SlideShare a Scribd company logo
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
@DocXavi
Deep Learning for Computer Vision
Object Analytics
5 May 2016
Xavier Giró-i-Nieto
Master en
Creació Multimedia
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in three parts
2
Images (global) Objects (local)
Deep ConvNets for Recognition for...
Video (2D+T)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
3
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
4
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: Hand-crafted
5
Slides credit:
Marc Bolaños
Hand-crafted proposals used to be based on bottom-up proposals.
Selective Search (SS) Multiscale Combinatorial Grouping (MCG)
[SS] Uijlings, Jasper RR, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeulders. "Selective search for object
recognition." International journal of computer vision 104, no. 2 (2013): 154-171.
[MCG] Arbeláez, Pablo, Jordi Pont-Tuset, Jonathan Barron, Ferran Marques, and Jitendra Malik. "Multiscale combinatorial
grouping." CVPR 2014.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox
6
Kuo, Weicheng, Bharath Hariharan, and Jitendra Malik. "Deepbox: Learning objectness with convolutional
networks." ICCV 2015. [software]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox
7
Slides credit:
Marc Bolaños
Deepbox proposes a very simple method:
1) Use a state-of-the-art method (Edge Box) to generate initial object proposals.
2) Rerank them (and possibly discard them) by using DeepBox.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Architecture
8
Slides credit:
Marc Bolaños
PASCAL VOC
AUC = 0.75, IoU = 0.5
AUC = 0.62, IoU = 0.7
PASCAL VOC
AUC = 0.74, IoU = 0.5
AUC = 0.60, IoU = 0.7
AlexNet
architecture
(heavier)
DeepBox
architecture
(lighter)
Small
drop
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Training
9
Slides credit:
Marc Bolaños
1) Initialize layers with AlexNet weights. 3) Train on Hard Negatives
2) Train on Sliding Windows
Negative Samples:
Extract windows by raster scanning.
Positive Samples:
Having GT bounding boxes, they
generate samples per instance
with a perturbation of:
By using bottom-up proposals from Edge
boxes:
If GT overlap threshold <= 0.3 → Negative
Samples
If GT overlap threshold >= 0.7 → Positive
Samples:
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Results
10
DeepBox Edge Boxes DeepBox Edge Boxes
Slides credit:
Marc Bolaños
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Results
11
With a rather simple approach ConvNets can obtain much better results than
previous techniques for Object Proposals.
Slides credit:
Marc Bolaños
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Results
12
Slides credit:
Marc Bolaños
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Proposals: DeepBox: Results
13
Increasing not only Detection capabilities of known classes, but also of unknown ones
(suitable for Object Discovery).
Slides credit:
Marc Bolaños
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
14
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects
15
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects
16
DPM (HOG features)[1] R-CNN [2] SPPnet [3]
Hand-crafted features Deep features
+60 %
Slide credit:
Amaia Salvador
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects
17
Girshick, Ross, Forrest Iandola, Trevor Darrell, and Jitendra Malik. "Deformable Part Models are
Convolutional Neural Networks." CVPR 2015
Convnets (CNNs) actually learn similar detectors to the ones learned by
Deformable Parts-based Models (DPMs)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: R-CNN
18
Girshick, R., Donahue, J., Darrell, T., & Malik, J. . Rich feature hierarchies for accurate
object detection and semantic segmentation. CVPR 2014
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: R-CNN
19
Slide credit:
Joost van de Weijer
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: R-CNN
20
Slide credit:
Joost van de Weijer
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: R-CNN
21
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
22
Girshick, Ross. "Fast R-CNN." ICCV 2015.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
23
Slide credit:
Amaia Salvador
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
24
Slide credit:
Amaia Salvador
Same as SPP[3], but single scale
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
25
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid pooling in deep convolutional
networks for visual recognition." PAMI 2015.
Slide credit:
Joost van de Weijer
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
26
Slide credit:
Amaia Salvador
H
h
w
h
w
Size of pooling bins:
h / H’ x w/ W’
w/W’
h/H’
max pooling
CONV5
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
27
Slide credit:
Amaia Salvador
AlexNet [4], VGG16 [5], VGG_1024 [6]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Fast R-CNN
28
Slide credit:
Amaia Salvador
Multi-task loss
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
29
Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster R-CNN: Towards real-time
object detection with region proposal networks. In Advances in Neural Information
Processing Systems (pp. 91-99). [Python code] [Matlab code]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
30
Slide credit:
Amaia Salvador
Selective Search CPMC
MCG
Object Proposal computation is the bottleneck in
current state of the art object detection systems
Selective Search. Van de Sande, K. E., Uijlings, J. R., Gevers, T., & Smeulders, A. W. (2011, November). Segmentation as selective search for object
recognition. InComputer Vision (ICCV), 2011 IEEE International Conference on (pp. 1879-1886). IEEE.
CPMC. Carreira, J., & Sminchisescu, C. (2010, June). Constrained parametric min-cuts for automatic object segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 3241-3248). IEEE.
MCG. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., & Malik, J. (2014). Multiscale combinatorial grouping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 328-335).
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
31
Slide credit:
Amaia Salvador
Selective Search CPMC
MCG
Replace the usage of external Object Proposals
with a Region Proposal Network (RPN).
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
32
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN RPN Proposals
RPN Proposals
Class probabilities
RoI pooling layer
FC layers
Class scores
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
33
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN RPN Proposals
RPN Proposals
Class probabilities
RoI pooling layer
FC layers
Class scores
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
34
Slide credit:
Amaia Salvador
Objectness scores
(object/no object)
Bounding Box Regression
In practice, k = 9 (3 different scales and 3 aspect ratios)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
35
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN RPN Proposals
RPN Proposals
Class probabilities
RoI pooling layer
FC layers
Class scores
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
36
Slide credit:
Amaia Salvador
Fast R-CNN
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
37
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN RPN Proposals
RPN Proposals
Class probabilities
RoI pooling layer
FC layers
Class scores
4-step training to share features for RPN and Fast R-CNN
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
38
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN RPN Proposals
Step 1: Train RPN initialized with an ImageNet pre-trained model.
ImageNet weights
(fine tuned)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
39
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN Proposals
(learned in 1)
Class probabilities
Step 2: Train Fast R-CNN with learned RPN proposals.
ImageNet weights
(fine tuned)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
40
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers RPN RPN Proposals
Step 3: The model trained in 2 is used to initialize RPN and train again.
Weights from Step 2
(fixed)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
41
Slide credit:
Amaia Salvador
Conv
Layer 5
Conv
layers
RPN Proposals
(learned in 3)
Class probabilities
Step 4: Fine tune FC layers of Fast R-CNN using same shared convolutional layers as in 3.
Weights from Step 2&3
(fixed)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
42
Slide credit:
Amaia Salvador
Detection Accuracy (Pascal VOC)
Timing in ms (Pascal VOC)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
43
Slide credit:
Amaia Salvador
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
44
Slide credit:
Amaia Salvador
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Objects: Faster R-CNN
45
Slide credit:
Amaia Salvador
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 46
Detection: Objects: Reinforcement L.
Caicedo, Juan C., and Svetlana Lazebnik. "Active object localization with deep reinforcement learning." ICCV
2015 [Slides by Miriam Bellver]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 47
Detection: Objects: Reinforcement L.
Object is localized based on visual features from AlexNet FC6.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 48
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Set of actions A
Transformation actions
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 49
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Set of actions A
Terminates the sequence of the current search
Marks the region, inhibition-of-return (IoR)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 50
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Set of states S
(o,h)
o = feature vector from pre-trained CNN fc6 : 4096 dim
h = history of taken actions binary vector dim 90
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 51
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Reward Function R
ground-truthbounding box
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 52
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Reward Function R for trigger action
The Reward function considers the number of steps as a cost
3
minimum
IoU:
0.6
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 53
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Policy function
If the current state is S, which should be the next action A?
Reinforcement Learning using a Q-learning
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 54
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
The action-value function is estimated using a neural network that:
● has as many output units as actions
● the algorithm incorporates a replay-memory to collect experiences
● category-specific Q-network
Policy of the agent: selection action A with maximum estimated value of the
learnt action-value function.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 55
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 56
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Datasets for training and testing : PASCAL VOC
Two modes of evaluation:
1) All attended Regions (AAR)
2) Terminal regions (TR)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 57
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Best performance with
few region proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 58
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 59
Detection: Objects: Reinforcement Slide credit:
Míriam Bellver
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces
60
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces:DDFD
61
Farfade, Sachin Sudhakar, Mohammad Saberian, and Li-Jia Li. "Multi-view Face
Detection Using Deep Convolutional Neural Networks." ICMR (2015). [software]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Train
62
Dataset
● Source: Annotated Facial Landmarks in the Wild by TU Graz
● 25k annotated faces on images downloaded from Flickr.
● 380k manually annotated facial landmarks.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Train
63
● Randomly samples sub-windows (blocks)
○ Positive examples if Intersection-over Union (IoU) with an annotated
face is larger than 50%.
○ ...and negative sample otherwise.
● Total samples: 200K positive and 20M negative.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Test
64
Test images are rescaled up/down 3 times per octave to find different sizes.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Test
65
Sliding window of 227x227 over the test image.
Source: James Hays, “Object Category Detetcion: Sliding Windows” (Brown University, 2011)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Test
66
Fully-connected layers are converted to convolutional layers, which allows
processing images from any size.
Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully Convolutional Networks for Semantic
Segmentation." CVPR 2015
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Test
67
● This makes possible to:
○ Efficiently run the convnet on images of any size.
○ Obtain a heat-map of the face etector.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Test
68
● Non-Maximum Suppression (NMS) to avoid overlapped detections.
Source: Adrian Rosebrock, “Non-Maximum Suppression for Object Detection in Python” (Pyimagesearch, 2014)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Results
69
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Detection: Faces: DDFD: Results
70
Precision vs Recall Curves
- DPM corresponds to Deformable Part-based Models.
- OpenCV face detector is an implementation of Viola & Jones.
- IMPORTANT: DPM or Headhunter need extra information about pose or facial landmarks during
training.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
71
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 72
Faces: Recognition: FaceNet
Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "FaceNet: A Unified Embedding for Face
Recognition and Clustering." CVPR 2015
(Extended summary slides by Xavier Giro on the ReadCV seminar.)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 73
Faces: Recognition: FaceNet
Faces
Euclidean space
where distances
correspond to
face similarity
FaceNet
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 74
Faces: Recognition: FaceNet
End-to-end learning of an embedding (distance metric learning)...
Weinberger, Kilian Q., and Lawrence K. Saul. "Distance metric learning for large margin nearest neighbor
classification." The Journal of Machine Learning Research 10 (2009): 207-244
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 75
Faces: Recognition: FaceNet
...by means of well chosen triplets, using curriculum learning.
Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston. "Curriculum learning." In Proceedings of the 26th annual international
conference on machine learning, pp. 41-48. ACM, 2009
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 76
Faces: Recognition: FaceNet
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 77
Faces: Recognition: FaceNet
Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." In Computer
Vision–ECCV 2014, pp. 818-833. Springer International Publishing, 2014 (Slides by Xavier Giró-i-Nieto)
Architecture 1 (NN1): ZF
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 78
Faces: Recognition: FaceNet
Architecture 2 (NN2): GoogLeNet
Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. "Going Deeper With Convolutions." CVPR 2015. (Slides by Elisa Sayrol)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 79
Faces: Recognition: FaceNet
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 80
Faces: Recognition: FaceNet: Test
LBW: 99.63% (new record)
YouTubeFaces DB: 95.12%
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 81
Faces: Recognition: FaceNet: Software
Software implementation: OpenFace
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 82
Faces: Recognition: VGG Face
Parkhi, Omkar M., Andrea Vedaldi, and Andrew Zisserman. "Deep face recognition."
Proceedings of the British Machine Vision 1, no. 3 (2015): 6. [software]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
E. Mohedano, Salvador, A., McGuinness, K., Giró-i-Nieto, X., O'Connor, N., and Marqués, F., “Bags of Local
Convolutional Features for Scalable Instance Search”, ICMR 2016
83
Objects: Recognition: Retrieval
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 84
Objects: Recognition: Retrieval
Image Database
Visual Query
“A dog”
Expected outcome:
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 85
Objects: Recognition: Retrieval
Image Database
Visual Query
“This dog”
Expected outcome:
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 86
...
Instance Retrieval
(Instance: Object, Building, Person, Place…)
Objects: Recognition: Retrieval
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 87
Objects: Recognition: Retrieval
v1
= (v11
, …, v1n
)
vk
= (vk1
, …, vkn
)
...
INVERTED FILE
word Image ID
1 1, 12,
2 1, 30, 102
3 10, 12
4 2,3
6 10
...
Local hand-crafted features
(e.g. SIFT)
Bag of Visual
WordsN-Dimensional
feature space High-dimensional
Highly sparse
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 88
Objects: Recognition: Retrieval
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In
Advances in neural information processing systems (pp. 1097-1105).
Convolutional Neural Networks
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 89
Objects: Recognition: Retrieval
Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In ECCV 2014
Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In
DeepVision CVPRW 2014
Convolutional Neural Networks FC layers as global feature representation
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 90
Objects: Recognition: Retrieval
Babenko, A., & Lempitsky, V. (2015). Aggregating local deep features for image retrieval. ICCV 2015
Tolias, G., Sicre, R., & Jégou, H. (2015). Particular object retrieval with integral max-pooling of CNN activations. ICLR 2015
Kalantidis, Y., Mellina, C., & Osindero, S. (2015). Cross-dimensional Weighting for Aggregated Deep Convolutional Features. arXiv
preprint arXiv:1512.04065.
Convolutional Neural Networks
sum/max pooled conv features as global representation
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 91
Objects: Recognition: Retrieval
Ng, J., Yang, F., & Davis, L. (2015). Exploiting local features from deep networks for image retrieval. In DeepVision CVPRW 2015
Convolutional Neural Networks
conv features encoded with VLAD as global representation
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 92
Objects: Recognition: Retrieval
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 93
Objects: Recognition: Retrieval
(336x256)
Resolution
conv5_1 from
VGG16[1]
(42x32)
25K centroids 25K-D vector
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 94
Objects: Recognition: Retrieval
Query Representation
... ... ...
... ... ...
Global Search
(GS)
Local Search
(LS)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 95
Objects: Recognition: Retrieval
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
96
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation
97
Slide credit:
Eduard Fontdevila
Semantic segmentation: assign a category label to all pixels in an image
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
98
Farabet, Clement, Camille Couprie, Laurent Najman, and Yann LeCun. "Learning hierarchical features
for scene labeling." TPAMI 2013
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
99
Pyramid of three spatial scales.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
100
The same parameters in the three convnets
theta_i=theta_0=filters weights (H_l) and biases b_l)
Non-linear: tanh
Pooling: max
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
101
Upsampling and concatenation.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
102
Pixel-wise soft-max classifier
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
103
Problem: No spatial consistency among labels
3 explored solutions:
1) Superpixels
2) Conditional Random Fields
3) Parameter-free multilevel parsing
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
104
Prediction with a 2-layer
network
Solution 1: Superpixels
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
105
Prediction with a 2-layer
network
Solution 2: Superpixels + CRF
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
106
Solution 3: Multi-level parsing
Problems with Solutions 1 & 2:
Observation level.
BPT
[Garrido, Salembier]
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
107
Solution 3: Multi-level parsing
Problems with Solutions 1 & 2: Observation level.
Contribution: Automatically discover the best
observation level (optimal cover) for each pixel in the
image.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: Farabet
108
Solution 3: Multi-level parsing
Problems with Solutions 1 & 2: Observation level.
Contribution: Automatically discover the best
observation level (optimal cover) for each pixel in the
image.
C2 will be labelled with the class of C5
For each pixel (leaf) i, the optimal component
is the C_i is the one along the path between
the leaf and the root with minimal cost S.
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
109
Slide credit:
Eduard Fontdevila
Hariharan, Arbelaez, Girshick, Malik, Simultaneous Detection and Segmentation (ECCV 2014)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
110
Slide credit:
Eduard Fontdevila
● Interest in obtaining segments, not just bounding boxes
● Multiscale combinational grouping (MCG) to generate object candidates
○ Cuts algorithm
○ Hierarchical segmenter
○ Grouping strategy to combine
multiscale regions
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
111
Slide credit:
Eduard Fontdevila
BBOX CNN
feature
vector
1
feature
vector
2
[1 2]
*Finetuned to classify bboxes (with background), so extracting features from the region foreground is
suboptimal
BBOX CNN*
vector A
background masked out
with the mean image
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
112
Slide credit:
Eduard Fontdevila
● Training: 2 networks trained in isolation
● Testing: results are combined
BBOX CNN
feature
vector
1
feature
vector
2
[1 2]
REGION
CNN
vector B
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
113
Slide credit:
Eduard Fontdevila
● Training: as a whole (using segmentation overlap)
● Testing: results are combined (using the output of the penultimate layer)
vector C
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
114
Slide credit:
Eduard Fontdevila
penultimate fully
connected layer
SVM
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
115
Slide credit:
Eduard Fontdevila
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
116
Slide credit:
Eduard Fontdevila
● Results on pixel IU (Jaccard index) to evaluate semantic segmentation:
○ Convert the output of the final system (C+ref) into a pixel-level
category labeling (using pasting scheme, Carreira et al)
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
Objects: Segmentation: SDS
117
Slide credit:
Eduard Fontdevila
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016)
One lecture organized in four parts
118
Detection Recognition
Local analysis for...
Segmentation
person
bag
me
my bag
person
bag
Proposals
Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 119
Thank you !
https://imatge.upc.edu/web/people/xavier-giro
https://twitter.com/DocXavi
https://www.facebook.com/ProfessorXavi
xavier.giro@upc.edu
Xavier Giró-i-Nieto

More Related Content

What's hot (20)

PDF
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Learning with Videos (D4L4 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Closing (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Universitat Politècnica de Catalunya
 
PDF
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
PDF
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
PDF
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Universitat Politècnica de Catalunya
 
PDF
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Universitat Politècnica de Catalunya
 
PDF
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
PDF
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Universitat Politècnica de Catalunya
 
PDF
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Video: Object Tracking (UPC 2018)
Universitat Politècnica de Catalunya
 
PDF
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
PDF
Neural Architectures for Video Encoding
Universitat Politècnica de Catalunya
 
PDF
Deep Video Object Segmentation - Xavier Giro - UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
PDF
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Universitat Politècnica de Catalunya
 
PDF
Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
PDF
Disentangle motion, Foreground and Background Features in Videos
Universitat Politècnica de Catalunya
 
PDF
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning Architectures for Video - Xavier Giro - UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Universitat Politècnica de Catalunya
 
Learning with Videos (D4L4 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Closing (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Universitat Politècnica de Catalunya
 
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Universitat Politècnica de Catalunya
 
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Universitat Politècnica de Catalunya
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Universitat Politècnica de Catalunya
 
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Universitat Politècnica de Catalunya
 
Deep Learning for Video: Object Tracking (UPC 2018)
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Neural Architectures for Video Encoding
Universitat Politècnica de Catalunya
 
Deep Video Object Segmentation - Xavier Giro - UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Universitat Politècnica de Catalunya
 
Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Disentangle motion, Foreground and Background Features in Videos
Universitat Politècnica de Catalunya
 
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Deep Learning Architectures for Video - Xavier Giro - UPC Barcelona 2019
Universitat Politècnica de Catalunya
 

Viewers also liked (20)

PDF
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Universitat Politècnica de Catalunya
 
PDF
Applying Deep Learning Vision Technology to low-cost/power Embedded Systems
Jenny Midwinter
 
PDF
Temporal Action Localization in Untrimmed Videos via Multi Stage CNNs
Universitat Politècnica de Catalunya
 
PDF
Kato Mivule: An Overview of Adaptive Boosting – AdaBoost
Kato Mivule
 
PDF
"Source Code Abstracts Classification Using CNN", Vadim Markovtsev, Lead Soft...
Dataconomy Media
 
PPTX
Machine learning with ADA Boost
Aman Patel
 
PDF
ConvolutionalNeuralNetworks
Ryan Johnson
 
PPTX
Image net classification with Deep Convolutional Neural Networks
Shingo Horiuchi
 
PPTX
Ada boost
Hank (Tai-Chi) Wang
 
PPTX
Single Shot MultiBox Detector와 Recurrent Instance Segmentation
홍배 김
 
PDF
Automatic Tagging using Deep Convolutional Neural Networks - ISMIR 2016
Keunwoo Choi
 
PDF
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Vincenzo Lomonaco
 
PDF
Deep Convolutional Neural Networks - Overview
Keunwoo Choi
 
PPTX
Q Learning과 CNN을 이용한 Object Localization
홍배 김
 
PPTX
Deepcheck, 딥러닝 기반의 얼굴인식 출석체크
지운 배
 
PDF
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
PDF
論文輪読資料「FaceNet: A Unified Embedding for Face Recognition and Clustering」
Kaoru Nasuno
 
PPT
Avihu Efrat's Viola and Jones face detection slides
wolf
 
PDF
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
PPTX
Face detection ppt by Batyrbek
Batyrbek Ryskhan
 
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Universitat Politècnica de Catalunya
 
Applying Deep Learning Vision Technology to low-cost/power Embedded Systems
Jenny Midwinter
 
Temporal Action Localization in Untrimmed Videos via Multi Stage CNNs
Universitat Politècnica de Catalunya
 
Kato Mivule: An Overview of Adaptive Boosting – AdaBoost
Kato Mivule
 
"Source Code Abstracts Classification Using CNN", Vadim Markovtsev, Lead Soft...
Dataconomy Media
 
Machine learning with ADA Boost
Aman Patel
 
ConvolutionalNeuralNetworks
Ryan Johnson
 
Image net classification with Deep Convolutional Neural Networks
Shingo Horiuchi
 
Single Shot MultiBox Detector와 Recurrent Instance Segmentation
홍배 김
 
Automatic Tagging using Deep Convolutional Neural Networks - ISMIR 2016
Keunwoo Choi
 
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Vincenzo Lomonaco
 
Deep Convolutional Neural Networks - Overview
Keunwoo Choi
 
Q Learning과 CNN을 이용한 Object Localization
홍배 김
 
Deepcheck, 딥러닝 기반의 얼굴인식 출석체크
지운 배
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
論文輪読資料「FaceNet: A Unified Embedding for Face Recognition and Clustering」
Kaoru Nasuno
 
Avihu Efrat's Viola and Jones face detection slides
wolf
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Face detection ppt by Batyrbek
Batyrbek Ryskhan
 
Ad

Similar to Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016 (20)

PDF
Deep and Young Vision Learning at UPC BarcelonaTech (NIPS 2016)
Universitat Politècnica de Catalunya
 
PDF
D3L4-objects.pdf
ssusere945ae
 
PDF
[212]big models without big data using domain specific deep networks in data-...
NAVER D2
 
PDF
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET Journal
 
PDF
Cvpr 2017 Summary Meetup
Amir Alush
 
PDF
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17
 
PDF
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
PDF
Object Detection - Míriam Bellver - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
IRJET- Real-Time Object Detection System using Caffe Model
IRJET Journal
 
PDF
ArtificialIntelligenceInObjectDetection-Report.pdf
Abishek86232
 
PDF
IRJET-Multiple Object Detection using Deep Neural Networks
IRJET Journal
 
PDF
Machine learning based augmented reality for improved learning application th...
IJECEIAES
 
PDF
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
Edge AI and Vision Alliance
 
PDF
"How Image Sensor and Video Compression Parameters Impact Vision Algorithms,"...
Edge AI and Vision Alliance
 
PDF
A Literature Survey: Neural Networks for object detection
vivatechijri
 
PPTX
ObjRecog2-17 (1).pptx
ssuserc074dd
 
PPTX
FINAL_Team_4.pptx
nitin571047
 
PPTX
2014 - CVPR Tutorial on Deep Learning for Vision - Object Detection.pptx
himob78718
 
PPTX
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
thanhdowork
 
Deep and Young Vision Learning at UPC BarcelonaTech (NIPS 2016)
Universitat Politècnica de Catalunya
 
D3L4-objects.pdf
ssusere945ae
 
[212]big models without big data using domain specific deep networks in data-...
NAVER D2
 
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET Journal
 
Cvpr 2017 Summary Meetup
Amir Alush
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17
 
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
Object Detection - Míriam Bellver - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
IRJET- Real-Time Object Detection System using Caffe Model
IRJET Journal
 
ArtificialIntelligenceInObjectDetection-Report.pdf
Abishek86232
 
IRJET-Multiple Object Detection using Deep Neural Networks
IRJET Journal
 
Machine learning based augmented reality for improved learning application th...
IJECEIAES
 
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
Edge AI and Vision Alliance
 
"How Image Sensor and Video Compression Parameters Impact Vision Algorithms,"...
Edge AI and Vision Alliance
 
A Literature Survey: Neural Networks for object detection
vivatechijri
 
ObjRecog2-17 (1).pptx
ssuserc074dd
 
FINAL_Team_4.pptx
nitin571047
 
2014 - CVPR Tutorial on Deep Learning for Vision - Object Detection.pptx
himob78718
 
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
thanhdowork
 
Ad

More from Universitat Politècnica de Catalunya (20)

PDF
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
PDF
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
PDF
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
PDF
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
PDF
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
PDF
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
PPTX
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
PPTX
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
PDF
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
PDF
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
PDF
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
PDF
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
PDF
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
PDF
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
PDF
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
PDF
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Universitat Politècnica de Catalunya
 
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Universitat Politècnica de Catalunya
 

Recently uploaded (20)

PDF
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
PPTX
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
PDF
Understanding The True Cost of DynamoDB Webinar
ScyllaDB
 
PPTX
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Pitch ...
Michele Kryston
 
PDF
DoS Attack vs DDoS Attack_ The Silent Wars of the Internet.pdf
CyberPro Magazine
 
PDF
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
PDF
Unlocking FME Flow’s Potential: Architecture Design for Modern Enterprises
Safe Software
 
PDF
“A Re-imagination of Embedded Vision System Design,” a Presentation from Imag...
Edge AI and Vision Alliance
 
PDF
How to Comply With Saudi Arabia’s National Cybersecurity Regulations.pdf
Bluechip Advanced Technologies
 
PPTX
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Poster...
Michele Kryston
 
PPTX
Mastering Authorization: Integrating Authentication and Authorization Data in...
Hitachi, Ltd. OSS Solution Center.
 
PDF
GDG Cloud Southlake #44: Eyal Bukchin: Tightening the Kubernetes Feedback Loo...
James Anderson
 
PPTX
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
PPTX
Reimaginando la Ciberdefensa: De Copilots a Redes de Agentes
Cristian Garcia G.
 
PDF
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
PDF
Kubernetes - Architecture & Components.pdf
geethak285
 
PDF
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
PDF
Proactive Server and System Monitoring with FME: Using HTTP and System Caller...
Safe Software
 
PDF
TrustArc Webinar - Navigating APAC Data Privacy Laws: Compliance & Challenges
TrustArc
 
PPTX
Wondershare Filmora Crack Free Download 2025
josanj305
 
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
Understanding The True Cost of DynamoDB Webinar
ScyllaDB
 
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Pitch ...
Michele Kryston
 
DoS Attack vs DDoS Attack_ The Silent Wars of the Internet.pdf
CyberPro Magazine
 
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
Unlocking FME Flow’s Potential: Architecture Design for Modern Enterprises
Safe Software
 
“A Re-imagination of Embedded Vision System Design,” a Presentation from Imag...
Edge AI and Vision Alliance
 
How to Comply With Saudi Arabia’s National Cybersecurity Regulations.pdf
Bluechip Advanced Technologies
 
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Poster...
Michele Kryston
 
Mastering Authorization: Integrating Authentication and Authorization Data in...
Hitachi, Ltd. OSS Solution Center.
 
GDG Cloud Southlake #44: Eyal Bukchin: Tightening the Kubernetes Feedback Loo...
James Anderson
 
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
Reimaginando la Ciberdefensa: De Copilots a Redes de Agentes
Cristian Garcia G.
 
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
Kubernetes - Architecture & Components.pdf
geethak285
 
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
Proactive Server and System Monitoring with FME: Using HTTP and System Caller...
Safe Software
 
TrustArc Webinar - Navigating APAC Data Privacy Laws: Compliance & Challenges
TrustArc
 
Wondershare Filmora Crack Free Download 2025
josanj305
 

Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016

  • 1. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) @DocXavi Deep Learning for Computer Vision Object Analytics 5 May 2016 Xavier Giró-i-Nieto Master en Creació Multimedia
  • 2. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in three parts 2 Images (global) Objects (local) Deep ConvNets for Recognition for... Video (2D+T)
  • 3. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 3 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 4. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 4 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 5. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: Hand-crafted 5 Slides credit: Marc Bolaños Hand-crafted proposals used to be based on bottom-up proposals. Selective Search (SS) Multiscale Combinatorial Grouping (MCG) [SS] Uijlings, Jasper RR, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeulders. "Selective search for object recognition." International journal of computer vision 104, no. 2 (2013): 154-171. [MCG] Arbeláez, Pablo, Jordi Pont-Tuset, Jonathan Barron, Ferran Marques, and Jitendra Malik. "Multiscale combinatorial grouping." CVPR 2014.
  • 6. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox 6 Kuo, Weicheng, Bharath Hariharan, and Jitendra Malik. "Deepbox: Learning objectness with convolutional networks." ICCV 2015. [software]
  • 7. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox 7 Slides credit: Marc Bolaños Deepbox proposes a very simple method: 1) Use a state-of-the-art method (Edge Box) to generate initial object proposals. 2) Rerank them (and possibly discard them) by using DeepBox.
  • 8. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Architecture 8 Slides credit: Marc Bolaños PASCAL VOC AUC = 0.75, IoU = 0.5 AUC = 0.62, IoU = 0.7 PASCAL VOC AUC = 0.74, IoU = 0.5 AUC = 0.60, IoU = 0.7 AlexNet architecture (heavier) DeepBox architecture (lighter) Small drop
  • 9. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Training 9 Slides credit: Marc Bolaños 1) Initialize layers with AlexNet weights. 3) Train on Hard Negatives 2) Train on Sliding Windows Negative Samples: Extract windows by raster scanning. Positive Samples: Having GT bounding boxes, they generate samples per instance with a perturbation of: By using bottom-up proposals from Edge boxes: If GT overlap threshold <= 0.3 → Negative Samples If GT overlap threshold >= 0.7 → Positive Samples:
  • 10. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Results 10 DeepBox Edge Boxes DeepBox Edge Boxes Slides credit: Marc Bolaños
  • 11. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Results 11 With a rather simple approach ConvNets can obtain much better results than previous techniques for Object Proposals. Slides credit: Marc Bolaños
  • 12. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Results 12 Slides credit: Marc Bolaños
  • 13. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Proposals: DeepBox: Results 13 Increasing not only Detection capabilities of known classes, but also of unknown ones (suitable for Object Discovery). Slides credit: Marc Bolaños
  • 14. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 14 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 15. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects 15
  • 16. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects 16 DPM (HOG features)[1] R-CNN [2] SPPnet [3] Hand-crafted features Deep features +60 % Slide credit: Amaia Salvador
  • 17. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects 17 Girshick, Ross, Forrest Iandola, Trevor Darrell, and Jitendra Malik. "Deformable Part Models are Convolutional Neural Networks." CVPR 2015 Convnets (CNNs) actually learn similar detectors to the ones learned by Deformable Parts-based Models (DPMs)
  • 18. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: R-CNN 18 Girshick, R., Donahue, J., Darrell, T., & Malik, J. . Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014
  • 19. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: R-CNN 19 Slide credit: Joost van de Weijer
  • 20. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: R-CNN 20 Slide credit: Joost van de Weijer
  • 21. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: R-CNN 21
  • 22. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 22 Girshick, Ross. "Fast R-CNN." ICCV 2015.
  • 23. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 23 Slide credit: Amaia Salvador
  • 24. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 24 Slide credit: Amaia Salvador Same as SPP[3], but single scale
  • 25. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 25 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid pooling in deep convolutional networks for visual recognition." PAMI 2015. Slide credit: Joost van de Weijer
  • 26. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 26 Slide credit: Amaia Salvador H h w h w Size of pooling bins: h / H’ x w/ W’ w/W’ h/H’ max pooling CONV5
  • 27. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 27 Slide credit: Amaia Salvador AlexNet [4], VGG16 [5], VGG_1024 [6]
  • 28. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Fast R-CNN 28 Slide credit: Amaia Salvador Multi-task loss
  • 29. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 29 Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems (pp. 91-99). [Python code] [Matlab code]
  • 30. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 30 Slide credit: Amaia Salvador Selective Search CPMC MCG Object Proposal computation is the bottleneck in current state of the art object detection systems Selective Search. Van de Sande, K. E., Uijlings, J. R., Gevers, T., & Smeulders, A. W. (2011, November). Segmentation as selective search for object recognition. InComputer Vision (ICCV), 2011 IEEE International Conference on (pp. 1879-1886). IEEE. CPMC. Carreira, J., & Sminchisescu, C. (2010, June). Constrained parametric min-cuts for automatic object segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 3241-3248). IEEE. MCG. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., & Malik, J. (2014). Multiscale combinatorial grouping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 328-335).
  • 31. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 31 Slide credit: Amaia Salvador Selective Search CPMC MCG Replace the usage of external Object Proposals with a Region Proposal Network (RPN).
  • 32. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 32 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals RPN Proposals Class probabilities RoI pooling layer FC layers Class scores
  • 33. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 33 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals RPN Proposals Class probabilities RoI pooling layer FC layers Class scores
  • 34. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 34 Slide credit: Amaia Salvador Objectness scores (object/no object) Bounding Box Regression In practice, k = 9 (3 different scales and 3 aspect ratios)
  • 35. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 35 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals RPN Proposals Class probabilities RoI pooling layer FC layers Class scores
  • 36. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 36 Slide credit: Amaia Salvador Fast R-CNN
  • 37. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 37 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals RPN Proposals Class probabilities RoI pooling layer FC layers Class scores 4-step training to share features for RPN and Fast R-CNN
  • 38. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 38 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals Step 1: Train RPN initialized with an ImageNet pre-trained model. ImageNet weights (fine tuned)
  • 39. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 39 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN Proposals (learned in 1) Class probabilities Step 2: Train Fast R-CNN with learned RPN proposals. ImageNet weights (fine tuned)
  • 40. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 40 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN RPN Proposals Step 3: The model trained in 2 is used to initialize RPN and train again. Weights from Step 2 (fixed)
  • 41. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 41 Slide credit: Amaia Salvador Conv Layer 5 Conv layers RPN Proposals (learned in 3) Class probabilities Step 4: Fine tune FC layers of Fast R-CNN using same shared convolutional layers as in 3. Weights from Step 2&3 (fixed)
  • 42. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 42 Slide credit: Amaia Salvador Detection Accuracy (Pascal VOC) Timing in ms (Pascal VOC)
  • 43. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 43 Slide credit: Amaia Salvador
  • 44. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 44 Slide credit: Amaia Salvador
  • 45. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Objects: Faster R-CNN 45 Slide credit: Amaia Salvador
  • 46. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 46 Detection: Objects: Reinforcement L. Caicedo, Juan C., and Svetlana Lazebnik. "Active object localization with deep reinforcement learning." ICCV 2015 [Slides by Miriam Bellver]
  • 47. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 47 Detection: Objects: Reinforcement L. Object is localized based on visual features from AlexNet FC6.
  • 48. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 48 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Set of actions A Transformation actions
  • 49. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 49 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Set of actions A Terminates the sequence of the current search Marks the region, inhibition-of-return (IoR)
  • 50. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 50 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Set of states S (o,h) o = feature vector from pre-trained CNN fc6 : 4096 dim h = history of taken actions binary vector dim 90
  • 51. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 51 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Reward Function R ground-truthbounding box
  • 52. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 52 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Reward Function R for trigger action The Reward function considers the number of steps as a cost 3 minimum IoU: 0.6
  • 53. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 53 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Policy function If the current state is S, which should be the next action A? Reinforcement Learning using a Q-learning
  • 54. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 54 Detection: Objects: Reinforcement Slide credit: Míriam Bellver The action-value function is estimated using a neural network that: ● has as many output units as actions ● the algorithm incorporates a replay-memory to collect experiences ● category-specific Q-network Policy of the agent: selection action A with maximum estimated value of the learnt action-value function.
  • 55. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 55 Detection: Objects: Reinforcement Slide credit: Míriam Bellver
  • 56. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 56 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Datasets for training and testing : PASCAL VOC Two modes of evaluation: 1) All attended Regions (AAR) 2) Terminal regions (TR)
  • 57. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 57 Detection: Objects: Reinforcement Slide credit: Míriam Bellver Best performance with few region proposals
  • 58. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 58 Detection: Objects: Reinforcement Slide credit: Míriam Bellver
  • 59. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 59 Detection: Objects: Reinforcement Slide credit: Míriam Bellver
  • 60. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces 60
  • 61. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces:DDFD 61 Farfade, Sachin Sudhakar, Mohammad Saberian, and Li-Jia Li. "Multi-view Face Detection Using Deep Convolutional Neural Networks." ICMR (2015). [software]
  • 62. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Train 62 Dataset ● Source: Annotated Facial Landmarks in the Wild by TU Graz ● 25k annotated faces on images downloaded from Flickr. ● 380k manually annotated facial landmarks.
  • 63. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Train 63 ● Randomly samples sub-windows (blocks) ○ Positive examples if Intersection-over Union (IoU) with an annotated face is larger than 50%. ○ ...and negative sample otherwise. ● Total samples: 200K positive and 20M negative.
  • 64. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Test 64 Test images are rescaled up/down 3 times per octave to find different sizes.
  • 65. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Test 65 Sliding window of 227x227 over the test image. Source: James Hays, “Object Category Detetcion: Sliding Windows” (Brown University, 2011)
  • 66. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Test 66 Fully-connected layers are converted to convolutional layers, which allows processing images from any size. Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation." CVPR 2015
  • 67. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Test 67 ● This makes possible to: ○ Efficiently run the convnet on images of any size. ○ Obtain a heat-map of the face etector.
  • 68. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Test 68 ● Non-Maximum Suppression (NMS) to avoid overlapped detections. Source: Adrian Rosebrock, “Non-Maximum Suppression for Object Detection in Python” (Pyimagesearch, 2014)
  • 69. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Results 69
  • 70. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Detection: Faces: DDFD: Results 70 Precision vs Recall Curves - DPM corresponds to Deformable Part-based Models. - OpenCV face detector is an implementation of Viola & Jones. - IMPORTANT: DPM or Headhunter need extra information about pose or facial landmarks during training.
  • 71. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 71 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 72. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 72 Faces: Recognition: FaceNet Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "FaceNet: A Unified Embedding for Face Recognition and Clustering." CVPR 2015 (Extended summary slides by Xavier Giro on the ReadCV seminar.)
  • 73. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 73 Faces: Recognition: FaceNet Faces Euclidean space where distances correspond to face similarity FaceNet
  • 74. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 74 Faces: Recognition: FaceNet End-to-end learning of an embedding (distance metric learning)... Weinberger, Kilian Q., and Lawrence K. Saul. "Distance metric learning for large margin nearest neighbor classification." The Journal of Machine Learning Research 10 (2009): 207-244
  • 75. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 75 Faces: Recognition: FaceNet ...by means of well chosen triplets, using curriculum learning. Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston. "Curriculum learning." In Proceedings of the 26th annual international conference on machine learning, pp. 41-48. ACM, 2009
  • 76. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 76 Faces: Recognition: FaceNet
  • 77. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 77 Faces: Recognition: FaceNet Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." In Computer Vision–ECCV 2014, pp. 818-833. Springer International Publishing, 2014 (Slides by Xavier Giró-i-Nieto) Architecture 1 (NN1): ZF
  • 78. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 78 Faces: Recognition: FaceNet Architecture 2 (NN2): GoogLeNet Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going Deeper With Convolutions." CVPR 2015. (Slides by Elisa Sayrol)
  • 79. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 79 Faces: Recognition: FaceNet
  • 80. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 80 Faces: Recognition: FaceNet: Test LBW: 99.63% (new record) YouTubeFaces DB: 95.12%
  • 81. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 81 Faces: Recognition: FaceNet: Software Software implementation: OpenFace
  • 82. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 82 Faces: Recognition: VGG Face Parkhi, Omkar M., Andrea Vedaldi, and Andrew Zisserman. "Deep face recognition." Proceedings of the British Machine Vision 1, no. 3 (2015): 6. [software]
  • 83. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) E. Mohedano, Salvador, A., McGuinness, K., Giró-i-Nieto, X., O'Connor, N., and Marqués, F., “Bags of Local Convolutional Features for Scalable Instance Search”, ICMR 2016 83 Objects: Recognition: Retrieval
  • 84. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 84 Objects: Recognition: Retrieval Image Database Visual Query “A dog” Expected outcome:
  • 85. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 85 Objects: Recognition: Retrieval Image Database Visual Query “This dog” Expected outcome:
  • 86. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 86 ... Instance Retrieval (Instance: Object, Building, Person, Place…) Objects: Recognition: Retrieval
  • 87. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 87 Objects: Recognition: Retrieval v1 = (v11 , …, v1n ) vk = (vk1 , …, vkn ) ... INVERTED FILE word Image ID 1 1, 12, 2 1, 30, 102 3 10, 12 4 2,3 6 10 ... Local hand-crafted features (e.g. SIFT) Bag of Visual WordsN-Dimensional feature space High-dimensional Highly sparse
  • 88. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 88 Objects: Recognition: Retrieval Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). Convolutional Neural Networks
  • 89. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 89 Objects: Recognition: Retrieval Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In ECCV 2014 Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In DeepVision CVPRW 2014 Convolutional Neural Networks FC layers as global feature representation
  • 90. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 90 Objects: Recognition: Retrieval Babenko, A., & Lempitsky, V. (2015). Aggregating local deep features for image retrieval. ICCV 2015 Tolias, G., Sicre, R., & Jégou, H. (2015). Particular object retrieval with integral max-pooling of CNN activations. ICLR 2015 Kalantidis, Y., Mellina, C., & Osindero, S. (2015). Cross-dimensional Weighting for Aggregated Deep Convolutional Features. arXiv preprint arXiv:1512.04065. Convolutional Neural Networks sum/max pooled conv features as global representation
  • 91. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 91 Objects: Recognition: Retrieval Ng, J., Yang, F., & Davis, L. (2015). Exploiting local features from deep networks for image retrieval. In DeepVision CVPRW 2015 Convolutional Neural Networks conv features encoded with VLAD as global representation
  • 92. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 92 Objects: Recognition: Retrieval
  • 93. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 93 Objects: Recognition: Retrieval (336x256) Resolution conv5_1 from VGG16[1] (42x32) 25K centroids 25K-D vector
  • 94. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 94 Objects: Recognition: Retrieval Query Representation ... ... ... ... ... ... Global Search (GS) Local Search (LS)
  • 95. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 95 Objects: Recognition: Retrieval
  • 96. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 96 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 97. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation 97 Slide credit: Eduard Fontdevila Semantic segmentation: assign a category label to all pixels in an image
  • 98. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 98 Farabet, Clement, Camille Couprie, Laurent Najman, and Yann LeCun. "Learning hierarchical features for scene labeling." TPAMI 2013
  • 99. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 99 Pyramid of three spatial scales.
  • 100. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 100 The same parameters in the three convnets theta_i=theta_0=filters weights (H_l) and biases b_l) Non-linear: tanh Pooling: max
  • 101. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 101 Upsampling and concatenation.
  • 102. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 102 Pixel-wise soft-max classifier
  • 103. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 103 Problem: No spatial consistency among labels 3 explored solutions: 1) Superpixels 2) Conditional Random Fields 3) Parameter-free multilevel parsing
  • 104. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 104 Prediction with a 2-layer network Solution 1: Superpixels
  • 105. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 105 Prediction with a 2-layer network Solution 2: Superpixels + CRF
  • 106. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 106 Solution 3: Multi-level parsing Problems with Solutions 1 & 2: Observation level. BPT [Garrido, Salembier]
  • 107. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 107 Solution 3: Multi-level parsing Problems with Solutions 1 & 2: Observation level. Contribution: Automatically discover the best observation level (optimal cover) for each pixel in the image.
  • 108. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: Farabet 108 Solution 3: Multi-level parsing Problems with Solutions 1 & 2: Observation level. Contribution: Automatically discover the best observation level (optimal cover) for each pixel in the image. C2 will be labelled with the class of C5 For each pixel (leaf) i, the optimal component is the C_i is the one along the path between the leaf and the root with minimal cost S.
  • 109. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 109 Slide credit: Eduard Fontdevila Hariharan, Arbelaez, Girshick, Malik, Simultaneous Detection and Segmentation (ECCV 2014)
  • 110. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 110 Slide credit: Eduard Fontdevila ● Interest in obtaining segments, not just bounding boxes ● Multiscale combinational grouping (MCG) to generate object candidates ○ Cuts algorithm ○ Hierarchical segmenter ○ Grouping strategy to combine multiscale regions
  • 111. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 111 Slide credit: Eduard Fontdevila BBOX CNN feature vector 1 feature vector 2 [1 2] *Finetuned to classify bboxes (with background), so extracting features from the region foreground is suboptimal BBOX CNN* vector A background masked out with the mean image
  • 112. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 112 Slide credit: Eduard Fontdevila ● Training: 2 networks trained in isolation ● Testing: results are combined BBOX CNN feature vector 1 feature vector 2 [1 2] REGION CNN vector B
  • 113. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 113 Slide credit: Eduard Fontdevila ● Training: as a whole (using segmentation overlap) ● Testing: results are combined (using the output of the penultimate layer) vector C
  • 114. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 114 Slide credit: Eduard Fontdevila penultimate fully connected layer SVM
  • 115. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 115 Slide credit: Eduard Fontdevila
  • 116. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 116 Slide credit: Eduard Fontdevila ● Results on pixel IU (Jaccard index) to evaluate semantic segmentation: ○ Convert the output of the final system (C+ref) into a pixel-level category labeling (using pasting scheme, Carreira et al)
  • 117. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) Objects: Segmentation: SDS 117 Slide credit: Eduard Fontdevila
  • 118. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) One lecture organized in four parts 118 Detection Recognition Local analysis for... Segmentation person bag me my bag person bag Proposals
  • 119. Xavier Giró i Nieto, “Deep learning for vision: Objects”. Master in Multimedia, La Salle URL (May 2016) 119 Thank you ! https://imatge.upc.edu/web/people/xavier-giro https://twitter.com/DocXavi https://www.facebook.com/ProfessorXavi [email protected] Xavier Giró-i-Nieto