SlideShare a Scribd company logo
2
Most read
4
Most read
[course site]
Augmentation
Day 2 Lecture 2
Eva Mohedano
Introduction
ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky A., 2012
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 1.2
million training images, 50,000 validation images, and 150,000
testing images
Architecture of 5 convolutional + 3 fully connected = 60 million
parameters ~ 650.000 neurons.
Overfitting!!
2
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
3
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
1% of total parameters (884K). Decrease in performance
4
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
37M, 16M, 4M parametes!! (fc6,fc7,fc8)
5
Ways to reduce overfitting
● Reduce network capacity
● Dropout
● Data augmentation Every forward pass, network slightly different.
Reduce co-adaptation between neurons
More robust features
More interations for convergence
6
Ways to reduce overfitting
● Reduce network capacity
● Dropout
● Data augmentation
7
Data Augmentation
During training, alterate the input image (Krizhevsky A., 2012)
- Random crops on the original image
- Translations
- Horitzontal reflections
- Increases size of training x2048
- On-the-fly augmentation
During testing
- Average prediction of image augmented by the four corner
patches and the center patch + flipped image. (10
augmentations of the image)
8
Data Augmentation
Alternate intensities RGB channels intensities
PCA on the set of RGB pixel throughout the ImageNet training set.
To each training image, add multiples of the found principal components
Object identity should be invariant to changes of
illumination
9
Augmentation for discriminative unsupervised
feature learning
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, Dosovitskiy,
A., 2014
MOTIVATION
● Large datasets of training data
● Local descriptors should be invariant transformations (rotation, translation, scale, etc)
WHAT THEY DO
● Training a CNN to generate local representation by optimising a surrogate classification task
● Task does NOT require labeled data
10
Augmentation for discriminative unsupervised
feature learning
Select random location k and crop 32x32 window
(restrictions: region must contain objects or part of the
object: high amount of gradients)
Apply a transformation [translation, rotation, scalig, RGB
modification, contrast modification]
...
Generate augmented dataset: 16000 classes of 150 examples each
Class k=1, with 150 examples
11
Augmentation for discriminative unsupervised
feature learning
Generate augmented dataset: 16000 classes of 150 examples each
Example of classes
Example of examples for one class
12
Augmentation for discriminative unsupervised
feature learning
Classification accuracies
Superior performance to SIFT for image matching.
13
Summary
Augmentation helps to prevent overfitting
It makes network invariant to certain transformations: translations, flip, etc
Can be done on-the-fly
Can be used to learn image representations when no label datasets are available.
14
Ad

Recommended

“An Introduction to Data Augmentation Techniques in ML Frameworks,” a Present...
“An Introduction to Data Augmentation Techniques in ML Frameworks,” a Present...
Edge AI and Vision Alliance
 
"Getting More from Your Datasets: Data Augmentation, Annotation and Generativ...
"Getting More from Your Datasets: Data Augmentation, Annotation and Generativ...
Edge AI and Vision Alliance
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Image classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work II
Mohamed Loey
 
Convolutional neural network from VGG to DenseNet
Convolutional neural network from VGG to DenseNet
SungminYou
 
CNN Machine learning DeepLearning
CNN Machine learning DeepLearning
Abhishek Sharma
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
Mohamed Loey
 
Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Edureka!
 
Introduction to Deep learning
Introduction to Deep learning
leopauly
 
Image classification using CNN
Image classification using CNN
Noura Hussein
 
CONVOLUTIONAL NEURAL NETWORK
CONVOLUTIONAL NEURAL NETWORK
Md Rajib Bhuiyan
 
Cnn
Cnn
Nirthika Rajendran
 
Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)
Yuta Niki
 
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Jinwon Lee
 
Convolutional Neural Network
Convolutional Neural Network
Vignesh Suresh
 
Introduction to CNN
Introduction to CNN
Shuai Zhang
 
Introduction to Transformer Model
Introduction to Transformer Model
Nuwan Sriyantha Bandara
 
NLP State of the Art | BERT
NLP State of the Art | BERT
shaurya uppal
 
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Minh Pham
 
Attention Is All You Need
Attention Is All You Need
Illia Polosukhin
 
ViT (Vision Transformer) Review [CDM]
ViT (Vision Transformer) Review [CDM]
Dongmin Choi
 
CNN Attention Networks
CNN Attention Networks
Taeoh Kim
 
backpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Data Augmentation
Data Augmentation
Md Tajul Islam
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
Suman Debnath
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Universitat Politècnica de Catalunya
 

More Related Content

What's hot (20)

Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Edureka!
 
Introduction to Deep learning
Introduction to Deep learning
leopauly
 
Image classification using CNN
Image classification using CNN
Noura Hussein
 
CONVOLUTIONAL NEURAL NETWORK
CONVOLUTIONAL NEURAL NETWORK
Md Rajib Bhuiyan
 
Cnn
Cnn
Nirthika Rajendran
 
Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)
Yuta Niki
 
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Jinwon Lee
 
Convolutional Neural Network
Convolutional Neural Network
Vignesh Suresh
 
Introduction to CNN
Introduction to CNN
Shuai Zhang
 
Introduction to Transformer Model
Introduction to Transformer Model
Nuwan Sriyantha Bandara
 
NLP State of the Art | BERT
NLP State of the Art | BERT
shaurya uppal
 
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Minh Pham
 
Attention Is All You Need
Attention Is All You Need
Illia Polosukhin
 
ViT (Vision Transformer) Review [CDM]
ViT (Vision Transformer) Review [CDM]
Dongmin Choi
 
CNN Attention Networks
CNN Attention Networks
Taeoh Kim
 
backpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Data Augmentation
Data Augmentation
Md Tajul Islam
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
Suman Debnath
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Autoencoders Tutorial | Autoencoders In Deep Learning | Tensorflow Training |...
Edureka!
 
Introduction to Deep learning
Introduction to Deep learning
leopauly
 
Image classification using CNN
Image classification using CNN
Noura Hussein
 
CONVOLUTIONAL NEURAL NETWORK
CONVOLUTIONAL NEURAL NETWORK
Md Rajib Bhuiyan
 
Transformer Introduction (Seminar Material)
Transformer Introduction (Seminar Material)
Yuta Niki
 
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Jinwon Lee
 
Convolutional Neural Network
Convolutional Neural Network
Vignesh Suresh
 
Introduction to CNN
Introduction to CNN
Shuai Zhang
 
NLP State of the Art | BERT
NLP State of the Art | BERT
shaurya uppal
 
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Minh Pham
 
ViT (Vision Transformer) Review [CDM]
ViT (Vision Transformer) Review [CDM]
Dongmin Choi
 
CNN Attention Networks
CNN Attention Networks
Taeoh Kim
 
backpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
Suman Debnath
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 

Viewers also liked (20)

Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Memory usage and computational considerati...
Deep Learning for Computer Vision: Memory usage and computational considerati...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Image Classification (UPC 2016)
Deep Learning for Computer Vision: Image Classification (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Face Recognition (UPC 2016)
Deep Learning for Computer Vision: Face Recognition (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Optimization (UPC 2016)
Deep Learning for Computer Vision: Optimization (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Welcome (UPC TelecomBCN 2016)
Deep Learning for Computer Vision: Welcome (UPC TelecomBCN 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Video Analytics (UPC 2016)
Deep Learning for Computer Vision: Video Analytics (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Memory usage and computational considerati...
Deep Learning for Computer Vision: Memory usage and computational considerati...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Universitat Politècnica de Catalunya
 
Ad

Similar to Deep Learning for Computer Vision: Data Augmentation (UPC 2016) (20)

Seminar_Presentation_ppt
Seminar_Presentation_ppt
AyushDixit52
 
imageclassification-160206090009.pdf
imageclassification-160206090009.pdf
KammetaJoshna
 
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks
Willy Marroquin (WillyDevNET)
 
Convolutional neural network
Convolutional neural network
Yan Xu
 
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Sitakanta Mishra
 
Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용
홍배 김
 
Deep learning: Modeling high-level face features through deep networks
Deep learning: Modeling high-level face features through deep networks
Nelson Forte
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
Edge AI and Vision Alliance
 
Finding the best solution for Image Processing
Finding the best solution for Image Processing
Tech Triveni
 
Architecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks I
Wanjin Yu
 
Recent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectives
Namkug Kim
 
State-of-the-art Image Processing across all domains
State-of-the-art Image Processing across all domains
Knoldus Inc.
 
Faire de la reconnaissance d'images avec le Deep Learning - Cristina & Pierre...
Faire de la reconnaissance d'images avec le Deep Learning - Cristina & Pierre...
Jedha Bootcamp
 
A Fully Progressive approach to Single image super-resolution
A Fully Progressive approach to Single image super-resolution
Mohammed Ashour
 
DLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep Learning
Brodmann17
 
AI and Deep Learning
AI and Deep Learning
Subrat Panda, PhD
 
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
Digipolis Antwerpen
 
Convolutional neural networks
Convolutional neural networks
Learning Courses Online
 
Research Paper of Image Recognition .02.pdf
Research Paper of Image Recognition .02.pdf
tsmabhi
 
Seminar_Presentation_ppt
Seminar_Presentation_ppt
AyushDixit52
 
imageclassification-160206090009.pdf
imageclassification-160206090009.pdf
KammetaJoshna
 
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks
Willy Marroquin (WillyDevNET)
 
Convolutional neural network
Convolutional neural network
Yan Xu
 
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Sitakanta Mishra
 
Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용
홍배 김
 
Deep learning: Modeling high-level face features through deep networks
Deep learning: Modeling high-level face features through deep networks
Nelson Forte
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
Edge AI and Vision Alliance
 
Finding the best solution for Image Processing
Finding the best solution for Image Processing
Tech Triveni
 
Architecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks I
Wanjin Yu
 
Recent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectives
Namkug Kim
 
State-of-the-art Image Processing across all domains
State-of-the-art Image Processing across all domains
Knoldus Inc.
 
Faire de la reconnaissance d'images avec le Deep Learning - Cristina & Pierre...
Faire de la reconnaissance d'images avec le Deep Learning - Cristina & Pierre...
Jedha Bootcamp
 
A Fully Progressive approach to Single image super-resolution
A Fully Progressive approach to Single image super-resolution
Mohammed Ashour
 
DLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep Learning
Brodmann17
 
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
Digipolis Antwerpen
 
Research Paper of Image Recognition .02.pdf
Research Paper of Image Recognition .02.pdf
tsmabhi
 
Ad

More from Universitat Politècnica de Catalunya (20)

Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Open challenges in sign language translation and production
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Curriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 

Recently uploaded (20)

Attendance Presentation Project Excel.pptx
Attendance Presentation Project Excel.pptx
s2025266191
 
Allotted-MBBS-Student-list-batch-2021.pdf
Allotted-MBBS-Student-list-batch-2021.pdf
subhansaifi0603
 
Model Evaluation & Visualisation part of a series of intro modules for data ...
Model Evaluation & Visualisation part of a series of intro modules for data ...
brandonlee626749
 
PPT1_CB_VII_CS_Ch3_FunctionsandChartsinCalc.ppsx
PPT1_CB_VII_CS_Ch3_FunctionsandChartsinCalc.ppsx
animaroy81
 
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
SarahMaeDuallo
 
NASA ESE Study Results v4 05.29.2020.pptx
NASA ESE Study Results v4 05.29.2020.pptx
CiroAlejandroCamacho
 
Shifting Focus on AI: How it Can Make a Positive Difference
Shifting Focus on AI: How it Can Make a Positive Difference
1508 A/S
 
@Reset-Password.pptx presentakh;kenvtion
@Reset-Password.pptx presentakh;kenvtion
MarkLariosa1
 
MRI Pulse Sequence in radiology physics.pptx
MRI Pulse Sequence in radiology physics.pptx
BelaynehBishaw
 
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
taqyed
 
lecture12.pdf Introduction to bioinformatics
lecture12.pdf Introduction to bioinformatics
SergeyTsygankov6
 
Starbucks in the Indian market through its joint venture.
Starbucks in the Indian market through its joint venture.
sales480687
 
一比一原版(TUC毕业证书)开姆尼茨工业大学毕业证如何办理
一比一原版(TUC毕业证书)开姆尼茨工业大学毕业证如何办理
taqyed
 
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
taqyed
 
Residential Zone 4 for industrial village
Residential Zone 4 for industrial village
MdYasinArafat13
 
Camuflaje Tipos Características Militar 2025.ppt
Camuflaje Tipos Características Militar 2025.ppt
e58650738
 
Presentation by Tariq & Mohammed (1).pptx
Presentation by Tariq & Mohammed (1).pptx
AbooddSandoqaa
 
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
payalmistryb
 
最新版美国加利福尼亚大学旧金山法学院毕业证(UCLawSF毕业证书)定制
最新版美国加利福尼亚大学旧金山法学院毕业证(UCLawSF毕业证书)定制
taqyea
 
最新版美国约翰霍普金斯大学毕业证(JHU毕业证书)原版定制
最新版美国约翰霍普金斯大学毕业证(JHU毕业证书)原版定制
Taqyea
 
Attendance Presentation Project Excel.pptx
Attendance Presentation Project Excel.pptx
s2025266191
 
Allotted-MBBS-Student-list-batch-2021.pdf
Allotted-MBBS-Student-list-batch-2021.pdf
subhansaifi0603
 
Model Evaluation & Visualisation part of a series of intro modules for data ...
Model Evaluation & Visualisation part of a series of intro modules for data ...
brandonlee626749
 
PPT1_CB_VII_CS_Ch3_FunctionsandChartsinCalc.ppsx
PPT1_CB_VII_CS_Ch3_FunctionsandChartsinCalc.ppsx
animaroy81
 
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
SarahMaeDuallo
 
NASA ESE Study Results v4 05.29.2020.pptx
NASA ESE Study Results v4 05.29.2020.pptx
CiroAlejandroCamacho
 
Shifting Focus on AI: How it Can Make a Positive Difference
Shifting Focus on AI: How it Can Make a Positive Difference
1508 A/S
 
@Reset-Password.pptx presentakh;kenvtion
@Reset-Password.pptx presentakh;kenvtion
MarkLariosa1
 
MRI Pulse Sequence in radiology physics.pptx
MRI Pulse Sequence in radiology physics.pptx
BelaynehBishaw
 
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
taqyed
 
lecture12.pdf Introduction to bioinformatics
lecture12.pdf Introduction to bioinformatics
SergeyTsygankov6
 
Starbucks in the Indian market through its joint venture.
Starbucks in the Indian market through its joint venture.
sales480687
 
一比一原版(TUC毕业证书)开姆尼茨工业大学毕业证如何办理
一比一原版(TUC毕业证书)开姆尼茨工业大学毕业证如何办理
taqyed
 
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
taqyed
 
Residential Zone 4 for industrial village
Residential Zone 4 for industrial village
MdYasinArafat13
 
Camuflaje Tipos Características Militar 2025.ppt
Camuflaje Tipos Características Militar 2025.ppt
e58650738
 
Presentation by Tariq & Mohammed (1).pptx
Presentation by Tariq & Mohammed (1).pptx
AbooddSandoqaa
 
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
payalmistryb
 
最新版美国加利福尼亚大学旧金山法学院毕业证(UCLawSF毕业证书)定制
最新版美国加利福尼亚大学旧金山法学院毕业证(UCLawSF毕业证书)定制
taqyea
 
最新版美国约翰霍普金斯大学毕业证(JHU毕业证书)原版定制
最新版美国约翰霍普金斯大学毕业证(JHU毕业证书)原版定制
Taqyea
 

Deep Learning for Computer Vision: Data Augmentation (UPC 2016)

  • 1. [course site] Augmentation Day 2 Lecture 2 Eva Mohedano
  • 2. Introduction ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky A., 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 1.2 million training images, 50,000 validation images, and 150,000 testing images Architecture of 5 convolutional + 3 fully connected = 60 million parameters ~ 650.000 neurons. Overfitting!! 2
  • 3. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 3
  • 4. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 1% of total parameters (884K). Decrease in performance 4
  • 5. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 37M, 16M, 4M parametes!! (fc6,fc7,fc8) 5
  • 6. Ways to reduce overfitting ● Reduce network capacity ● Dropout ● Data augmentation Every forward pass, network slightly different. Reduce co-adaptation between neurons More robust features More interations for convergence 6
  • 7. Ways to reduce overfitting ● Reduce network capacity ● Dropout ● Data augmentation 7
  • 8. Data Augmentation During training, alterate the input image (Krizhevsky A., 2012) - Random crops on the original image - Translations - Horitzontal reflections - Increases size of training x2048 - On-the-fly augmentation During testing - Average prediction of image augmented by the four corner patches and the center patch + flipped image. (10 augmentations of the image) 8
  • 9. Data Augmentation Alternate intensities RGB channels intensities PCA on the set of RGB pixel throughout the ImageNet training set. To each training image, add multiples of the found principal components Object identity should be invariant to changes of illumination 9
  • 10. Augmentation for discriminative unsupervised feature learning Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, Dosovitskiy, A., 2014 MOTIVATION ● Large datasets of training data ● Local descriptors should be invariant transformations (rotation, translation, scale, etc) WHAT THEY DO ● Training a CNN to generate local representation by optimising a surrogate classification task ● Task does NOT require labeled data 10
  • 11. Augmentation for discriminative unsupervised feature learning Select random location k and crop 32x32 window (restrictions: region must contain objects or part of the object: high amount of gradients) Apply a transformation [translation, rotation, scalig, RGB modification, contrast modification] ... Generate augmented dataset: 16000 classes of 150 examples each Class k=1, with 150 examples 11
  • 12. Augmentation for discriminative unsupervised feature learning Generate augmented dataset: 16000 classes of 150 examples each Example of classes Example of examples for one class 12
  • 13. Augmentation for discriminative unsupervised feature learning Classification accuracies Superior performance to SIFT for image matching. 13
  • 14. Summary Augmentation helps to prevent overfitting It makes network invariant to certain transformations: translations, flip, etc Can be done on-the-fly Can be used to learn image representations when no label datasets are available. 14