SlideShare a Scribd company logo
Deep Learning and Application in
       Neural Networks


   Hugo Larochelle    Geoffrey Hinton
    Yoshua Bengio       Andrew Ng.
  Jerome Louradour   Andrew L. Nelson
    Pascal Lamblin   R. Salskhutdinov
Biological Neurons




                                        Terminal Branches
                     Dendrites
                                             of Axon




                                 Axon
Artificial Neural Networks (ANN)

                                Terminal Branches
             Dendrites
                                     of Axon
  x1
       w1
  x2
       w2
  x3   w3




                         Axon

       wn
  xn




                                Slide credit : Andrew L. Nelson
Layered Networks




Input nodes                                        Output nodes
                       Hidden nodes
        Connections

              Output : yi   f ( wi1x1 wi2x 2 wi3x 3  wim x m )
                            f(       wij x j )
                                 j
Neural network application
• ALVINN drives 70 mph on highways




                                     Slide credit : T.Michell
Neural network application




                      Slide credit : Andraw Ng.
The simplest model- the Perceptron
  •The Perceptron was introduced in 1957 by
  Frank Rosenblatt.



Perceptron:                              -                             D0


                                        d
                                                                       D1



Activation                                                             D2
functions:



Learning:                                     Input     Output
                                              Layer               Destinations
                                                        Layer
              Update




                                                      Slide credit : Geoffrey Hinton
Second generation neural networks (~1985)
                      Compare outputs with
Back-propagate        correct answer to get
error signal to get   error signal
derivatives for
learning                                             outputs




                                                            hidden
                                                            layers


                                                    input vector

                                              Slide credit : Geoffrey Hinton
BP-algorithm
                                       1
                                       .5

                                       0
                                            -5   0   5
 Activations




                       errors




The error:
                       Update




Update
Weights:
                                Slide credit : Geoffrey Hinton
Back Propagation
 Advantages
 • Multi layer Perceptron network can be
 trained by the back propagation algorithm
 to perform any mapping between the
 input and the output.

What is wrong with back-propagation?
 •It requires labeled training data.
       Almost all data is unlabeled.
 •The learning time does not scale well
       It is very slow in networks with
       multiple hidden layers.
 •It can get stuck in poor local optima.




                                             Slide credit : Geoffrey Hinton
Why Deep multi-layered neural network

              object models




              object parts
              (combination
              of edges)



             edges




         pixels
Deep neural networks
Deep Neural Networks
• Standard learning strategy
  – Randomly initializing the weights of the network
  – Applying gradient descent using backpropagation
• But, backpropagation does not work well
  (if randomly initialized)
  – Deep networks trained with back-propagation
    (without unsupervised pre-train) perform worse
    than shallow networks
  – ANN have limited to one or two layers
Deep neural networks
Deep neural networks
Deep neural networks
Unsupervised greedy layer-wise
     training procedure.
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Deep neural networks
Layer-Local Unsupervised Learning
• Restricted Boltzmann Machine (SRBM) (Hinton et al,
    NC’2006)
•   Auto-encoders (Bengio et al, NIPS’2006)
•   Sparse auto-encoders (Ranzato et al, NIPS’2006)
•   Kernel PCA (Erhan 2008)
•   Denoising auto-encoders (Vincent et al, ICML’2008)
•   Unsupervised embedding (Weston et al, ICML’2008)
•   Slow features (Mohabi et al, ICML’2009, Bergstra & Bengio
    NIPS’2009)
Experiments
• MNIST data set
  – A benchmark for handwritten digit recognition
  – The number of classes is 10 (corresponding to the
    digits from 0 to 9)
  – The inputs were scaled between 0 and 1




                                Exploring Strategies for Training Deep Neural Networks.
 Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin; 10(Jan):1--40, 2009.
Classification error on MNIST training
Experiments
• Histograms presenting the test errors obtained on MNIST
  using models trained with or without pre-training.




         The difficulty of training deep architectures and the effect of unsupervised pre-training.
       Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal Vincent;
                                                                              pages 153-160, 2009.
Experiments
• NORB data set
  – 5 object categories, 5 difference objects within
    each category.
• Classification error rate
  – DBM : 10.8 %
  – SVM : 11.6 %
  – Logistic Regression : 22.5 %
  – KNN : 18.4 %


                               Efficient Learning of Deep Boltzmann Machines.
                                        Ruslan Salakhutdinov, Hugo Larochelle ;
                                                   JMLR W&CP 9:693-700, 2010.
Conclusion
• Deep Learning : powerful arguments &
  generalization priciples
• Unsupervised Feature Learning is crucial
  many new algorithms and applications in
  recent years
• Deep Learning suited for multi-task learning,
  domain adaptation and semi-learning with
  few labels
Application
• Classification (Bengio et al., 2007; Ranzato et al., 2007b;
    Larochelle et al., 2007; Ranzato et al.,2008)
• Regression (Salakhutdinov and Hinton, 2008)
• Dimensionality Reduction (Hinton Salakhutdinov, 2006;
    Salakhutdinov and Hinton, 2007)
•   Modeling Textures (Osindero and Hinton, 2008)
•   Information Retrieval (Salakhutdinov and Hinton, 2007)
•   Robotics (Hadsell et al., 2008)
•   Natural Language Processing (Collobert and Weston, 2008;
    Weston et al., 2008)
• Collaborative Filtering (Salakhutdinov et al., 2007)
Recent Deep Learning Highlights
Recent Deep Learning Highlights
• Google Goggles uses Stacked Sparse Auto Encoders
  (Hartmut Neven @ ICML 2011)
• The monograph or review paper Learning Deep Architectures for AI
  (Foundations & Trends in Machine Learning, 2009).
• Exploring Strategies for Training Deep Neural Networks, Hugo
  Larochelle, Yoshua Bengio, Jerome Louradour and Pascal Lamblin
  in: The Journal of Machine Learning Research, pages 1-40, 2009.
• The LISA publications database contains a deep architectures
  category. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
  ReadingOnDeepNetworks
• Deep Machine Learning – A New Frontier in Artificial Intelligence
  Research – a survey paper by Itamar Arel, Derek C. Rose, and
  Thomas P. Karnowski.
Thank You
Ad

More Related Content

What's hot (20)

Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Deep learning
Deep learningDeep learning
Deep learning
Ratnakar Pandey
 
Deep learning
Deep learningDeep learning
Deep learning
Mohamed Loey
 
Recurrent neural network
Recurrent neural networkRecurrent neural network
Recurrent neural network
Syed Annus Ali SHah
 
Introduction to Deep learning
Introduction to Deep learningIntroduction to Deep learning
Introduction to Deep learning
leopauly
 
Transfer Learning: An overview
Transfer Learning: An overviewTransfer Learning: An overview
Transfer Learning: An overview
jins0618
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
Deep learning
Deep learning Deep learning
Deep learning
Rajgupta258
 
Activation function
Activation functionActivation function
Activation function
Astha Jain
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Yan Xu
 
The world of loss function
The world of loss functionThe world of loss function
The world of loss function
홍배 김
 
Perceptron & Neural Networks
Perceptron & Neural NetworksPerceptron & Neural Networks
Perceptron & Neural Networks
NAGUR SHAREEF SHAIK
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Introduction to soft computing
Introduction to soft computingIntroduction to soft computing
Introduction to soft computing
Ankush Kumar
 
Back propagation
Back propagationBack propagation
Back propagation
Nagarajan
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
Mohamed Loey
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 
HOPFIELD NETWORK
HOPFIELD NETWORKHOPFIELD NETWORK
HOPFIELD NETWORK
ankita pandey
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Introduction to Deep learning
Introduction to Deep learningIntroduction to Deep learning
Introduction to Deep learning
leopauly
 
Transfer Learning: An overview
Transfer Learning: An overviewTransfer Learning: An overview
Transfer Learning: An overview
jins0618
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
Activation function
Activation functionActivation function
Activation function
Astha Jain
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Yan Xu
 
The world of loss function
The world of loss functionThe world of loss function
The world of loss function
홍배 김
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Introduction to soft computing
Introduction to soft computingIntroduction to soft computing
Introduction to soft computing
Ankush Kumar
 
Back propagation
Back propagationBack propagation
Back propagation
Nagarajan
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
Mohamed Loey
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 

Viewers also liked (20)

Deep learning - Conceptual understanding and applications
Deep learning - Conceptual understanding and applicationsDeep learning - Conceptual understanding and applications
Deep learning - Conceptual understanding and applications
Buhwan Jeong
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through Examples
Sri Ambati
 
Bắt đầu học data science
Bắt đầu học data scienceBắt đầu học data science
Bắt đầu học data science
Hong Ong
 
Bắt đầu nghiên cứu Big Data
Bắt đầu nghiên cứu Big DataBắt đầu nghiên cứu Big Data
Bắt đầu nghiên cứu Big Data
Hong Ong
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in Python
Imry Kissos
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learning
joshwills
 
A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)
Prof. Dr. Diego Kuonen
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data Scientist
Daniel Tunkelang
 
Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The People
Daniel Tunkelang
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems
Xavier Amatriain
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Data Science London
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientist
ryanorban
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013
Philip Zheng
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
Devashish Shanker
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
Varad Meru
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
Sebastian Raschka
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification Rules
Pier Luca Lanzi
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data Scientists
David Pittman
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and Applications
NhatHai Phan
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitions
Owen Zhang
 
Deep learning - Conceptual understanding and applications
Deep learning - Conceptual understanding and applicationsDeep learning - Conceptual understanding and applications
Deep learning - Conceptual understanding and applications
Buhwan Jeong
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through Examples
Sri Ambati
 
Bắt đầu học data science
Bắt đầu học data scienceBắt đầu học data science
Bắt đầu học data science
Hong Ong
 
Bắt đầu nghiên cứu Big Data
Bắt đầu nghiên cứu Big DataBắt đầu nghiên cứu Big Data
Bắt đầu nghiên cứu Big Data
Hong Ong
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in Python
Imry Kissos
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learning
joshwills
 
A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)
Prof. Dr. Diego Kuonen
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data Scientist
Daniel Tunkelang
 
Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The People
Daniel Tunkelang
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems
Xavier Amatriain
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Data Science London
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientist
ryanorban
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013
Philip Zheng
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
Devashish Shanker
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
Varad Meru
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
Sebastian Raschka
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification Rules
Pier Luca Lanzi
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data Scientists
David Pittman
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and Applications
NhatHai Phan
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitions
Owen Zhang
 
Ad

Similar to Deep neural networks (20)

introduction to deeplearning
introduction to deeplearningintroduction to deeplearning
introduction to deeplearning
Eyad Alshami
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
GeeksLab Odessa
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
GeeksLab Odessa
 
Fundamental of deep learning
Fundamental of deep learningFundamental of deep learning
Fundamental of deep learning
Stanley Wang
 
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
Philip Zheng
 
Evolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancementsEvolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancements
Chitta Ranjan
 
AINL 2016: Filchenkov
AINL 2016: FilchenkovAINL 2016: Filchenkov
AINL 2016: Filchenkov
Lidia Pivovarova
 
Deep learning from a novice perspective
Deep learning from a novice perspectiveDeep learning from a novice perspective
Deep learning from a novice perspective
Anirban Santara
 
Deep learning 1
Deep learning 1Deep learning 1
Deep learning 1
Karthick Thiyagu
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep Learning
Poo Kuan Hoong
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep Learning
Poo Kuan Hoong
 
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
Poo Kuan Hoong
 
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo appDetails of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
Autoencoders for image_classification
Autoencoders for image_classificationAutoencoders for image_classification
Autoencoders for image_classification
Cenk Bircanoğlu
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
Felipe Prado
 
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
datasciencekorea
 
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용
홍배 김
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
introduction to deeplearning
introduction to deeplearningintroduction to deeplearning
introduction to deeplearning
Eyad Alshami
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
GeeksLab Odessa
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
GeeksLab Odessa
 
Fundamental of deep learning
Fundamental of deep learningFundamental of deep learning
Fundamental of deep learning
Stanley Wang
 
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
Philip Zheng
 
Evolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancementsEvolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancements
Chitta Ranjan
 
Deep learning from a novice perspective
Deep learning from a novice perspectiveDeep learning from a novice perspective
Deep learning from a novice perspective
Anirban Santara
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep Learning
Poo Kuan Hoong
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep Learning
Poo Kuan Hoong
 
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
Poo Kuan Hoong
 
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo appDetails of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
Autoencoders for image_classification
Autoencoders for image_classificationAutoencoders for image_classification
Autoencoders for image_classification
Cenk Bircanoğlu
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
Felipe Prado
 
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
datasciencekorea
 
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용Convolutional neural networks 이론과 응용
Convolutional neural networks 이론과 응용
홍배 김
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Ad

Recently uploaded (20)

Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
LDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini UpdatesLDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini Updates
LDM Mia eStudios
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
larencebapu132
 
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam SuccessUltimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Mark Soia
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Political History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptxPolitical History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
LDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini UpdatesLDMMIA Reiki Master Spring 2025 Mini Updates
LDMMIA Reiki Master Spring 2025 Mini Updates
LDM Mia eStudios
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
larencebapu132
 
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam SuccessUltimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Mark Soia
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 

Deep neural networks

  • 1. Deep Learning and Application in Neural Networks Hugo Larochelle Geoffrey Hinton Yoshua Bengio Andrew Ng. Jerome Louradour Andrew L. Nelson Pascal Lamblin R. Salskhutdinov
  • 2. Biological Neurons Terminal Branches Dendrites of Axon Axon
  • 3. Artificial Neural Networks (ANN) Terminal Branches Dendrites of Axon x1 w1 x2 w2 x3 w3 Axon wn xn Slide credit : Andrew L. Nelson
  • 4. Layered Networks Input nodes Output nodes Hidden nodes Connections Output : yi f ( wi1x1 wi2x 2 wi3x 3  wim x m ) f( wij x j ) j
  • 5. Neural network application • ALVINN drives 70 mph on highways Slide credit : T.Michell
  • 6. Neural network application Slide credit : Andraw Ng.
  • 7. The simplest model- the Perceptron •The Perceptron was introduced in 1957 by Frank Rosenblatt. Perceptron: - D0 d D1 Activation D2 functions: Learning: Input Output Layer Destinations Layer Update Slide credit : Geoffrey Hinton
  • 8. Second generation neural networks (~1985) Compare outputs with Back-propagate correct answer to get error signal to get error signal derivatives for learning outputs hidden layers input vector Slide credit : Geoffrey Hinton
  • 9. BP-algorithm 1 .5 0 -5 0 5 Activations errors The error: Update Update Weights: Slide credit : Geoffrey Hinton
  • 10. Back Propagation Advantages • Multi layer Perceptron network can be trained by the back propagation algorithm to perform any mapping between the input and the output. What is wrong with back-propagation? •It requires labeled training data. Almost all data is unlabeled. •The learning time does not scale well It is very slow in networks with multiple hidden layers. •It can get stuck in poor local optima. Slide credit : Geoffrey Hinton
  • 11. Why Deep multi-layered neural network object models object parts (combination of edges) edges pixels
  • 13. Deep Neural Networks • Standard learning strategy – Randomly initializing the weights of the network – Applying gradient descent using backpropagation • But, backpropagation does not work well (if randomly initialized) – Deep networks trained with back-propagation (without unsupervised pre-train) perform worse than shallow networks – ANN have limited to one or two layers
  • 17. Unsupervised greedy layer-wise training procedure.
  • 27. Layer-Local Unsupervised Learning • Restricted Boltzmann Machine (SRBM) (Hinton et al, NC’2006) • Auto-encoders (Bengio et al, NIPS’2006) • Sparse auto-encoders (Ranzato et al, NIPS’2006) • Kernel PCA (Erhan 2008) • Denoising auto-encoders (Vincent et al, ICML’2008) • Unsupervised embedding (Weston et al, ICML’2008) • Slow features (Mohabi et al, ICML’2009, Bergstra & Bengio NIPS’2009)
  • 28. Experiments • MNIST data set – A benchmark for handwritten digit recognition – The number of classes is 10 (corresponding to the digits from 0 to 9) – The inputs were scaled between 0 and 1 Exploring Strategies for Training Deep Neural Networks. Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin; 10(Jan):1--40, 2009.
  • 29. Classification error on MNIST training
  • 30. Experiments • Histograms presenting the test errors obtained on MNIST using models trained with or without pre-training. The difficulty of training deep architectures and the effect of unsupervised pre-training. Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal Vincent; pages 153-160, 2009.
  • 31. Experiments • NORB data set – 5 object categories, 5 difference objects within each category. • Classification error rate – DBM : 10.8 % – SVM : 11.6 % – Logistic Regression : 22.5 % – KNN : 18.4 % Efficient Learning of Deep Boltzmann Machines. Ruslan Salakhutdinov, Hugo Larochelle ; JMLR W&CP 9:693-700, 2010.
  • 32. Conclusion • Deep Learning : powerful arguments & generalization priciples • Unsupervised Feature Learning is crucial many new algorithms and applications in recent years • Deep Learning suited for multi-task learning, domain adaptation and semi-learning with few labels
  • 33. Application • Classification (Bengio et al., 2007; Ranzato et al., 2007b; Larochelle et al., 2007; Ranzato et al.,2008) • Regression (Salakhutdinov and Hinton, 2008) • Dimensionality Reduction (Hinton Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007) • Modeling Textures (Osindero and Hinton, 2008) • Information Retrieval (Salakhutdinov and Hinton, 2007) • Robotics (Hadsell et al., 2008) • Natural Language Processing (Collobert and Weston, 2008; Weston et al., 2008) • Collaborative Filtering (Salakhutdinov et al., 2007)
  • 34. Recent Deep Learning Highlights
  • 35. Recent Deep Learning Highlights • Google Goggles uses Stacked Sparse Auto Encoders (Hartmut Neven @ ICML 2011) • The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009). • Exploring Strategies for Training Deep Neural Networks, Hugo Larochelle, Yoshua Bengio, Jerome Louradour and Pascal Lamblin in: The Journal of Machine Learning Research, pages 1-40, 2009. • The LISA publications database contains a deep architectures category. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ ReadingOnDeepNetworks • Deep Machine Learning – A New Frontier in Artificial Intelligence Research – a survey paper by Itamar Arel, Derek C. Rose, and Thomas P. Karnowski.