活用段階に入ったNoSQLですがまだまだ実際どう使えるのかご存じ無い方も多いのでは無いでしょうか。当セッションでは、MapR-DB(Hbase互換のNoSQL)が企業でどう活用されているのか、インドのマイナンバー事例や国内事例を元に実際の使い方のイメージと技術的な裏付けをご説明します。2015年6月10〜12日に開催されたdb tech showcase Tokyo 2015での講演資料です。
Percona ServerをMySQL 5.6と5.7用に作るエンジニアリング(そしてMongoDBのヒント)Colin Charles
Engineering that goes into making Percona Server for MySQL 5.6 & 5.7 different (and a hint of MongoDB) for dbtechshowcase 2017 - the slides also have some Japanese in it. This should help a Japanese audience to read it. If there are questions due to poor translation, do not hesitate to drop me an email ([email protected]) or tweet: @bytebot
Percona ServerをMySQL 5.6と5.7用に作るエンジニアリング(そしてMongoDBのヒント)Colin Charles
Engineering that goes into making Percona Server for MySQL 5.6 & 5.7 different (and a hint of MongoDB) for dbtechshowcase 2017 - the slides also have some Japanese in it. This should help a Japanese audience to read it. If there are questions due to poor translation, do not hesitate to drop me an email ([email protected]) or tweet: @bytebot
This document introduces Hivemall, an open-source machine learning library built as a collection of Hive user-defined functions (UDFs). Hivemall allows users to perform scalable machine learning on large datasets stored in Hive/Hadoop. It supports various classification, regression, recommendation, and feature engineering algorithms. Some key algorithms include logistic regression, matrix factorization, random forests, and anomaly detection. Hivemall is designed to perform machine learning efficiently by avoiding intermediate data reads/writes to HDFS. It has been used in industry for applications such as click-through rate prediction, churn detection, and product recommendation.
Presto is a fast, distributed SQL query engine that allows for ad-hoc queries against data sources like Cassandra, Hive, Kafka and others. It uses a pluggable connector architecture that allows it to connect to different data sources. Presto's query execution is distributed across worker nodes and queries are compiled to Java bytecode for efficient execution. Some limitations of Presto include its inability to handle large joins and lack of fault tolerance.
[db tech showcase Tokyo 2015] C32:「データ一貫性にこだわる日立のインメモリ分散KVS~こだわりの理由と実現方法とは~」 ...Insight Technology, Inc.
分散KVSの特徴や使い方、分散KVS製品の選択指標である「一貫性」と「可用性」を解説します。また日立が開発したインメモリ分散KVS【Hitachi Elastic Application Data Store(EADS)】とその活用事例を紹介しつつ、EADSが「一貫性」にこだわる理由と、「一貫性」を実現するポイントとなったPaxosなど製品で使用されている技術についてお話しします。
[db tech showcase Tokyo 2015] B24:最高峰の可用性 ~NonStop SQLが止まらない理由~ by 日本ヒューレット・パ...Insight Technology, Inc.
Jim GrayにJerry Held, Karel Youseffi が設計した Ingresを源流に持つ由緒正しいRDBMS。ミッションクリティカル目的にこんな実装をするNonStop SQL。これを知れば絶対に使ってみたくなる。「止まりませんように」、と祈りつつ使う時代は終わりにしませんか。トランザクションをあらゆる障害でも失わない実装、その時メモリー内でどのように動くのか、ディスクドライバーは信用できるのか、トランザクションを失わず、性能も確保、そんな盾矛を両立させる技術をご紹介します。さらに、「それって古臭くない」、そんなことないんです。今やオープンなインターフェイスで開発いただいて結構なんです。インフラが、NonStop SQL があなたのデータをがっちり守ります、「ひと」ではなく「コンピュータ」が。是非実感しに来てください。
[db tech showcase Tokyo 2015] D25:The difference between logical and physical...Insight Technology, Inc.
This document discusses the differences between physical and logical database replication in Oracle. It begins with introductions and an overview of Dbvisit Software. The main sections summarize physical replication, logical replication, and compare the two approaches. Physical replication uses complete redo blocks to keep the target database identical to the source. Logical replication mines redo logs and converts the information to SQL statements to replicate the data. The document outlines the advantages and disadvantages of each approach and how they work at a technical level.
[db tech showcase Tokyo 2015] C16:Oracle Disaster Recovery at New Zealand sto...Insight Technology, Inc.
This document provides an agenda and introduction for a presentation on disaster recovery using physical replication technology. The presentation will include an overview of Dbvisit Standby software, which enables disaster recovery for Oracle Standard Edition databases. It will also present a case study of how the New Zealand Stock Exchange uses Dbvisit Standby to ensure continuous availability of critical trading systems across two data centers.
Neo4jは、グラフ理論をデータベースエンジンの設計思想として採用しているDBMS (Data Base Management System)です。特にNeo4jが、他のグラフデータベースに比べ、一目をおいていることは、データ処理にCypherというSQLライクなクエリ言語が使えるということです。Cypherは、関係型データベースでさえ苦手とするとても複雑なジョインが絡む処理や、そもそもSQLではアルゴリズムの限界があるデータ処理にも対応できます。