SlideShare a Scribd company logo
Introduction to Deep Learning
BayPiggies Meetup 08/23/2018
LinkedIn Sunnyvale
Unify Meeting Room
Oswald Campesato
ocampesato@yahoo.com
Highlights/Overview
intro to AI/ML/DL/NNs
Hidden layers
Initialization values
Neurons per layer
Activation function
cost function
gradient descent
learning rate
Dropout rate
what are CNNs
The Data/AI Landscape
Use Cases for Deep Learning
computer vision
speech recognition
image processing
bioinformatics
social network filtering
drug design
Recommendation systems
Bioinformatics
Mobile Advertising
Many others
NN 3 Hidden Layers: Classifier
NN: 2 Hidden Layers (Regression)
Classification and Deep Learning
A Basic Model in Machine Learning
Let’s perform the following steps:
1) Start with a simple model (2 variables)
2) Generalize that model (n variables)
3) See how it might apply to a NN
Linear Regression
One of the simplest models in ML
Fits a line (y = m*x + b) to data in 2D
Finds best line by minimizing MSE:
m = slope of the best-fitting line
b = y-intercept of the best-fitting line
Linear Regression in 2D: example
Linear Regression in 2D: example
Sample Cost Function #1 (MSE)
Linear Regression: example #1
One feature (independent variable):
X = number of square feet
Predicted value (dependent variable):
Y = cost of a house
A very “coarse grained” model
We can devise a much better model
Linear Regression: example #2
Multiple features:
X1 = # of square feet
X2 = # of bedrooms
X3 = # of bathrooms (dependency?)
X4 = age of house
X5 = cost of nearby houses
X6 = corner lot (or not): Boolean
a much better model (6 features)
Linear Multivariate Analysis
General form of multivariate equation:
Y = w1*x1 + w2*x2 + . . . + wn*xn + b
w1, w2, . . . , wn are numeric values
x1, x2, . . . , xn are variables (features)
Properties of variables:
Can be independent (Naïve Bayes)
weak/strong dependencies can exist
NN with 3 Hidden Layers (again)
Neural Networks: equations
Node “values” in first hidden layer:
N1 = w11*x1+w21*x2+…+wn1*xn
N2 = w12*x1+w22*x2+…+wn2*xn
N3 = w13*x1+w23*x2+…+wn3*xn
. . .
Nn = w1n*x1+w2n*x2+…+wnn*xn
Similar equations for other pairs of layers
Neural Networks: Matrices
From inputs to first hidden layer:
Y1 = W1*X + B1 (X/Y1/B1: vectors; W1: matrix)
From first to second hidden layers:
Y2 = W2*X + B2 (X/Y2/B2: vectors; W2: matrix)
From second to third hidden layers:
Y3 = W3*X + B3 (X/Y3/B3: vectors; W3: matrix)
 Apply an “activation function” to y values
Neural Networks (general)
Multiple hidden layers:
Layer composition is your decision
Activation functions: sigmoid, tanh, RELU
https://en.wikipedia.org/wiki/Activation_function
Back propagation (1980s)
https://en.wikipedia.org/wiki/Backpropagation
=> Initial weights: small random numbers
Euler’s Function (e: 2.71828. . .)
The sigmoid Activation Function
The tanh Activation Function
The ReLU Activation Function
The softmax Activation Function
Activation Functions in Python
import numpy as np
...
# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))
...
# Python tanh example:
z = np.tanh(np.dot(W,x));
# Python ReLU example:
z = np.maximum(0, np.dot(W, x))
What’s the “Best” Activation Function?
Initially: sigmoid was popular
Then: tanh became popular
Now: RELU is preferred (better results)
Softmax: for FC (fully connected) layers
NB: sigmoid and tanh are used in LSTMs
Types of Cost/Error Functions
MSE (mean-squared error)
Cross-entropy
exponential
others
Sample Cost Function #1 (MSE)
Sample Cost Function #2
Sample Cost Function #3
How to Select a Cost Function
mean-squared error:
for a regression problem
binary cross-entropy (or mse):
for a two-class classification problem
categorical cross-entropy:
for a many-class classification problem
Types of Optimizers
SGD
rmsprop
Adagrad
Adam
Others
http://cs229.stanford.edu/notes/cs229-notes1.pdf
GD versus SGD
SGD (Stochastic Gradient Descent):
+ one row of data
Minibatch:
involves a SUBSET of the dataset
+ aka Minibatch Stochastic Gradient Descent
GD (Gradient Descent):
+ involves the ENTIRE dataset
More details:
http://cs229.stanford.edu/notes/cs229-notes1.pdf
Setting up Data & the Model
standardize the data:
Subtract the ‘mean’ and divide by stddev
Initial weight values for NNs:
random(0,1) or N(0,1) or N(0/(1/n))
More details:
http://cs231n.github.io/neural-networks-2/#losses
Deep Neural Network: summary
 input layer, multiple hidden layers, and output layer
 nonlinear processing via activation functions
 perform transformation and feature extraction
 gradient descent algorithm with back propagation
 each layer receives the output from previous layer
 results are comparable/superior to human experts
Types of Deep Learning
 Supervised learning (you know the answer)
 unsupervised learning (you don’t know the answer)
 Semi-supervised learning (mixed dataset)
 Reinforcement learning (such as games)
 Types of algorithms:
 Classifiers (detect images, spam, fraud, etc)
 Regression (predict stock price, housing price, etc)
 Clustering (unsupervised classifiers)
CNNs versus RNNs
CNNs (Convolutional NNs):
Good for image processing
2000: CNNs processed 10-20% of all checks
=> Approximately 60% of all NNs
RNNs (Recurrent NNs):
Good for NLP and audio
Used in hybrid networks
CNNs: Convolution, ReLU, and Max Pooling
CNNs: Convolution Calculations
https://docs.gimp.org/en/plug-in-convmatrix.html
CNNs: Convolution Matrices (examples)
Sharpen:
Blur:
CNNs: Convolution Matrices (examples)
Edge detect:
Emboss:
CNNs: Max Pooling Example
GANs: Generative Adversarial Networks
GANs: Generative Adversarial Networks
Make imperceptible changes to images
Can consistently defeat all NNs
Can have extremely high error rate
Some images create optical illusions
https://www.quora.com/What-are-the-pros-and-cons-
of-using-generative-adversarial-networks-a-type-of-
neural-network
GANs: Generative Adversarial Networks
Create your own GANs:
https://www.oreilly.com/learning/generative-adversarial-networks-for-
beginners
https://github.com/jonbruner/generative-adversarial-networks
GANs from MNIST:
http://edwardlib.org/tutorials/gan
GANs and Capsule networks?
CNN in Python/Keras (fragment)
 from keras.models import Sequential
 from keras.layers.core import Dense, Dropout, Activation
 from keras.layers.convolutional import Conv2D, MaxPooling2D
 from keras.optimizers import Adadelta
 input_shape = (3, 32, 32)
 nb_classes = 10
 model = Sequential()
 model.add(Conv2D(32,(3, 3),padding='same’,
input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Conv2D(32, (3, 3)))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))
What is TensorFlow?
An open source framework for ML and DL
A “computation” graph
Created by Google (released 11/2015)
Evolved from Google Brain
Linux and Mac OS X support (VM for Windows)
TF home page: https://www.tensorflow.org/
What is TensorFlow?
Support for Python, Java, C++
Desktop, server, mobile device (TensorFlow Lite)
CPU/GPU/TPU support
Visualization via TensorBoard
Can be embedded in Python scripts
Installation: pip install tensorflow
TensorFlow cluster:
https://www.tensorflow.org/deploy/distributed
TensorFlow Use Cases (Generic)
Image recognition
Computer vision
Voice/sound recognition
Time series analysis
Language detection
Language translation
Text-based processing
Handwriting Recognition
Aspects of TensorFlow
Graph: graph of operations (DAG)
Sessions: contains Graph(s)
lazy execution (default)
operations in parallel (default)
Nodes: operators/variables/constants
Edges: tensors
=> graphs are split into subgraphs and
executed in parallel (or multiple CPUs)
TensorFlow Graph Execution
Execute statements in a tf.Session() object
Invoke the “run” method of that object
“eager” execution is available (>= v1.4)
included in the mainline (v1.7)
Installation: pip install tensorflow
What is a Tensor?
TF tensors are n-dimensional arrays
TF tensors are very similar to numpy ndarrays
scalar number: a zeroth-order tensor
vector: a first-order tensor
matrix: a second-order tensor
3-dimensional array: a 3rd order tensor
https://dzone.com/articles/tensorflow-simplified-
examples
TensorFlow “primitive types”
tf.constant:
+ initialized immediately
+ immutable
tf.placeholder (a function):
+ initial value is not required
+ can have variable shape
+ assigned value via feed_dict at run time
+ receive data from “external” sources
TensorFlow “primitive types”
tf.Variable (a class):
+ initial value is required
+ updated during training
+ maintain state across calls to “run()”
+ in-memory buffer (saved/restored from disk)
+ can be shared in a distributed environment
+ they hold learned parameters of a model
TensorFlow: constants (immutable)
 import tensorflow as tf
 aconst = tf.constant(3.0)
 print(aconst)
# output: Tensor("Const:0", shape=(), dtype=float32)
 sess = tf.Session()
 print(sess.run(aconst))
# output: 3.0
 sess.close()
 # => there's a better way
TensorFlow: constants
import tensorflow as tf
aconst = tf.constant(3.0)
print(aconst)
Automatically close “sess”
with tf.Session() as sess:
 print(sess.run(aconst))
TensorFlow Arithmetic
import tensorflow as tf
a = tf.add(4, 2)
b = tf.subtract(8, 6)
c = tf.multiply(a, 3)
d = tf.div(a, 6)
with tf.Session() as sess:
print(sess.run(a)) # 6
print(sess.run(b)) # 2
print(sess.run(c)) # 18
print(sess.run(d)) # 1
TensorFlow Arithmetic Methods
import tensorflow as tf
PI = 3.141592
sess = tf.Session()
print(sess.run(tf.div(12,8)))
print(sess.run(tf.floordiv(20.0,8.0)))
print(sess.run(tf.sin(PI)))
print(sess.run(tf.cos(PI)))
print(sess.run(tf.div(tf.sin(PI/4.),tf.cos(PI/4.))))
TensorFlow Arithmetic Methods
Output from previous slide:
1
2.0
6.27833e-07
-1.0
1.0
TF placeholders and feed_dict
import tensorflow as tf
a = tf.placeholder("float")
b = tf.placeholder("float")
c = tf.multiply(a,b)
# initialize a and b:
feed_dict = {a:2, b:3}
# multiply a and b:
with tf.Session() as sess:
print(sess.run(c, feed_dict))
TensorFlow: Simple Equation
import tensorflow as tf
# W and x are 1d arrays
W = tf.constant([10,20], name='W')
X = tf.placeholder(tf.int32, name='x')
b = tf.placeholder(tf.int32, name='b')
Wx = tf.multiply(W, x, name='Wx')
y = tf.add(Wx, b, name='y') OR
y2 = tf.add(tf.multiply(W,x),b)
TensorFlow fetch/feed_dict
with tf.Session() as sess:
print("Result 1: Wx = ",
sess.run(Wx, feed_dict={x:[5,10]}))
print("Result 2: y = ",
sess.run(y,feed_dict={x:[5,10],b:[15,25]}))
 Result 1: Wx = [50 200]
 Result 2: y = [65 225]
TensorFlow: Linear Regression
import tensorflow as tf
import numpy
rng = numpy.random
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model (pred = predicted value):
pred = tf.add(tf.mul(X, W), b)
Saving Graphs for TensorBoard
import tensorflow as tf
x = tf.constant(5,name="x")
y = tf.constant(8,name="y")
z = tf.Variable(2*x+3*y, name="z")
init = tf.global_variables_initializer()
with tf.Session() as session:
writer = tf.summary.FileWriter("./tf_logs",session.graph)
session.run(init)
print 'z = ',session.run(z) # => z = 34
# launch: tensorboard –logdir=./tf_logs
TensorFlow Eager Execution
An imperative interface to TF
Fast debugging & immediate run-time errors
Eager execution is “mainline” in v1.7 of TF
=> requires Python 3.x (not Python 2.x)
TensorFlow Eager Execution
integration with Python tools
Supports dynamic models + Python control flow
support for custom and higher-order gradients
Supports most TensorFlow operations
https://research.googleblog.com/2017/10/eager-
execution-imperative-define-by.html
TensorFlow Eager Execution
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
x = [[2.]]
m = tf.matmul(x, x)
print(m)
# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
Deep Learning and Art/”Stuff”
“Convolutional Blending” images:
=> 19-layer Convolutional Neural Network
www.deepart.io
https://www.fastcodesign.com/90124942/this-google-
engineer-taught-an-algorithm-to-make-train-footage-
and-its-hypnotic
Some of my Books
1) HTML5 Canvas and CSS3 Graphics (2013)
2) jQuery, CSS3, and HTML5 for Mobile (2013)
3) HTML5 Pocket Primer (2013)
4) jQuery Pocket Primer (2013)
5) HTML5 Mobile Pocket Primer (2014)
6) D3 Pocket Primer (2015)
7) Python Pocket Primer (2015)
8) SVG Pocket Primer (2016)
9) CSS3 Pocket Primer (2016)
10) Android Pocket Primer (2017)
11) Angular Pocket Primer (2017)
12) Data Cleaning Pocket Primer (2018)
13) RegEx Pocket Primer (2018)
What I do (Training)
=> Instructor at UCSC:
Deep Learning with TensorFlow (10/2018 & 02/2019)
Machine Learning Introduction (01/17/2019)
=> Mobile and TensorFlow Lite (WIP)
=> R and Deep Learning (WIP)
=> Android for Beginners (multi-day workshops)

More Related Content

What's hot (20)

PPTX
TypeScript and Deep Learning
Oswald Campesato
 
PPTX
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
PPTX
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
PPTX
Tutorial on convolutional neural networks
Hojin Yang
 
PPTX
Deep Learning in Your Browser
Oswald Campesato
 
PDF
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
PDF
Convolution Neural Networks
AhmedMahany
 
PDF
Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PPTX
Review on cs231 part-2
Jeong Choi
 
PDF
Recurrent Neural Networks (DLAI D7L1 2017 UPC Deep Learning for Artificial In...
Universitat Politècnica de Catalunya
 
PDF
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PPTX
FUNCTION APPROXIMATION
ankita pandey
 
PPTX
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Universitat Politècnica de Catalunya
 
PPTX
Rabbit challenge 5_dnn3
TOMMYLINK1
 
PDF
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Universitat Politècnica de Catalunya
 
PDF
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Universitat Politècnica de Catalunya
 
PDF
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PPTX
Deep Learning and TensorFlow
Oswald Campesato
 
PDF
Paper_KST
Sarun Maksuanpan
 
TypeScript and Deep Learning
Oswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Tutorial on convolutional neural networks
Hojin Yang
 
Deep Learning in Your Browser
Oswald Campesato
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
Convolution Neural Networks
AhmedMahany
 
Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Review on cs231 part-2
Jeong Choi
 
Recurrent Neural Networks (DLAI D7L1 2017 UPC Deep Learning for Artificial In...
Universitat Politècnica de Catalunya
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
FUNCTION APPROXIMATION
ankita pandey
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Universitat Politècnica de Catalunya
 
Rabbit challenge 5_dnn3
TOMMYLINK1
 
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Universitat Politècnica de Catalunya
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Universitat Politècnica de Catalunya
 
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Deep Learning and TensorFlow
Oswald Campesato
 
Paper_KST
Sarun Maksuanpan
 

Similar to Deep Learning and TensorFlow (20)

PPTX
Introduction to Deep Learning
Oswald Campesato
 
PPTX
TensorFlow in Your Browser
Oswald Campesato
 
PDF
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
PPTX
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
PPTX
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
PPTX
Introduction to Deep Learning and Tensorflow
Oswald Campesato
 
PPTX
H2 o berkeleydltf
Oswald Campesato
 
PPTX
Angular and Deep Learning
Oswald Campesato
 
PPTX
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
PPTX
Android and Deep Learning
Oswald Campesato
 
PPTX
D3, TypeScript, and Deep Learning
Oswald Campesato
 
PPTX
D3, TypeScript, and Deep Learning
Oswald Campesato
 
PPTX
Introduction to deep learning
Junaid Bhat
 
PPTX
Deep learning (2)
Muhanad Al-khalisy
 
PPTX
Speech Processing with deep learning
Mohamed Essam
 
PPTX
Neural networks and deep learning
RADO7900
 
PDF
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
PPTX
Introduction_to_Deep_learning_Standford_university by Angelica Sun
ssuser36b130
 
PPTX
lec26.pptx
SwatiMahale4
 
PPTX
Deep learning from a novice perspective
Anirban Santara
 
Introduction to Deep Learning
Oswald Campesato
 
TensorFlow in Your Browser
Oswald Campesato
 
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
Introduction to Deep Learning and Tensorflow
Oswald Campesato
 
H2 o berkeleydltf
Oswald Campesato
 
Angular and Deep Learning
Oswald Campesato
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
Android and Deep Learning
Oswald Campesato
 
D3, TypeScript, and Deep Learning
Oswald Campesato
 
D3, TypeScript, and Deep Learning
Oswald Campesato
 
Introduction to deep learning
Junaid Bhat
 
Deep learning (2)
Muhanad Al-khalisy
 
Speech Processing with deep learning
Mohamed Essam
 
Neural networks and deep learning
RADO7900
 
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
Introduction_to_Deep_learning_Standford_university by Angelica Sun
ssuser36b130
 
lec26.pptx
SwatiMahale4
 
Deep learning from a novice perspective
Anirban Santara
 
Ad

More from Oswald Campesato (7)

PPTX
Working with tf.data (TF 2)
Oswald Campesato
 
PPTX
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
PPTX
Introduction to TensorFlow 2
Oswald Campesato
 
PPTX
Introduction to TensorFlow 2
Oswald Campesato
 
PPTX
"An Introduction to AI and Deep Learning"
Oswald Campesato
 
PPTX
Introduction to Deep Learning for Non-Programmers
Oswald Campesato
 
PPTX
Introduction to Kotlin
Oswald Campesato
 
Working with tf.data (TF 2)
Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2
Oswald Campesato
 
"An Introduction to AI and Deep Learning"
Oswald Campesato
 
Introduction to Deep Learning for Non-Programmers
Oswald Campesato
 
Introduction to Kotlin
Oswald Campesato
 
Ad

Recently uploaded (20)

PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PPTX
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
PDF
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
Impact of IEEE Computer Society in Advancing Emerging Technologies including ...
Hironori Washizaki
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
PPTX
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
PDF
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
PDF
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PPTX
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
Impact of IEEE Computer Society in Advancing Emerging Technologies including ...
Hironori Washizaki
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 

Deep Learning and TensorFlow

  • 1. Introduction to Deep Learning BayPiggies Meetup 08/23/2018 LinkedIn Sunnyvale Unify Meeting Room Oswald Campesato [email protected]
  • 2. Highlights/Overview intro to AI/ML/DL/NNs Hidden layers Initialization values Neurons per layer Activation function cost function gradient descent learning rate Dropout rate what are CNNs
  • 4. Use Cases for Deep Learning computer vision speech recognition image processing bioinformatics social network filtering drug design Recommendation systems Bioinformatics Mobile Advertising Many others
  • 5. NN 3 Hidden Layers: Classifier
  • 6. NN: 2 Hidden Layers (Regression)
  • 8. A Basic Model in Machine Learning Let’s perform the following steps: 1) Start with a simple model (2 variables) 2) Generalize that model (n variables) 3) See how it might apply to a NN
  • 9. Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = slope of the best-fitting line b = y-intercept of the best-fitting line
  • 10. Linear Regression in 2D: example
  • 11. Linear Regression in 2D: example
  • 13. Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model
  • 14. Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)
  • 15. Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist
  • 16. NN with 3 Hidden Layers (again)
  • 17. Neural Networks: equations Node “values” in first hidden layer: N1 = w11*x1+w21*x2+…+wn1*xn N2 = w12*x1+w22*x2+…+wn2*xn N3 = w13*x1+w23*x2+…+wn3*xn . . . Nn = w1n*x1+w2n*x2+…+wnn*xn Similar equations for other pairs of layers
  • 18. Neural Networks: Matrices From inputs to first hidden layer: Y1 = W1*X + B1 (X/Y1/B1: vectors; W1: matrix) From first to second hidden layers: Y2 = W2*X + B2 (X/Y2/B2: vectors; W2: matrix) From second to third hidden layers: Y3 = W3*X + B3 (X/Y3/B3: vectors; W3: matrix)  Apply an “activation function” to y values
  • 19. Neural Networks (general) Multiple hidden layers: Layer composition is your decision Activation functions: sigmoid, tanh, RELU https://en.wikipedia.org/wiki/Activation_function Back propagation (1980s) https://en.wikipedia.org/wiki/Backpropagation => Initial weights: small random numbers
  • 20. Euler’s Function (e: 2.71828. . .)
  • 25. Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))
  • 26. What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs
  • 27. Types of Cost/Error Functions MSE (mean-squared error) Cross-entropy exponential others
  • 31. How to Select a Cost Function mean-squared error: for a regression problem binary cross-entropy (or mse): for a two-class classification problem categorical cross-entropy: for a many-class classification problem
  • 33. GD versus SGD SGD (Stochastic Gradient Descent): + one row of data Minibatch: involves a SUBSET of the dataset + aka Minibatch Stochastic Gradient Descent GD (Gradient Descent): + involves the ENTIRE dataset More details: http://cs229.stanford.edu/notes/cs229-notes1.pdf
  • 34. Setting up Data & the Model standardize the data: Subtract the ‘mean’ and divide by stddev Initial weight values for NNs: random(0,1) or N(0,1) or N(0/(1/n)) More details: http://cs231n.github.io/neural-networks-2/#losses
  • 35. Deep Neural Network: summary  input layer, multiple hidden layers, and output layer  nonlinear processing via activation functions  perform transformation and feature extraction  gradient descent algorithm with back propagation  each layer receives the output from previous layer  results are comparable/superior to human experts
  • 36. Types of Deep Learning  Supervised learning (you know the answer)  unsupervised learning (you don’t know the answer)  Semi-supervised learning (mixed dataset)  Reinforcement learning (such as games)  Types of algorithms:  Classifiers (detect images, spam, fraud, etc)  Regression (predict stock price, housing price, etc)  Clustering (unsupervised classifiers)
  • 37. CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio Used in hybrid networks
  • 38. CNNs: Convolution, ReLU, and Max Pooling
  • 40. CNNs: Convolution Matrices (examples) Sharpen: Blur:
  • 41. CNNs: Convolution Matrices (examples) Edge detect: Emboss:
  • 42. CNNs: Max Pooling Example
  • 44. GANs: Generative Adversarial Networks Make imperceptible changes to images Can consistently defeat all NNs Can have extremely high error rate Some images create optical illusions https://www.quora.com/What-are-the-pros-and-cons- of-using-generative-adversarial-networks-a-type-of- neural-network
  • 45. GANs: Generative Adversarial Networks Create your own GANs: https://www.oreilly.com/learning/generative-adversarial-networks-for- beginners https://github.com/jonbruner/generative-adversarial-networks GANs from MNIST: http://edwardlib.org/tutorials/gan GANs and Capsule networks?
  • 46. CNN in Python/Keras (fragment)  from keras.models import Sequential  from keras.layers.core import Dense, Dropout, Activation  from keras.layers.convolutional import Conv2D, MaxPooling2D  from keras.optimizers import Adadelta  input_shape = (3, 32, 32)  nb_classes = 10  model = Sequential()  model.add(Conv2D(32,(3, 3),padding='same’, input_shape=input_shape))  model.add(Activation('relu'))  model.add(Conv2D(32, (3, 3)))  model.add(Activation('relu'))  model.add(MaxPooling2D(pool_size=(2, 2)))  model.add(Dropout(0.25))
  • 47. What is TensorFlow? An open source framework for ML and DL A “computation” graph Created by Google (released 11/2015) Evolved from Google Brain Linux and Mac OS X support (VM for Windows) TF home page: https://www.tensorflow.org/
  • 48. What is TensorFlow? Support for Python, Java, C++ Desktop, server, mobile device (TensorFlow Lite) CPU/GPU/TPU support Visualization via TensorBoard Can be embedded in Python scripts Installation: pip install tensorflow TensorFlow cluster: https://www.tensorflow.org/deploy/distributed
  • 49. TensorFlow Use Cases (Generic) Image recognition Computer vision Voice/sound recognition Time series analysis Language detection Language translation Text-based processing Handwriting Recognition
  • 50. Aspects of TensorFlow Graph: graph of operations (DAG) Sessions: contains Graph(s) lazy execution (default) operations in parallel (default) Nodes: operators/variables/constants Edges: tensors => graphs are split into subgraphs and executed in parallel (or multiple CPUs)
  • 51. TensorFlow Graph Execution Execute statements in a tf.Session() object Invoke the “run” method of that object “eager” execution is available (>= v1.4) included in the mainline (v1.7) Installation: pip install tensorflow
  • 52. What is a Tensor? TF tensors are n-dimensional arrays TF tensors are very similar to numpy ndarrays scalar number: a zeroth-order tensor vector: a first-order tensor matrix: a second-order tensor 3-dimensional array: a 3rd order tensor https://dzone.com/articles/tensorflow-simplified- examples
  • 53. TensorFlow “primitive types” tf.constant: + initialized immediately + immutable tf.placeholder (a function): + initial value is not required + can have variable shape + assigned value via feed_dict at run time + receive data from “external” sources
  • 54. TensorFlow “primitive types” tf.Variable (a class): + initial value is required + updated during training + maintain state across calls to “run()” + in-memory buffer (saved/restored from disk) + can be shared in a distributed environment + they hold learned parameters of a model
  • 55. TensorFlow: constants (immutable)  import tensorflow as tf  aconst = tf.constant(3.0)  print(aconst) # output: Tensor("Const:0", shape=(), dtype=float32)  sess = tf.Session()  print(sess.run(aconst)) # output: 3.0  sess.close()  # => there's a better way
  • 56. TensorFlow: constants import tensorflow as tf aconst = tf.constant(3.0) print(aconst) Automatically close “sess” with tf.Session() as sess:  print(sess.run(aconst))
  • 57. TensorFlow Arithmetic import tensorflow as tf a = tf.add(4, 2) b = tf.subtract(8, 6) c = tf.multiply(a, 3) d = tf.div(a, 6) with tf.Session() as sess: print(sess.run(a)) # 6 print(sess.run(b)) # 2 print(sess.run(c)) # 18 print(sess.run(d)) # 1
  • 58. TensorFlow Arithmetic Methods import tensorflow as tf PI = 3.141592 sess = tf.Session() print(sess.run(tf.div(12,8))) print(sess.run(tf.floordiv(20.0,8.0))) print(sess.run(tf.sin(PI))) print(sess.run(tf.cos(PI))) print(sess.run(tf.div(tf.sin(PI/4.),tf.cos(PI/4.))))
  • 59. TensorFlow Arithmetic Methods Output from previous slide: 1 2.0 6.27833e-07 -1.0 1.0
  • 60. TF placeholders and feed_dict import tensorflow as tf a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed_dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed_dict))
  • 61. TensorFlow: Simple Equation import tensorflow as tf # W and x are 1d arrays W = tf.constant([10,20], name='W') X = tf.placeholder(tf.int32, name='x') b = tf.placeholder(tf.int32, name='b') Wx = tf.multiply(W, x, name='Wx') y = tf.add(Wx, b, name='y') OR y2 = tf.add(tf.multiply(W,x),b)
  • 62. TensorFlow fetch/feed_dict with tf.Session() as sess: print("Result 1: Wx = ", sess.run(Wx, feed_dict={x:[5,10]})) print("Result 2: y = ", sess.run(y,feed_dict={x:[5,10],b:[15,25]}))  Result 1: Wx = [50 200]  Result 2: y = [65 225]
  • 63. TensorFlow: Linear Regression import tensorflow as tf import numpy rng = numpy.random # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model (pred = predicted value): pred = tf.add(tf.mul(X, W), b)
  • 64. Saving Graphs for TensorBoard import tensorflow as tf x = tf.constant(5,name="x") y = tf.constant(8,name="y") z = tf.Variable(2*x+3*y, name="z") init = tf.global_variables_initializer() with tf.Session() as session: writer = tf.summary.FileWriter("./tf_logs",session.graph) session.run(init) print 'z = ',session.run(z) # => z = 34 # launch: tensorboard –logdir=./tf_logs
  • 65. TensorFlow Eager Execution An imperative interface to TF Fast debugging & immediate run-time errors Eager execution is “mainline” in v1.7 of TF => requires Python 3.x (not Python 2.x)
  • 66. TensorFlow Eager Execution integration with Python tools Supports dynamic models + Python control flow support for custom and higher-order gradients Supports most TensorFlow operations https://research.googleblog.com/2017/10/eager- execution-imperative-define-by.html
  • 67. TensorFlow Eager Execution import tensorflow as tf import tensorflow.contrib.eager as tfe tfe.enable_eager_execution() x = [[2.]] m = tf.matmul(x, x) print(m) # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
  • 68. Deep Learning and Art/”Stuff” “Convolutional Blending” images: => 19-layer Convolutional Neural Network www.deepart.io https://www.fastcodesign.com/90124942/this-google- engineer-taught-an-algorithm-to-make-train-footage- and-its-hypnotic
  • 69. Some of my Books 1) HTML5 Canvas and CSS3 Graphics (2013) 2) jQuery, CSS3, and HTML5 for Mobile (2013) 3) HTML5 Pocket Primer (2013) 4) jQuery Pocket Primer (2013) 5) HTML5 Mobile Pocket Primer (2014) 6) D3 Pocket Primer (2015) 7) Python Pocket Primer (2015) 8) SVG Pocket Primer (2016) 9) CSS3 Pocket Primer (2016) 10) Android Pocket Primer (2017) 11) Angular Pocket Primer (2017) 12) Data Cleaning Pocket Primer (2018) 13) RegEx Pocket Primer (2018)
  • 70. What I do (Training) => Instructor at UCSC: Deep Learning with TensorFlow (10/2018 & 02/2019) Machine Learning Introduction (01/17/2019) => Mobile and TensorFlow Lite (WIP) => R and Deep Learning (WIP) => Android for Beginners (multi-day workshops)