b889-5f649a0de1ed Murmur3 Hash Token = 7224631062609997448
873ff430-9c23-4e60-be5f-278ea2bb21bd Murmur3 Hash Token = -6804302034103043898
Consistent hash. 128 bit number
between 2-63
and 264
INSERT INTO videos (videoid, name, userid, description)

VALUES (06049cbb-dfed-421f-b889-5f649a0de1ed,'The data model is dead. Long live the data model.’,
9761d3d7-7fbd-4269-9988-6cfd4e188678, 'First in a three part series for Cassandra Data Modeling');
INSERT INTO videos (videoid, name, userid, description)

VALUES (873ff430-9c23-4e60-be5f-278ea2bb21bd,'Become a Super Modeler’,
9761d3d7-7fbd-4269-9988-6cfd4e188678, 'Second in a three part series for Cassandra Data Modeling');
“Dynamic” Table
CREATE TABLE videos_by_tag (

tag text,

videoid uuid,

added_date timestamp,

name text,

preview_image_location text,

tagged_date timestamp,

PRIMARY KEY (tag, videoid)

);
Partition Key Clustering Column
Primary key relationship
PRIMARY KEY (tag,videoid)
Primary key relationship
Partition Key
PRIMARY KEY (tag,videoid)
Primary key relationship
Partition Key Clustering Column
PRIMARY KEY (tag,videoid)
Primary key relationship
Partition Key
data model
PRIMARY KEY (tag,videoid)
Clustering Column
-5.6
06049cbb-dfed-421f-b889-5f649a0de1ed
Primary key relationship
Partition Key
2013-05-16 16:50:002013-05-02 12:30:29
873ff430-9c23-4e60-be5f-278ea2bb21bd
PRIMARY KEY (tag,videoid)
Clustering Column
data model
49f64d40-7d89-4890-b910-dbf923563a33
2013-06-11 11:00:00
Select
name | description | added_date

---------------------------------------------------+----------------------------------------------------------+--------------------------

The data model is dead. Long live the data model. | First in a three part series for Cassandra Data Modeling | 2013-05-02 12:30:29-0700
SELECT name, description, added_date

FROM videos

WHERE videoid = 06049cbb-dfed-421f-b889-5f649a0de1ed;
Fields
Table Name
Primary Key: Partition Key Required
Controlling Order
CREATE TABLE raw_weather_data (

wsid text,

year int,

month int,

day int,

hour int,

temperature double,

PRIMARY KEY ((wsid), year, month, day, hour)

) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)

VALUES (‘10010:99999’,2005,12,1,10,-5.6);
INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)

VALUES (‘10010:99999’,2005,12,1,9,-5.1);
INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)

VALUES (‘10010:99999’,2005,12,1,8,-4.9);
INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)

VALUES (‘10010:99999’,2005,12,1,7,-5.3);
Clustering
200510010:99999 12 1 10
200510010:99999 12 1 9
raw_weather_data
-5.6
-5.1
200510010:99999 12 1 8
200510010:99999 12 1 7
-4.9
-5.3
Order By
DESC
• Think a YouTube competitor
– Users add videos, rate them, comment on them, etc.
– Can search for videos by tag
DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch
DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch
CREATE TABLE users (

id number(12) NOT NULL ,

firstname nvarchar2(25) NOT NULL ,

lastname nvarchar2(25) NOT NULL,

email nvarchar2(50) NOT NULL,

password nvarchar2(255) NOT NULL,

created_date timestamp(6),

PRIMARY KEY (id),

CONSTRAINT email_uq UNIQUE (email)

);
-- Users by email address index

CREATE INDEX idx_users_email ON users (email);
• Create entity table
• Add constraints
• Index fields
• Foreign Key relationships
CREATE TABLE videos (

id number(12),

userid number(12) NOT NULL,

name nvarchar2(255),

description nvarchar2(500),

location nvarchar2(255),

location_type int,

added_date timestamp,

CONSTRAINT users_userid_fk
FOREIGN KEY (userid)
REFERENCES users (Id) ON DELETE CASCADE,

PRIMARY KEY (id)

);
Some Application Workflows in KillrVideo
27
User Logs
into site
Show basic
information
about user
Show videos
added by a
user
Show
comments
posted by a
user
Search for a
video by tag
Show latest
videos
added to the
site
Show
comments
for a video
Show
ratings for a
video
Show video
and its
details
28
Show video
and its
details
Find video by id
Show videos
added by a
user
Find videos by user
(latest first)
CREATE TABLE videos (

videoid uuid,

userid uuid,

name text,

description text,

location text,

location_type int,

preview_image_location text,

tags set<text>,

added_date timestamp,

PRIMARY KEY (videoid)

);
CREATE TABLE user_videos (

userid uuid,

added_date timestamp,

videoid uuid,

name text,

preview_image_location text,

PRIMARY KEY (userid, added_date, videoid)

) WITH CLUSTERING
ORDER BY (added_date DESC, videoid ASC);
Views or indexes?
Denormalized data
Opps!
29
Table A
Client
Opps!
30
Table A
Client
Table B
Opps!
31
Table A
Client
Table B
Opps!
32
Table A
Client
Table B
Opps!
33
Client
Table B
Thank you!
Bring the questions
Follow me on twitter
@PatrickMcFadin
Ad

More Related Content

What's hot (20)

CQL3 in depth
CQL3 in depthCQL3 in depth
CQL3 in depth
Yuki Morishita
 
Hanya contoh saja dari xampp
Hanya contoh saja dari xamppHanya contoh saja dari xampp
Hanya contoh saja dari xampp
Bina Sarana Informatika
 
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Databricks
 
Tracking Data Updates in Real-time with Change Data Capture
Tracking Data Updates in Real-time with Change Data CaptureTracking Data Updates in Real-time with Change Data Capture
Tracking Data Updates in Real-time with Change Data Capture
ScyllaDB
 
Highload2o013 osipv
Highload2o013 osipvHighload2o013 osipv
Highload2o013 osipv
Kostja Osipov
 
PostgreSQL: Advanced indexing
PostgreSQL: Advanced indexingPostgreSQL: Advanced indexing
PostgreSQL: Advanced indexing
Hans-Jürgen Schönig
 
MySQL SQL Tutorial
MySQL SQL TutorialMySQL SQL Tutorial
MySQL SQL Tutorial
Chien Chung Shen
 
Developers' mDay 2017. - Bogdan Kecman Oracle
Developers' mDay 2017. - Bogdan Kecman OracleDevelopers' mDay 2017. - Bogdan Kecman Oracle
Developers' mDay 2017. - Bogdan Kecman Oracle
mCloud
 
Mssm及assm下索引叶块分裂的测试
Mssm及assm下索引叶块分裂的测试Mssm及assm下索引叶块分裂的测试
Mssm及assm下索引叶块分裂的测试
maclean liu
 
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
PgDay.Seoul
 
Oracle PL-SQL
Oracle PL-SQLOracle PL-SQL
Oracle PL-SQL
Saurav Sony
 
第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)
Wataru Shito
 
Scaling the #2ndhalf
Scaling the #2ndhalfScaling the #2ndhalf
Scaling the #2ndhalf
Salo Shp
 
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Databricks
 
Tiered storage intro. By Robert Hodges, Altinity CEO
Tiered storage intro. By Robert Hodges, Altinity CEOTiered storage intro. By Robert Hodges, Altinity CEO
Tiered storage intro. By Robert Hodges, Altinity CEO
Altinity Ltd
 
EKON22 Introduction to Machinelearning
EKON22 Introduction to MachinelearningEKON22 Introduction to Machinelearning
EKON22 Introduction to Machinelearning
Max Kleiner
 
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
maclean liu
 
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
Altinity Ltd
 
Axis2 client memory leak
Axis2 client memory leakAxis2 client memory leak
Axis2 client memory leak
feng lee
 
Finding SQL execution outliers
Finding SQL execution outliersFinding SQL execution outliers
Finding SQL execution outliers
Maxym Kharchenko
 
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Extending Spark SQL API with Easier to Use Array Types Operations with Marek ...
Databricks
 
Tracking Data Updates in Real-time with Change Data Capture
Tracking Data Updates in Real-time with Change Data CaptureTracking Data Updates in Real-time with Change Data Capture
Tracking Data Updates in Real-time with Change Data Capture
ScyllaDB
 
Developers' mDay 2017. - Bogdan Kecman Oracle
Developers' mDay 2017. - Bogdan Kecman OracleDevelopers' mDay 2017. - Bogdan Kecman Oracle
Developers' mDay 2017. - Bogdan Kecman Oracle
mCloud
 
Mssm及assm下索引叶块分裂的测试
Mssm及assm下索引叶块分裂的测试Mssm及assm下索引叶块分裂的测试
Mssm及assm下索引叶块分裂的测试
maclean liu
 
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
PgDay.Seoul
 
第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)第7回 大規模データを用いたデータフレーム操作実習(1)
第7回 大規模データを用いたデータフレーム操作実習(1)
Wataru Shito
 
Scaling the #2ndhalf
Scaling the #2ndhalfScaling the #2ndhalf
Scaling the #2ndhalf
Salo Shp
 
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Automated Debugging of Big Data Analytics in Apache Spark Using BigSift with ...
Databricks
 
Tiered storage intro. By Robert Hodges, Altinity CEO
Tiered storage intro. By Robert Hodges, Altinity CEOTiered storage intro. By Robert Hodges, Altinity CEO
Tiered storage intro. By Robert Hodges, Altinity CEO
Altinity Ltd
 
EKON22 Introduction to Machinelearning
EKON22 Introduction to MachinelearningEKON22 Introduction to Machinelearning
EKON22 Introduction to Machinelearning
Max Kleiner
 
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
【Maclean liu技术分享】拨开oracle cbo优化器迷雾,探究histogram直方图之秘 0321
maclean liu
 
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
ClickHouse Unleashed 2020: Our Favorite New Features for Your Analytical Appl...
Altinity Ltd
 
Axis2 client memory leak
Axis2 client memory leakAxis2 client memory leak
Axis2 client memory leak
feng lee
 
Finding SQL execution outliers
Finding SQL execution outliersFinding SQL execution outliers
Finding SQL execution outliers
Maxym Kharchenko
 

Viewers also liked (20)

DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax: How to Roll Cassandra into Production Without Losing your Health, M...DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax Academy
 
Battery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
Battery Ventures: Simulating and Visualizing Large Scale Cassandra DeploymentsBattery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
Battery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
DataStax Academy
 
DataStax: 7 Deadly Sins for Cassandra Ops
DataStax: 7 Deadly Sins for Cassandra OpsDataStax: 7 Deadly Sins for Cassandra Ops
DataStax: 7 Deadly Sins for Cassandra Ops
DataStax Academy
 
Cassandra Core Concepts
Cassandra Core ConceptsCassandra Core Concepts
Cassandra Core Concepts
Jon Haddad
 
Crash course intro to cassandra
Crash course   intro to cassandraCrash course   intro to cassandra
Crash course intro to cassandra
Jon Haddad
 
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax Academy
 
Cassandra 3.0 Awesomeness
Cassandra 3.0 AwesomenessCassandra 3.0 Awesomeness
Cassandra 3.0 Awesomeness
Jon Haddad
 
Diagnosing Problems in Production (Nov 2015)
Diagnosing Problems in Production (Nov 2015)Diagnosing Problems in Production (Nov 2015)
Diagnosing Problems in Production (Nov 2015)
Jon Haddad
 
Instaclustr: Securing Cassandra
Instaclustr: Securing CassandraInstaclustr: Securing Cassandra
Instaclustr: Securing Cassandra
DataStax Academy
 
DataStax: Making Cassandra Fail (for effective testing)
DataStax: Making Cassandra Fail (for effective testing)DataStax: Making Cassandra Fail (for effective testing)
DataStax: Making Cassandra Fail (for effective testing)
DataStax Academy
 
Diagnosing Problems in Production - Cassandra
Diagnosing Problems in Production - CassandraDiagnosing Problems in Production - Cassandra
Diagnosing Problems in Production - Cassandra
Jon Haddad
 
Enter the Snake Pit for Fast and Easy Spark
Enter the Snake Pit for Fast and Easy SparkEnter the Snake Pit for Fast and Easy Spark
Enter the Snake Pit for Fast and Easy Spark
Jon Haddad
 
DataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax: Enabling Search in your Cassandra Application with DataStax EnterpriseDataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)
Jon Haddad
 
Cake Solutions: Cassandra as event sourced journal for big data analytics
Cake Solutions: Cassandra as event sourced journal for big data analyticsCake Solutions: Cassandra as event sourced journal for big data analytics
Cake Solutions: Cassandra as event sourced journal for big data analytics
DataStax Academy
 
Azure + DataStax Enterprise Powers Office 365 Per User Store
Azure + DataStax Enterprise Powers Office 365 Per User StoreAzure + DataStax Enterprise Powers Office 365 Per User Store
Azure + DataStax Enterprise Powers Office 365 Per User Store
DataStax Academy
 
Cassandra meetup slides - Oct 15 Santa Monica Coloft
Cassandra meetup slides - Oct 15 Santa Monica ColoftCassandra meetup slides - Oct 15 Santa Monica Coloft
Cassandra meetup slides - Oct 15 Santa Monica Coloft
Jon Haddad
 
Cassandra Core Concepts - Cassandra Day Toronto
Cassandra Core Concepts - Cassandra Day TorontoCassandra Core Concepts - Cassandra Day Toronto
Cassandra Core Concepts - Cassandra Day Toronto
Jon Haddad
 
Python and cassandra
Python and cassandraPython and cassandra
Python and cassandra
Jon Haddad
 
Large Scale Data Analytics with Spark and Cassandra on the DSE Platform
Large Scale Data Analytics with Spark and Cassandra on the DSE PlatformLarge Scale Data Analytics with Spark and Cassandra on the DSE Platform
Large Scale Data Analytics with Spark and Cassandra on the DSE Platform
DataStax Academy
 
DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax: How to Roll Cassandra into Production Without Losing your Health, M...DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax: How to Roll Cassandra into Production Without Losing your Health, M...
DataStax Academy
 
Battery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
Battery Ventures: Simulating and Visualizing Large Scale Cassandra DeploymentsBattery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
Battery Ventures: Simulating and Visualizing Large Scale Cassandra Deployments
DataStax Academy
 
DataStax: 7 Deadly Sins for Cassandra Ops
DataStax: 7 Deadly Sins for Cassandra OpsDataStax: 7 Deadly Sins for Cassandra Ops
DataStax: 7 Deadly Sins for Cassandra Ops
DataStax Academy
 
Cassandra Core Concepts
Cassandra Core ConceptsCassandra Core Concepts
Cassandra Core Concepts
Jon Haddad
 
Crash course intro to cassandra
Crash course   intro to cassandraCrash course   intro to cassandra
Crash course intro to cassandra
Jon Haddad
 
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax & O'Reilly Media: Large Scale Data Analytics with Spark and Cassandr...
DataStax Academy
 
Cassandra 3.0 Awesomeness
Cassandra 3.0 AwesomenessCassandra 3.0 Awesomeness
Cassandra 3.0 Awesomeness
Jon Haddad
 
Diagnosing Problems in Production (Nov 2015)
Diagnosing Problems in Production (Nov 2015)Diagnosing Problems in Production (Nov 2015)
Diagnosing Problems in Production (Nov 2015)
Jon Haddad
 
Instaclustr: Securing Cassandra
Instaclustr: Securing CassandraInstaclustr: Securing Cassandra
Instaclustr: Securing Cassandra
DataStax Academy
 
DataStax: Making Cassandra Fail (for effective testing)
DataStax: Making Cassandra Fail (for effective testing)DataStax: Making Cassandra Fail (for effective testing)
DataStax: Making Cassandra Fail (for effective testing)
DataStax Academy
 
Diagnosing Problems in Production - Cassandra
Diagnosing Problems in Production - CassandraDiagnosing Problems in Production - Cassandra
Diagnosing Problems in Production - Cassandra
Jon Haddad
 
Enter the Snake Pit for Fast and Easy Spark
Enter the Snake Pit for Fast and Easy SparkEnter the Snake Pit for Fast and Easy Spark
Enter the Snake Pit for Fast and Easy Spark
Jon Haddad
 
DataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax: Enabling Search in your Cassandra Application with DataStax EnterpriseDataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax: Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)
Jon Haddad
 
Cake Solutions: Cassandra as event sourced journal for big data analytics
Cake Solutions: Cassandra as event sourced journal for big data analyticsCake Solutions: Cassandra as event sourced journal for big data analytics
Cake Solutions: Cassandra as event sourced journal for big data analytics
DataStax Academy
 
Azure + DataStax Enterprise Powers Office 365 Per User Store
Azure + DataStax Enterprise Powers Office 365 Per User StoreAzure + DataStax Enterprise Powers Office 365 Per User Store
Azure + DataStax Enterprise Powers Office 365 Per User Store
DataStax Academy
 
Cassandra meetup slides - Oct 15 Santa Monica Coloft
Cassandra meetup slides - Oct 15 Santa Monica ColoftCassandra meetup slides - Oct 15 Santa Monica Coloft
Cassandra meetup slides - Oct 15 Santa Monica Coloft
Jon Haddad
 
Cassandra Core Concepts - Cassandra Day Toronto
Cassandra Core Concepts - Cassandra Day TorontoCassandra Core Concepts - Cassandra Day Toronto
Cassandra Core Concepts - Cassandra Day Toronto
Jon Haddad
 
Python and cassandra
Python and cassandraPython and cassandra
Python and cassandra
Jon Haddad
 
Large Scale Data Analytics with Spark and Cassandra on the DSE Platform
Large Scale Data Analytics with Spark and Cassandra on the DSE PlatformLarge Scale Data Analytics with Spark and Cassandra on the DSE Platform
Large Scale Data Analytics with Spark and Cassandra on the DSE Platform
DataStax Academy
 
Ad

Similar to DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch (20)

Oracle to Cassandra Core Concepts Guide Pt. 2
Oracle to Cassandra Core Concepts Guide Pt. 2Oracle to Cassandra Core Concepts Guide Pt. 2
Oracle to Cassandra Core Concepts Guide Pt. 2
DataStax Academy
 
1 Dundee - Cassandra 101
1 Dundee - Cassandra 1011 Dundee - Cassandra 101
1 Dundee - Cassandra 101
Christopher Batey
 
Cassandra - lesson learned
Cassandra  - lesson learnedCassandra  - lesson learned
Cassandra - lesson learned
Andrzej Ludwikowski
 
Introduction to Apache Cassandra™ + What’s New in 4.0
Introduction to Apache Cassandra™ + What’s New in 4.0Introduction to Apache Cassandra™ + What’s New in 4.0
Introduction to Apache Cassandra™ + What’s New in 4.0
DataStax
 
Cassandra lesson learned - extended
Cassandra   lesson learned  - extendedCassandra   lesson learned  - extended
Cassandra lesson learned - extended
Andrzej Ludwikowski
 
Cassandra, web scale no sql data platform
Cassandra, web scale no sql data platformCassandra, web scale no sql data platform
Cassandra, web scale no sql data platform
Marko Švaljek
 
Owning time series with team apache Strata San Jose 2015
Owning time series with team apache   Strata San Jose 2015Owning time series with team apache   Strata San Jose 2015
Owning time series with team apache Strata San Jose 2015
Patrick McFadin
 
Manchester Hadoop User Group: Cassandra Intro
Manchester Hadoop User Group: Cassandra IntroManchester Hadoop User Group: Cassandra Intro
Manchester Hadoop User Group: Cassandra Intro
Christopher Batey
 
Cassandra 3.0 advanced preview
Cassandra 3.0 advanced previewCassandra 3.0 advanced preview
Cassandra 3.0 advanced preview
Patrick McFadin
 
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
DataStax Academy
 
Advanced data modeling with apache cassandra
Advanced data modeling with apache cassandraAdvanced data modeling with apache cassandra
Advanced data modeling with apache cassandra
Patrick McFadin
 
Advanced Cassandra
Advanced CassandraAdvanced Cassandra
Advanced Cassandra
DataStax Academy
 
Time series with apache cassandra strata
Time series with apache cassandra   strataTime series with apache cassandra   strata
Time series with apache cassandra strata
Patrick McFadin
 
Jan 2015 - Cassandra101 Manchester Meetup
Jan 2015 - Cassandra101 Manchester MeetupJan 2015 - Cassandra101 Manchester Meetup
Jan 2015 - Cassandra101 Manchester Meetup
Christopher Batey
 
Javantura v2 - Data modeling with Apapche Cassandra - Marko Švaljek
Javantura v2 - Data modeling with Apapche Cassandra - Marko ŠvaljekJavantura v2 - Data modeling with Apapche Cassandra - Marko Švaljek
Javantura v2 - Data modeling with Apapche Cassandra - Marko Švaljek
HUJAK - Hrvatska udruga Java korisnika / Croatian Java User Association
 
Introduction to data modeling with apache cassandra
Introduction to data modeling with apache cassandraIntroduction to data modeling with apache cassandra
Introduction to data modeling with apache cassandra
Patrick McFadin
 
Vienna Feb 2015: Cassandra: How it works and what it's good for!
Vienna Feb 2015: Cassandra: How it works and what it's good for!Vienna Feb 2015: Cassandra: How it works and what it's good for!
Vienna Feb 2015: Cassandra: How it works and what it's good for!
Christopher Batey
 
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
DataStax Academy
 
Cassandra Day London 2015: Data Modeling 101
Cassandra Day London 2015: Data Modeling 101Cassandra Day London 2015: Data Modeling 101
Cassandra Day London 2015: Data Modeling 101
DataStax Academy
 
Cassandra Day Atlanta 2015: Data Modeling 101
Cassandra Day Atlanta 2015: Data Modeling 101Cassandra Day Atlanta 2015: Data Modeling 101
Cassandra Day Atlanta 2015: Data Modeling 101
DataStax Academy
 
Oracle to Cassandra Core Concepts Guide Pt. 2
Oracle to Cassandra Core Concepts Guide Pt. 2Oracle to Cassandra Core Concepts Guide Pt. 2
Oracle to Cassandra Core Concepts Guide Pt. 2
DataStax Academy
 
Introduction to Apache Cassandra™ + What’s New in 4.0
Introduction to Apache Cassandra™ + What’s New in 4.0Introduction to Apache Cassandra™ + What’s New in 4.0
Introduction to Apache Cassandra™ + What’s New in 4.0
DataStax
 
Cassandra lesson learned - extended
Cassandra   lesson learned  - extendedCassandra   lesson learned  - extended
Cassandra lesson learned - extended
Andrzej Ludwikowski
 
Cassandra, web scale no sql data platform
Cassandra, web scale no sql data platformCassandra, web scale no sql data platform
Cassandra, web scale no sql data platform
Marko Švaljek
 
Owning time series with team apache Strata San Jose 2015
Owning time series with team apache   Strata San Jose 2015Owning time series with team apache   Strata San Jose 2015
Owning time series with team apache Strata San Jose 2015
Patrick McFadin
 
Manchester Hadoop User Group: Cassandra Intro
Manchester Hadoop User Group: Cassandra IntroManchester Hadoop User Group: Cassandra Intro
Manchester Hadoop User Group: Cassandra Intro
Christopher Batey
 
Cassandra 3.0 advanced preview
Cassandra 3.0 advanced previewCassandra 3.0 advanced preview
Cassandra 3.0 advanced preview
Patrick McFadin
 
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
Cassandra Community Webinar | Getting Started with Apache Cassandra with Patr...
DataStax Academy
 
Advanced data modeling with apache cassandra
Advanced data modeling with apache cassandraAdvanced data modeling with apache cassandra
Advanced data modeling with apache cassandra
Patrick McFadin
 
Time series with apache cassandra strata
Time series with apache cassandra   strataTime series with apache cassandra   strata
Time series with apache cassandra strata
Patrick McFadin
 
Jan 2015 - Cassandra101 Manchester Meetup
Jan 2015 - Cassandra101 Manchester MeetupJan 2015 - Cassandra101 Manchester Meetup
Jan 2015 - Cassandra101 Manchester Meetup
Christopher Batey
 
Introduction to data modeling with apache cassandra
Introduction to data modeling with apache cassandraIntroduction to data modeling with apache cassandra
Introduction to data modeling with apache cassandra
Patrick McFadin
 
Vienna Feb 2015: Cassandra: How it works and what it's good for!
Vienna Feb 2015: Cassandra: How it works and what it's good for!Vienna Feb 2015: Cassandra: How it works and what it's good for!
Vienna Feb 2015: Cassandra: How it works and what it's good for!
Christopher Batey
 
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
Cassandra Day Chicago 2015: Apache Cassandra Data Modeling 101
DataStax Academy
 
Cassandra Day London 2015: Data Modeling 101
Cassandra Day London 2015: Data Modeling 101Cassandra Day London 2015: Data Modeling 101
Cassandra Day London 2015: Data Modeling 101
DataStax Academy
 
Cassandra Day Atlanta 2015: Data Modeling 101
Cassandra Day Atlanta 2015: Data Modeling 101Cassandra Day Atlanta 2015: Data Modeling 101
Cassandra Day Atlanta 2015: Data Modeling 101
DataStax Academy
 
Ad

More from DataStax Academy (20)

Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Coursera Cassandra Driver
Coursera Cassandra DriverCoursera Cassandra Driver
Coursera Cassandra Driver
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Cassandra Core Concepts
Cassandra Core ConceptsCassandra Core Concepts
Cassandra Core Concepts
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Bad Habits Die Hard
Bad Habits Die Hard Bad Habits Die Hard
Bad Habits Die Hard
DataStax Academy
 
Apache Cassandra and Drivers
Apache Cassandra and DriversApache Cassandra and Drivers
Apache Cassandra and Drivers
DataStax Academy
 
Getting Started with Graph Databases
Getting Started with Graph DatabasesGetting Started with Graph Databases
Getting Started with Graph Databases
DataStax Academy
 
Cassandra Data Maintenance with Spark
Cassandra Data Maintenance with SparkCassandra Data Maintenance with Spark
Cassandra Data Maintenance with Spark
DataStax Academy
 
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Apache Cassandra and Drivers
Apache Cassandra and DriversApache Cassandra and Drivers
Apache Cassandra and Drivers
DataStax Academy
 
Getting Started with Graph Databases
Getting Started with Graph DatabasesGetting Started with Graph Databases
Getting Started with Graph Databases
DataStax Academy
 
Cassandra Data Maintenance with Spark
Cassandra Data Maintenance with SparkCassandra Data Maintenance with Spark
Cassandra Data Maintenance with Spark
DataStax Academy
 

Recently uploaded (20)

Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 

DataStax: Old Dogs, New Tricks. Teaching your Relational DBA to fetch

  • 1. ©2013 DataStax Confidential. Do not distribute without consent. Old dog, new tricks 1 @PatrickMcFadin Patrick McFadin
 Chief Evangelist for Apache Cassandra at DataStax
  • 2. Oracle Architecture More CPU More memory More disk DBRM Clusterware FAN RAC Data Guard Golden Gate Cache Fusion Active? Standby? TimesTen Scale Hadoop Scale Scale Uptime Uptime Uptime ASM
  • 3. • Think a YouTube competitor – Users add videos, rate them, comment on them, etc. – Can search for videos by tag
  • 6. CREATE TABLE users (
 id number(12) NOT NULL ,
 firstname nvarchar2(25) NOT NULL ,
 lastname nvarchar2(25) NOT NULL,
 email nvarchar2(50) NOT NULL,
 password nvarchar2(255) NOT NULL,
 created_date timestamp(6),
 PRIMARY KEY (id),
 CONSTRAINT email_uq UNIQUE (email)
 ); -- Users by email address index
 CREATE INDEX idx_users_email ON users (email); • Create entity table • Add constraints • Index fields • Foreign Key relationships CREATE TABLE videos (
 id number(12),
 userid number(12) NOT NULL,
 name nvarchar2(255),
 description nvarchar2(500),
 location nvarchar2(255),
 location_type int,
 added_date timestamp,
 CONSTRAINT users_userid_fk FOREIGN KEY (userid) REFERENCES users (Id) ON DELETE CASCADE,
 PRIMARY KEY (id)
 );
  • 7. “Static” Table CREATE TABLE videos (
 videoid uuid,
 userid uuid,
 name varchar,
 description varchar,
 location text,
 location_type int,
 preview_thumbnails map<text,text>,
 tags set<varchar>,
 added_date timestamp,
 PRIMARY KEY (videoid)
 ); Table Name Column Name Column CQL Type Primary Key Designation Partition Key
  • 10. Table Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Column 2 Column 3 Column 4 Column 1 Column 2 Column 3 Column 4 Column 1 Column 2 Column 3 Column 4 Partition Key 2 Partition Key 2 Partition Key 2
  • 11. Keyspace Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 1 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Column 1 Partition Key 2 Column 2 Column 3 Column 4 Table 1 Table 2 Keyspace 1
  • 12. Insert INSERT INTO videos (videoid, name, userid, description, location, location_type, preview_thumbnails, tags, added_date, metadata)
 VALUES (06049cbb-dfed-421f-b889-5f649a0de1ed,'The data model is dead. Long live the data model.', 9761d3d7-7fbd-4269-9988-6cfd4e188678, 
 'First in a three part series for Cassandra Data Modeling','http://www.youtube.com/watch?v=px6U2n74q3g',1,
 {'YouTube':'http://www.youtube.com/watch?v=px6U2n74q3g'},{'cassandra','data model','relational','instruction'},
 '2013-05-02 12:30:29'); Table Name Fields Values Partition Key: Required
  • 13. Partition keys 06049cbb-dfed-421f-b889-5f649a0de1ed Murmur3 Hash Token = 7224631062609997448 873ff430-9c23-4e60-be5f-278ea2bb21bd Murmur3 Hash Token = -6804302034103043898 Consistent hash. 128 bit number between 2-63 and 264 INSERT INTO videos (videoid, name, userid, description)
 VALUES (06049cbb-dfed-421f-b889-5f649a0de1ed,'The data model is dead. Long live the data model.’, 9761d3d7-7fbd-4269-9988-6cfd4e188678, 'First in a three part series for Cassandra Data Modeling'); INSERT INTO videos (videoid, name, userid, description)
 VALUES (873ff430-9c23-4e60-be5f-278ea2bb21bd,'Become a Super Modeler’, 9761d3d7-7fbd-4269-9988-6cfd4e188678, 'Second in a three part series for Cassandra Data Modeling');
  • 14. “Dynamic” Table CREATE TABLE videos_by_tag (
 tag text,
 videoid uuid,
 added_date timestamp,
 name text,
 preview_image_location text,
 tagged_date timestamp,
 PRIMARY KEY (tag, videoid)
 ); Partition Key Clustering Column
  • 15. Primary key relationship PRIMARY KEY (tag,videoid)
  • 16. Primary key relationship Partition Key PRIMARY KEY (tag,videoid)
  • 17. Primary key relationship Partition Key Clustering Column PRIMARY KEY (tag,videoid)
  • 18. Primary key relationship Partition Key data model PRIMARY KEY (tag,videoid) Clustering Column
  • 19. -5.6 06049cbb-dfed-421f-b889-5f649a0de1ed Primary key relationship Partition Key 2013-05-16 16:50:002013-05-02 12:30:29 873ff430-9c23-4e60-be5f-278ea2bb21bd PRIMARY KEY (tag,videoid) Clustering Column data model 49f64d40-7d89-4890-b910-dbf923563a33 2013-06-11 11:00:00
  • 20. Select name | description | added_date
 ---------------------------------------------------+----------------------------------------------------------+--------------------------
 The data model is dead. Long live the data model. | First in a three part series for Cassandra Data Modeling | 2013-05-02 12:30:29-0700 SELECT name, description, added_date
 FROM videos
 WHERE videoid = 06049cbb-dfed-421f-b889-5f649a0de1ed; Fields Table Name Primary Key: Partition Key Required
  • 21. Controlling Order CREATE TABLE raw_weather_data (
 wsid text,
 year int,
 month int,
 day int,
 hour int,
 temperature double,
 PRIMARY KEY ((wsid), year, month, day, hour)
 ) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC); INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)
 VALUES (‘10010:99999’,2005,12,1,10,-5.6); INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)
 VALUES (‘10010:99999’,2005,12,1,9,-5.1); INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)
 VALUES (‘10010:99999’,2005,12,1,8,-4.9); INSERT INTO raw_weather_data(wsid,year,month,day,hour,temperature)
 VALUES (‘10010:99999’,2005,12,1,7,-5.3);
  • 22. Clustering 200510010:99999 12 1 10 200510010:99999 12 1 9 raw_weather_data -5.6 -5.1 200510010:99999 12 1 8 200510010:99999 12 1 7 -4.9 -5.3 Order By DESC
  • 23. • Think a YouTube competitor – Users add videos, rate them, comment on them, etc. – Can search for videos by tag
  • 26. CREATE TABLE users (
 id number(12) NOT NULL ,
 firstname nvarchar2(25) NOT NULL ,
 lastname nvarchar2(25) NOT NULL,
 email nvarchar2(50) NOT NULL,
 password nvarchar2(255) NOT NULL,
 created_date timestamp(6),
 PRIMARY KEY (id),
 CONSTRAINT email_uq UNIQUE (email)
 ); -- Users by email address index
 CREATE INDEX idx_users_email ON users (email); • Create entity table • Add constraints • Index fields • Foreign Key relationships CREATE TABLE videos (
 id number(12),
 userid number(12) NOT NULL,
 name nvarchar2(255),
 description nvarchar2(500),
 location nvarchar2(255),
 location_type int,
 added_date timestamp,
 CONSTRAINT users_userid_fk FOREIGN KEY (userid) REFERENCES users (Id) ON DELETE CASCADE,
 PRIMARY KEY (id)
 );
  • 27. Some Application Workflows in KillrVideo 27 User Logs into site Show basic information about user Show videos added by a user Show comments posted by a user Search for a video by tag Show latest videos added to the site Show comments for a video Show ratings for a video Show video and its details
  • 28. 28 Show video and its details Find video by id Show videos added by a user Find videos by user (latest first) CREATE TABLE videos (
 videoid uuid,
 userid uuid,
 name text,
 description text,
 location text,
 location_type int,
 preview_image_location text,
 tags set<text>,
 added_date timestamp,
 PRIMARY KEY (videoid)
 ); CREATE TABLE user_videos (
 userid uuid,
 added_date timestamp,
 videoid uuid,
 name text,
 preview_image_location text,
 PRIMARY KEY (userid, added_date, videoid)
 ) WITH CLUSTERING ORDER BY (added_date DESC, videoid ASC); Views or indexes? Denormalized data
  • 34. Thank you! Bring the questions Follow me on twitter @PatrickMcFadin