SlideShare a Scribd company logo
@joe_Caserta#dgconference
Defining and Applying Data Governance in
Today’s Business Environment
Joe Caserta
President
Caserta Concepts
December 8-12, 2014
The Westin Beach Resort
Ft. Lauderdale, Florida
@joe_Caserta#dgconference
Top 20 Big Data
Consulting - CIO Review
Joe Caserta Timeline
Launched Big Data practice
Co-author, with Ralph Kimball, The
Data Warehouse ETL Toolkit (Wiley)
Dedicated to Data Warehousing,
Business Intelligence since 1996
Began consulting database
programing and data modeling 25+ years hands-on experience
building database solutions
Founded Caserta Concepts in NYC
Web log analytics solution published
in Intelligent Enterprise
Formalized Alliances / Partnerships –
System Integrators
Partnered with Big Data vendors
Cloudera, Hortonworks, IBM, Cisco,
Datameer, Basho more…
Launched Training practice, teaching
data concepts world-wide
Laser focus on extending Data
Warehouses with Big Data solutions
1986
2004
1996
2009
2001
2010
2013
Launched Big Data Warehousing
(BDW) Meetup-NYC ~1500 Members
2012
2014
Established best practices for big
data ecosystem implementation –
Healthcare, Finance, Insurance
Top 20 Most Powerful
Big Data consulting firms
Dedicated to Data Governance
Techniques on Big Data (Innovation)
@joe_Caserta#dgconference
Enrollments
Claims
Finance
ETL
Ad-Hoc Query
Horizontally Scalable Environment - Optimized for Analytics
Big Data Cluster
Canned Reporting
Big Data Analytics
NoSQL
Databases
ETL
Ad-Hoc/Canned
Reporting
Traditional BI
Mahout MapReduce Pig/Hive
N1 N2 N4N3 N5
Hadoop Distributed File System (HDFS)
Traditional
EDW
Others…
Today’s business environment requires Big Data
Data Science
@joe_Caserta#dgconference
Innovation is the only sustainable
competitive advantage a company can have.
@joe_Caserta#dgconference
Why is Big Data Governance Important?
 Convergence of
 Data quality
 Management and policies
 All data in an organization
 Set of processes
 Ensures important data assets are formally managed throughout the
enterprise.
 Ensures data can be trusted
 People made accountable for low data quality
It is about putting people and technology in place to fix and
prevent issues with data so that the enterprise can become
more efficient.
@joe_Caserta#dgconference
•Data is coming in so
fast, how do we
monitor it?
•Real real-time
analytics
•What does
“complete” mean
•Dealing with sparse,
incomplete, volatile,
and highly
manufactured data.
How do you certify
sentiment analysis?
•Wider breadth of
datasets and sources
in scope requires
larger data
governance support
•Data governance
cannot start at the
data warehouse
•Data volume is
higher so the process
must be more reliant
on programmatic
administration
•Less people/process
dependence
Volume Variety
VelocityVeracity
The Challenges With Governing Big Data
@joe_Caserta#dgconference
What’s Old is New Again
 Before Data Warehousing Data Governance
 Users trying to produce reports from raw source data
 No Data Conformance
 No Master Data Management
 No Data Quality processes
 No Trust: Two analysts were almost guaranteed to come up
with two different sets of numbers!
 Before Big Data Governance
 We can put “anything” in Hadoop
 We can analyze anything
 We’re scientists, we don’t need IT, we make the rules
 Rule #1: Dumping data into Hadoop with no repeatable process, procedure, or
data governance will create a mess
 Rule #2: Information harvested from an ungoverned systems will take us back to
the old days: No Trust = Not Actionable
@joe_Caserta#dgconference
Making it Right
 The promise is an “agile” data culture where communities of users are encouraged
to explore new datasets in new ways
 New tools
 External data
 Data blending
 Decentralization
 With all the V’s, data scientists, new tools, new data we must rely LESS on HUMANS
 We need more systemic administration
 We need systems, tools to help with big data governance
 This space is EXTREMELY immature!
 Steps towards Big Data Governance
1. Establish difference between traditional data and big data governance
2. Establish basic rules for where new data governance can be applied
3. Establish processes for graduating the products of data science to
governance
4. Establish a set of tools to make governing Big Data feasible
@joe_Caserta#dgconference
Process Architecture
Communication
Organization
IFP
Governance
Administration
Compliance
Reporting
Standards
Value Proposition
Risk/Reward
Information
Accountabilities
Stewardship
Architecture
Enterprise Data
Council
Data Integrity
Metrics
Control Mechanisms
Principles and
Standards
Information Usability
Communication
BDG provides vision, oversight and accountability for leveraging
corporate information assets to create competitive advantage,
and accelerate the vision of integrated delivery.
Value Creation
• Acts on Requirements
Build Capabilities
• Does the Work
• Responsible for adherence
Governance
Committees
Data Stewards
Project Teams
Enterprise
Data Council
• Executive Oversight
• Prioritizes work
Drives change
Accountable for results
Definitions
Big Data Governance Organization
@joe_Caserta#dgconference
•This is the ‘people’ part. Establishing Enterprise Data Council,
Data Stewards, etc.Organization
•Definitions, lineage (where does this data come from),
business definitions, technical metadataMetadata
•Identify and control sensitive data, regulatory compliancePrivacy/Security
•Data must be complete and correct. Measure, improve,
certify
Data Quality and
Monitoring
•Policies around data frequency, source availability, etc.Business Process Integration
•Ensure consistent business critical data i.e. Members,
Providers, Agents, etc.Master Data Management
•Data retention, purge schedule, storage/archiving
Information Lifecycle
Management (ILM)
Components of Data Governance
• Add Big Data to overall framework and assign responsibility
• Add data scientists to the Stewardship program
• Assign stewards to new data sets (twitter, call center logs, etc.)
• Graph databases are more flexible than relational
• Lower latency service required
• Distributed data quality and matching algorithms
• Data Quality and Monitoring (probably home grown, drools?)
• Quality checks not only SQL: machine learning, Pig and Map Reduce
• Acting on large dataset quality checks may require distribution
• Larger scale
• New datatypes
• Integrate with Hive Metastore, HCatalog, home grown tables
• Secure and mask multiple data types (not just tabular)
• Deletes are more uncommon (unless there is regulatory requirement)
• Take advantage of compression and archiving (like AWS Glacier)
• Data detection and masking on unstructured data upon ingest
• Near-zero latency, DevOps, Core component of business operations
For Big Data
@joe_Caserta#dgconference
Big Data Governance Realities
 Full data governance can only be applied to “Structured” data
 The data must have a known and well documented schema
 This can include materialized endpoints such as files or tables OR
projections such as a Hive table
 Governed structured data must have:
 A known schema with Metadata
 A known and certified lineage
 A monitored, quality test, managed process for ingestion and
transformation
 A governed usage  Data isn’t just for enterprise BI tools anymore
 We talk about unstructured data in Hadoop but more-so it’s semi-
structured/structured with a definable schema.
 Even in the case of unstructured data, structure must be
extracted/applied in just about every case imaginable before analysis
can be performed.
@joe_Caserta#dgconference
The Data Scientists Can Help!
 Data Science to Big Data Warehouse mapping
 Full Data Governance Requirements
 Provide full process lineage
 Data certification process by data stewards and business owners
 Ongoing Data Quality monitoring that includes Quality Checks
 Provide requirements for Data Lake
 Proper metadata established:
 Catalog
 Data Definitions
 Lineage
 Quality monitoring
 Know and validate data
completeness
@joe_Caserta#dgconference
Big
Data
Warehouse
Data Science Workspace
Data Lake – Integrated Sandbox
Landing Area – Source Data in “Full Fidelity”
The Big Data Governance Pyramid
Metadata  Catalog
ILM  who has access,
how long do we
“manage it”
Raw machine data
collection, collect
everything
Data is ready to be turned into
information: organized, well
defined, complete.
Agile business insight through data-
munging, machine learning, blending
with external data, development of
to-be BDW facts
Metadata  Catalog
ILM  who has access, how long do we
“manage it”
Data Quality and Monitoring 
Monitoring of completeness of data
Metadata  Catalog
ILM  who has access, how long do we “manage it”
Data Quality and Monitoring  Monitoring of
completeness of data
 Hadoop has different governance demands at each tier.
 Only top tier of the pyramid is fully governed.
 We refer to this as the Trusted tier of the Big Data Warehouse.
Fully Data Governed ( trusted)
User community arbitrary queries and
reporting
@joe_Caserta#dgconference
People, Processes and Business commitment is still critical!
 - (Incubating) promises many of the features
we need, however is fairly immature (Version 0.5).
Recommendation: Roll your own custom lifecycle management
workflow using Oozie + retention metadata
The Information Lifecycle Part of Big Data
Caution: Some Assembly Required
The V’s require robust tooling:
 Unfortunately the toolset is pretty
thin: Some of the most hopeful tools
are brand new or in incubation!
 Components like ILM have fair
tooling, others like MDM and Data
Quality are sparse
@joe_Caserta#dgconference
Master Data Management
 Traditional MDM will do depending on your data size and
requirements:
 Relational is awkward, extreme normalization, poor usability and
performance
NoSQL stores like HBase has benefits
 If you need super high performance low millisecond response times to
incorporate into your Big Data ETL
 Flexible Schema
 Graph database is near perfect fit. Relationships and graph analysis bring
master data to life!
Data quality and matching processes are required
Little to no community or vendor support
More will come with YARN (more Commercial and Open Source IP
will be leveragable in Hadoop framework) -
Recommendation: Buy + Enhance or Build.
@joe_Caserta#dgconference
Data
User
Interface
Services
WorkflowRules
Security
Members Providers
Agents Plans
Policies
Consistent Policy
Enforcement and Security
Integration with exiting
ecosystem
Data Governance through
Workflow Management
Data Quality enforcement
through metadata-driven
rules
Time-Variant Hierarchies
and attributes
High Performance, Flexible,
Scalable Database – Think
Graph!
Master Data Management Components
@joe_Caserta#dgconference
Staging
Library
Consolidated
Library
Standardization Matching
Integrated
Library
Survivorship
Source ID Name Home Address Birth Date SSN
SYS A 123 Jim Stagnitto 123 Main St 8/20/1959 123-45-6789
SYS B ABC J. Stagnitto 132 Main Street 8/20/1959 123-45-6789
SYS C XYZ James Stag NULL 8/20/1959 NULL
Source ID Name Home Address Birth Date SSN Std Name Std Addr MDM ID
SYS A 123 Jim Stagnitto 123 Main St 8/20/1959 123-45-6789 James Stagnitto 123 Main Street 1
SYS B ABC J. Stagnitto 132 Main Street 8/20/1959 123-45-6789 James Stagnitto 132 Main Street 1
SYS C XYZ James Stag NULL 8/20/1959 NULL James Stag NULL 1
MDM ID Name Home Address Birth Date SSN
1 James Stagnitto 123 Main Street 8/20/1959 123-45-6789
Mastering Customer and Provider Data
Validation
@joe_Caserta#dgconference
The Reality of Mastering Data
@joe_Caserta#dgconference
Graph Databases (NoSQL) to the Rescue
 Hierarchical relationships are never
rigid
 Relational models with tables and
columns not flexible enough
 Neo4j is the leading graph database
 Many MDM systems are going graph:
 Pitney Bowes - Spectrum MDM
 Reltio - Worry-Free Data for Life Sciences.
@joe_Caserta#dgconference
Securing Big Data
 Determining Who Sees What:
 Need to be able to secure as many data types as possible
 Auto-discovery important!
 Current products:
 Sentry – SQL security semantics to Hive
 Knox – Central authentication mechanism to Hadoop
 Cloudera Navigator – Central security auditing
 Hadoop - Good old *NIX permission with LDAP
 Dataguise – Auto-discovery, masking, encryption
 Datameer – The BI Tool for Hadoop
Recommendation: Assemble based on existing tools
@joe_Caserta#dgconference
• For now Hive Metastore, HCatalog + Custom might be best
• HCatalog gives great “abstraction” services
• Maps to a relational schema
• Developers don’t need to worry about data formats and
storage
• Can use SuperLuminate to get started
Recommendation: Leverage HCatalog + Custom metadata tables
Metadata
@joe_Caserta#dgconference
They gave
developers and data
scientists a reason to
use it:
• Easy to use storage
handlers
• Automatic partitioning
• Schema backwards
compatibility
• Monitoring and
dependency Checks
The Twitter Way
 Twitter was suffering from a data science wild west.
 Developed their own enterprise Data Access Layer (DAL)
@joe_Caserta#dgconference
Data Quality and Monitoring
 To TRUST your information a robust set of tools for continuous
monitoring is needed
 Accuracy and completeness of data must be ensured.
 Any piece of information in the Big Data Warehouse must have
monitoring:
 Basic Stats: source to target counts
 Error Events: did we trap any errors during processing
 Business Checks: is the metric “within expectations”, How
does it compare with an abridged alternate calculation.
Large gap in commercial projects /open source project offerings
@joe_Caserta#dgconference
Data Quality and Monitoring Recommendation
DQ
metadata
Hive
Pig
MR
Quality
Check
Builder
DQ
Notifier
and
Logger
DQ
Events and
Timeseries
Facts
DQ ENGINE
• BUILD a robust data quality
subsystem:
• HBase for metadata and error
event facts
• Oozie for orchestration
• Based on Data Warehouse ETL
Toolkit
@joe_Caserta#dgconference
Closing Thoughts – Enable the Future
 Today’s business environment
requires the convergence of data
quality, data management, data
engineering and business policies.
 Make sure your data can be trusted
and people can be held accountable
for impact caused by low data
quality.
 Get experts to help calm the
turbulence… it can be exhausting!
 Blaze new trails!
Polyglot Persistence – “where any decent
sized enterprise will have a variety of different
data storage technologies for different kinds of
data. There will still be large amounts of it
managed in relational stores, but increasingly
we'll be first asking how we want to manipulate
the data and only then figuring out what
technology is the best bet for it.”
-- Martin Fowler
@joe_Caserta#dgconference
Thank You
Joe Caserta
President, Caserta Concepts
joe@casertaconcepts.com
(914) 261-3648
@joe_Caserta
Ad

More Related Content

What's hot (20)

Balancing Data Governance and Innovation
Balancing Data Governance and InnovationBalancing Data Governance and Innovation
Balancing Data Governance and Innovation
Caserta
 
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Caserta
 
Moving Past Infrastructure Limitations
Moving Past Infrastructure LimitationsMoving Past Infrastructure Limitations
Moving Past Infrastructure Limitations
Caserta
 
Big Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data LakeBig Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data Lake
Caserta
 
Big Data's Impact on the Enterprise
Big Data's Impact on the EnterpriseBig Data's Impact on the Enterprise
Big Data's Impact on the Enterprise
Caserta
 
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing KeynoteArchitecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Caserta
 
Incorporating the Data Lake into Your Analytic Architecture
Incorporating the Data Lake into Your Analytic ArchitectureIncorporating the Data Lake into Your Analytic Architecture
Incorporating the Data Lake into Your Analytic Architecture
Caserta
 
Mastering Customer Data on Apache Spark
Mastering Customer Data on Apache SparkMastering Customer Data on Apache Spark
Mastering Customer Data on Apache Spark
Caserta
 
The Emerging Data Lake IT Strategy
The Emerging Data Lake IT StrategyThe Emerging Data Lake IT Strategy
The Emerging Data Lake IT Strategy
Thomas Kelly, PMP
 
A modern, flexible approach to Hadoop implementation incorporating innovation...
A modern, flexible approach to Hadoop implementation incorporating innovation...A modern, flexible approach to Hadoop implementation incorporating innovation...
A modern, flexible approach to Hadoop implementation incorporating innovation...
DataWorks Summit
 
Building a New Platform for Customer Analytics
Building a New Platform for Customer Analytics Building a New Platform for Customer Analytics
Building a New Platform for Customer Analytics
Caserta
 
Big Data Boom
Big Data BoomBig Data Boom
Big Data Boom
Syed Jahanzaib Bin Hassan - JBH Syed
 
Data Lake, Virtual Database, or Data Hub - How to Choose?
Data Lake, Virtual Database, or Data Hub - How to Choose?Data Lake, Virtual Database, or Data Hub - How to Choose?
Data Lake, Virtual Database, or Data Hub - How to Choose?
DATAVERSITY
 
Enterprise Data Management
Enterprise Data ManagementEnterprise Data Management
Enterprise Data Management
Syed Jahanzaib Bin Hassan - JBH Syed
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
The Data Lake - Balancing Data Governance and Innovation
The Data Lake - Balancing Data Governance and Innovation The Data Lake - Balancing Data Governance and Innovation
The Data Lake - Balancing Data Governance and Innovation
Caserta
 
Data lake benefits
Data lake benefitsData lake benefits
Data lake benefits
Ricky Barron
 
Creating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data ArchitectureCreating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data Architecture
Perficient, Inc.
 
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Caserta
 
The Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They NeedThe Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They Need
Dunn Solutions Group
 
Balancing Data Governance and Innovation
Balancing Data Governance and InnovationBalancing Data Governance and Innovation
Balancing Data Governance and Innovation
Caserta
 
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Building New Data Ecosystem for Customer Analytics, Strata + Hadoop World, 2016
Caserta
 
Moving Past Infrastructure Limitations
Moving Past Infrastructure LimitationsMoving Past Infrastructure Limitations
Moving Past Infrastructure Limitations
Caserta
 
Big Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data LakeBig Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data Lake
Caserta
 
Big Data's Impact on the Enterprise
Big Data's Impact on the EnterpriseBig Data's Impact on the Enterprise
Big Data's Impact on the Enterprise
Caserta
 
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing KeynoteArchitecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Caserta
 
Incorporating the Data Lake into Your Analytic Architecture
Incorporating the Data Lake into Your Analytic ArchitectureIncorporating the Data Lake into Your Analytic Architecture
Incorporating the Data Lake into Your Analytic Architecture
Caserta
 
Mastering Customer Data on Apache Spark
Mastering Customer Data on Apache SparkMastering Customer Data on Apache Spark
Mastering Customer Data on Apache Spark
Caserta
 
The Emerging Data Lake IT Strategy
The Emerging Data Lake IT StrategyThe Emerging Data Lake IT Strategy
The Emerging Data Lake IT Strategy
Thomas Kelly, PMP
 
A modern, flexible approach to Hadoop implementation incorporating innovation...
A modern, flexible approach to Hadoop implementation incorporating innovation...A modern, flexible approach to Hadoop implementation incorporating innovation...
A modern, flexible approach to Hadoop implementation incorporating innovation...
DataWorks Summit
 
Building a New Platform for Customer Analytics
Building a New Platform for Customer Analytics Building a New Platform for Customer Analytics
Building a New Platform for Customer Analytics
Caserta
 
Data Lake, Virtual Database, or Data Hub - How to Choose?
Data Lake, Virtual Database, or Data Hub - How to Choose?Data Lake, Virtual Database, or Data Hub - How to Choose?
Data Lake, Virtual Database, or Data Hub - How to Choose?
DATAVERSITY
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
The Data Lake - Balancing Data Governance and Innovation
The Data Lake - Balancing Data Governance and Innovation The Data Lake - Balancing Data Governance and Innovation
The Data Lake - Balancing Data Governance and Innovation
Caserta
 
Data lake benefits
Data lake benefitsData lake benefits
Data lake benefits
Ricky Barron
 
Creating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data ArchitectureCreating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data Architecture
Perficient, Inc.
 
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Creating a DevOps Practice for Analytics -- Strata Data, September 28, 2017
Caserta
 
The Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They NeedThe Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They Need
Dunn Solutions Group
 

Viewers also liked (12)

Big Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Big Data 2.0: YARN Enablement for Distributed ETL & SQL with HadoopBig Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Big Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Caserta
 
Data Quality in the Data Hub with RedPointGlobal
Data Quality in the Data Hub with RedPointGlobalData Quality in the Data Hub with RedPointGlobal
Data Quality in the Data Hub with RedPointGlobal
Caserta
 
Data Driven Decisions - Big Data Warehousing Meetup, FICO
Data Driven Decisions - Big Data Warehousing Meetup, FICOData Driven Decisions - Big Data Warehousing Meetup, FICO
Data Driven Decisions - Big Data Warehousing Meetup, FICO
Caserta
 
Neo4j Solutions - Master Data Management
Neo4j Solutions - Master Data ManagementNeo4j Solutions - Master Data Management
Neo4j Solutions - Master Data Management
Caserta
 
DGIQ 2015 The Fundamentals of Data Quality
DGIQ 2015 The Fundamentals of Data QualityDGIQ 2015 The Fundamentals of Data Quality
DGIQ 2015 The Fundamentals of Data Quality
Caserta
 
Data Governance, Compliance and Security in Hadoop with Cloudera
Data Governance, Compliance and Security in Hadoop with ClouderaData Governance, Compliance and Security in Hadoop with Cloudera
Data Governance, Compliance and Security in Hadoop with Cloudera
Caserta
 
Deploying a Governed Data Lake
Deploying a Governed Data LakeDeploying a Governed Data Lake
Deploying a Governed Data Lake
WaterlineData
 
Big MDM Part 2: Using a Graph Database for MDM and Relationship Management
Big MDM Part 2: Using a Graph Database for MDM and Relationship ManagementBig MDM Part 2: Using a Graph Database for MDM and Relationship Management
Big MDM Part 2: Using a Graph Database for MDM and Relationship Management
Caserta
 
Webinar: Initiating a Customer MDM/Data Governance Program
Webinar: Initiating a Customer MDM/Data Governance ProgramWebinar: Initiating a Customer MDM/Data Governance Program
Webinar: Initiating a Customer MDM/Data Governance Program
DATAVERSITY
 
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Caserta
 
The Rise of the CDO in Today's Enterprise
The Rise of the CDO in Today's EnterpriseThe Rise of the CDO in Today's Enterprise
The Rise of the CDO in Today's Enterprise
Caserta
 
Implementing Effective Data Governance
Implementing Effective Data GovernanceImplementing Effective Data Governance
Implementing Effective Data Governance
Christopher Bradley
 
Big Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Big Data 2.0: YARN Enablement for Distributed ETL & SQL with HadoopBig Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Big Data 2.0: YARN Enablement for Distributed ETL & SQL with Hadoop
Caserta
 
Data Quality in the Data Hub with RedPointGlobal
Data Quality in the Data Hub with RedPointGlobalData Quality in the Data Hub with RedPointGlobal
Data Quality in the Data Hub with RedPointGlobal
Caserta
 
Data Driven Decisions - Big Data Warehousing Meetup, FICO
Data Driven Decisions - Big Data Warehousing Meetup, FICOData Driven Decisions - Big Data Warehousing Meetup, FICO
Data Driven Decisions - Big Data Warehousing Meetup, FICO
Caserta
 
Neo4j Solutions - Master Data Management
Neo4j Solutions - Master Data ManagementNeo4j Solutions - Master Data Management
Neo4j Solutions - Master Data Management
Caserta
 
DGIQ 2015 The Fundamentals of Data Quality
DGIQ 2015 The Fundamentals of Data QualityDGIQ 2015 The Fundamentals of Data Quality
DGIQ 2015 The Fundamentals of Data Quality
Caserta
 
Data Governance, Compliance and Security in Hadoop with Cloudera
Data Governance, Compliance and Security in Hadoop with ClouderaData Governance, Compliance and Security in Hadoop with Cloudera
Data Governance, Compliance and Security in Hadoop with Cloudera
Caserta
 
Deploying a Governed Data Lake
Deploying a Governed Data LakeDeploying a Governed Data Lake
Deploying a Governed Data Lake
WaterlineData
 
Big MDM Part 2: Using a Graph Database for MDM and Relationship Management
Big MDM Part 2: Using a Graph Database for MDM and Relationship ManagementBig MDM Part 2: Using a Graph Database for MDM and Relationship Management
Big MDM Part 2: Using a Graph Database for MDM and Relationship Management
Caserta
 
Webinar: Initiating a Customer MDM/Data Governance Program
Webinar: Initiating a Customer MDM/Data Governance ProgramWebinar: Initiating a Customer MDM/Data Governance Program
Webinar: Initiating a Customer MDM/Data Governance Program
DATAVERSITY
 
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Big Data Warehousing Meetup: Dimensional Modeling Still Matters!!!
Caserta
 
The Rise of the CDO in Today's Enterprise
The Rise of the CDO in Today's EnterpriseThe Rise of the CDO in Today's Enterprise
The Rise of the CDO in Today's Enterprise
Caserta
 
Implementing Effective Data Governance
Implementing Effective Data GovernanceImplementing Effective Data Governance
Implementing Effective Data Governance
Christopher Bradley
 
Ad

Similar to Defining and Applying Data Governance in Today’s Business Environment (20)

Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
Caserta
 
Why data governance is the new buzz?
Why data governance is the new buzz?Why data governance is the new buzz?
Why data governance is the new buzz?
Aachen Data & AI Meetup
 
Group 2 Handling and Processing of big data (1).pptx
Group 2 Handling and Processing of big data (1).pptxGroup 2 Handling and Processing of big data (1).pptx
Group 2 Handling and Processing of big data (1).pptx
NATASHABANO
 
Big Data and BI Tools - BI Reporting for Bay Area Startups User Group
Big Data and BI Tools - BI Reporting for Bay Area Startups User GroupBig Data and BI Tools - BI Reporting for Bay Area Startups User Group
Big Data and BI Tools - BI Reporting for Bay Area Startups User Group
Scott Mitchell
 
DAMA Australia: How to Choose a Data Management Tool
DAMA Australia: How to Choose a Data Management ToolDAMA Australia: How to Choose a Data Management Tool
DAMA Australia: How to Choose a Data Management Tool
Precisely
 
Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann--Data Governance Final 011315Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann
 
The value of big data analytics
The value of big data analyticsThe value of big data analytics
The value of big data analytics
Marc Vael
 
BAR360 open data platform presentation at DAMA, Sydney
BAR360 open data platform presentation at DAMA, SydneyBAR360 open data platform presentation at DAMA, Sydney
BAR360 open data platform presentation at DAMA, Sydney
Sai Paravastu
 
Architecting for Big Data: Trends, Tips, and Deployment Options
Architecting for Big Data: Trends, Tips, and Deployment OptionsArchitecting for Big Data: Trends, Tips, and Deployment Options
Architecting for Big Data: Trends, Tips, and Deployment Options
Caserta
 
Reinvent Your Data Management Strategy for Successful Digital Transformation
Reinvent Your Data Management Strategy for Successful Digital TransformationReinvent Your Data Management Strategy for Successful Digital Transformation
Reinvent Your Data Management Strategy for Successful Digital Transformation
Denodo
 
How to build a successful Data Lake
How to build a successful Data LakeHow to build a successful Data Lake
How to build a successful Data Lake
DataWorks Summit/Hadoop Summit
 
Group 2 Handling and Processing of big data.pptx
Group 2 Handling and Processing of big data.pptxGroup 2 Handling and Processing of big data.pptx
Group 2 Handling and Processing of big data.pptx
salutiontechnology
 
EPF-datagov-part1-1.pdf
EPF-datagov-part1-1.pdfEPF-datagov-part1-1.pdf
EPF-datagov-part1-1.pdf
cedrinemadera
 
Data summit connect fall 2020 - rise of data ops
Data summit connect fall 2020 - rise of data opsData summit connect fall 2020 - rise of data ops
Data summit connect fall 2020 - rise of data ops
Ryan Gross
 
Increasing Agility Through Data Virtualization
Increasing Agility Through Data VirtualizationIncreasing Agility Through Data Virtualization
Increasing Agility Through Data Virtualization
Denodo
 
Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Science Salon 2018 - Building a true enterprise data governance platform...Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Con LA
 
Five Things to Consider About Data Mesh and Data Governance
Five Things to Consider About Data Mesh and Data GovernanceFive Things to Consider About Data Mesh and Data Governance
Five Things to Consider About Data Mesh and Data Governance
DATAVERSITY
 
Data Governance Course without AI_Week 3-4.pptx
Data Governance Course without AI_Week 3-4.pptxData Governance Course without AI_Week 3-4.pptx
Data Governance Course without AI_Week 3-4.pptx
layanfadif
 
Data Governance_Notes.pptx
Data Governance_Notes.pptxData Governance_Notes.pptx
Data Governance_Notes.pptx
VivekDubley
 
MT101 Dell OCIO: Delivering data and analytics in real time
MT101 Dell OCIO:  Delivering data and analytics in real timeMT101 Dell OCIO:  Delivering data and analytics in real time
MT101 Dell OCIO: Delivering data and analytics in real time
Dell EMC World
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
Caserta
 
Group 2 Handling and Processing of big data (1).pptx
Group 2 Handling and Processing of big data (1).pptxGroup 2 Handling and Processing of big data (1).pptx
Group 2 Handling and Processing of big data (1).pptx
NATASHABANO
 
Big Data and BI Tools - BI Reporting for Bay Area Startups User Group
Big Data and BI Tools - BI Reporting for Bay Area Startups User GroupBig Data and BI Tools - BI Reporting for Bay Area Startups User Group
Big Data and BI Tools - BI Reporting for Bay Area Startups User Group
Scott Mitchell
 
DAMA Australia: How to Choose a Data Management Tool
DAMA Australia: How to Choose a Data Management ToolDAMA Australia: How to Choose a Data Management Tool
DAMA Australia: How to Choose a Data Management Tool
Precisely
 
Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann--Data Governance Final 011315Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann--Data Governance Final 011315
Ashley Ohmann
 
The value of big data analytics
The value of big data analyticsThe value of big data analytics
The value of big data analytics
Marc Vael
 
BAR360 open data platform presentation at DAMA, Sydney
BAR360 open data platform presentation at DAMA, SydneyBAR360 open data platform presentation at DAMA, Sydney
BAR360 open data platform presentation at DAMA, Sydney
Sai Paravastu
 
Architecting for Big Data: Trends, Tips, and Deployment Options
Architecting for Big Data: Trends, Tips, and Deployment OptionsArchitecting for Big Data: Trends, Tips, and Deployment Options
Architecting for Big Data: Trends, Tips, and Deployment Options
Caserta
 
Reinvent Your Data Management Strategy for Successful Digital Transformation
Reinvent Your Data Management Strategy for Successful Digital TransformationReinvent Your Data Management Strategy for Successful Digital Transformation
Reinvent Your Data Management Strategy for Successful Digital Transformation
Denodo
 
Group 2 Handling and Processing of big data.pptx
Group 2 Handling and Processing of big data.pptxGroup 2 Handling and Processing of big data.pptx
Group 2 Handling and Processing of big data.pptx
salutiontechnology
 
EPF-datagov-part1-1.pdf
EPF-datagov-part1-1.pdfEPF-datagov-part1-1.pdf
EPF-datagov-part1-1.pdf
cedrinemadera
 
Data summit connect fall 2020 - rise of data ops
Data summit connect fall 2020 - rise of data opsData summit connect fall 2020 - rise of data ops
Data summit connect fall 2020 - rise of data ops
Ryan Gross
 
Increasing Agility Through Data Virtualization
Increasing Agility Through Data VirtualizationIncreasing Agility Through Data Virtualization
Increasing Agility Through Data Virtualization
Denodo
 
Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Science Salon 2018 - Building a true enterprise data governance platform...Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Science Salon 2018 - Building a true enterprise data governance platform...
Data Con LA
 
Five Things to Consider About Data Mesh and Data Governance
Five Things to Consider About Data Mesh and Data GovernanceFive Things to Consider About Data Mesh and Data Governance
Five Things to Consider About Data Mesh and Data Governance
DATAVERSITY
 
Data Governance Course without AI_Week 3-4.pptx
Data Governance Course without AI_Week 3-4.pptxData Governance Course without AI_Week 3-4.pptx
Data Governance Course without AI_Week 3-4.pptx
layanfadif
 
Data Governance_Notes.pptx
Data Governance_Notes.pptxData Governance_Notes.pptx
Data Governance_Notes.pptx
VivekDubley
 
MT101 Dell OCIO: Delivering data and analytics in real time
MT101 Dell OCIO:  Delivering data and analytics in real timeMT101 Dell OCIO:  Delivering data and analytics in real time
MT101 Dell OCIO: Delivering data and analytics in real time
Dell EMC World
 
Ad

More from Caserta (10)

Using Machine Learning & Spark to Power Data-Driven Marketing
Using Machine Learning & Spark to Power Data-Driven MarketingUsing Machine Learning & Spark to Power Data-Driven Marketing
Using Machine Learning & Spark to Power Data-Driven Marketing
Caserta
 
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Caserta
 
General Data Protection Regulation - BDW Meetup, October 11th, 2017
General Data Protection Regulation - BDW Meetup, October 11th, 2017General Data Protection Regulation - BDW Meetup, October 11th, 2017
General Data Protection Regulation - BDW Meetup, October 11th, 2017
Caserta
 
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Caserta
 
Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)
Caserta
 
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Caserta
 
Big Data Analytics on the Cloud
Big Data Analytics on the CloudBig Data Analytics on the Cloud
Big Data Analytics on the Cloud
Caserta
 
Not Your Father's Database by Databricks
Not Your Father's Database by DatabricksNot Your Father's Database by Databricks
Not Your Father's Database by Databricks
Caserta
 
Introducing Kudu, Big Data Warehousing Meetup
Introducing Kudu, Big Data Warehousing MeetupIntroducing Kudu, Big Data Warehousing Meetup
Introducing Kudu, Big Data Warehousing Meetup
Caserta
 
Real Time Big Data Processing on AWS
Real Time Big Data Processing on AWSReal Time Big Data Processing on AWS
Real Time Big Data Processing on AWS
Caserta
 
Using Machine Learning & Spark to Power Data-Driven Marketing
Using Machine Learning & Spark to Power Data-Driven MarketingUsing Machine Learning & Spark to Power Data-Driven Marketing
Using Machine Learning & Spark to Power Data-Driven Marketing
Caserta
 
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Data Intelligence: How the Amalgamation of Data, Science, and Technology is C...
Caserta
 
General Data Protection Regulation - BDW Meetup, October 11th, 2017
General Data Protection Regulation - BDW Meetup, October 11th, 2017General Data Protection Regulation - BDW Meetup, October 11th, 2017
General Data Protection Regulation - BDW Meetup, October 11th, 2017
Caserta
 
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
Caserta
 
Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)Introduction to Data Science (Data Summit, 2017)
Introduction to Data Science (Data Summit, 2017)
Caserta
 
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Looker Data Modeling in the Age of Cloud - BDW Meetup May 2, 2017
Caserta
 
Big Data Analytics on the Cloud
Big Data Analytics on the CloudBig Data Analytics on the Cloud
Big Data Analytics on the Cloud
Caserta
 
Not Your Father's Database by Databricks
Not Your Father's Database by DatabricksNot Your Father's Database by Databricks
Not Your Father's Database by Databricks
Caserta
 
Introducing Kudu, Big Data Warehousing Meetup
Introducing Kudu, Big Data Warehousing MeetupIntroducing Kudu, Big Data Warehousing Meetup
Introducing Kudu, Big Data Warehousing Meetup
Caserta
 
Real Time Big Data Processing on AWS
Real Time Big Data Processing on AWSReal Time Big Data Processing on AWS
Real Time Big Data Processing on AWS
Caserta
 

Recently uploaded (20)

Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 

Defining and Applying Data Governance in Today’s Business Environment

  • 1. @joe_Caserta#dgconference Defining and Applying Data Governance in Today’s Business Environment Joe Caserta President Caserta Concepts December 8-12, 2014 The Westin Beach Resort Ft. Lauderdale, Florida
  • 2. @joe_Caserta#dgconference Top 20 Big Data Consulting - CIO Review Joe Caserta Timeline Launched Big Data practice Co-author, with Ralph Kimball, The Data Warehouse ETL Toolkit (Wiley) Dedicated to Data Warehousing, Business Intelligence since 1996 Began consulting database programing and data modeling 25+ years hands-on experience building database solutions Founded Caserta Concepts in NYC Web log analytics solution published in Intelligent Enterprise Formalized Alliances / Partnerships – System Integrators Partnered with Big Data vendors Cloudera, Hortonworks, IBM, Cisco, Datameer, Basho more… Launched Training practice, teaching data concepts world-wide Laser focus on extending Data Warehouses with Big Data solutions 1986 2004 1996 2009 2001 2010 2013 Launched Big Data Warehousing (BDW) Meetup-NYC ~1500 Members 2012 2014 Established best practices for big data ecosystem implementation – Healthcare, Finance, Insurance Top 20 Most Powerful Big Data consulting firms Dedicated to Data Governance Techniques on Big Data (Innovation)
  • 3. @joe_Caserta#dgconference Enrollments Claims Finance ETL Ad-Hoc Query Horizontally Scalable Environment - Optimized for Analytics Big Data Cluster Canned Reporting Big Data Analytics NoSQL Databases ETL Ad-Hoc/Canned Reporting Traditional BI Mahout MapReduce Pig/Hive N1 N2 N4N3 N5 Hadoop Distributed File System (HDFS) Traditional EDW Others… Today’s business environment requires Big Data Data Science
  • 4. @joe_Caserta#dgconference Innovation is the only sustainable competitive advantage a company can have.
  • 5. @joe_Caserta#dgconference Why is Big Data Governance Important?  Convergence of  Data quality  Management and policies  All data in an organization  Set of processes  Ensures important data assets are formally managed throughout the enterprise.  Ensures data can be trusted  People made accountable for low data quality It is about putting people and technology in place to fix and prevent issues with data so that the enterprise can become more efficient.
  • 6. @joe_Caserta#dgconference •Data is coming in so fast, how do we monitor it? •Real real-time analytics •What does “complete” mean •Dealing with sparse, incomplete, volatile, and highly manufactured data. How do you certify sentiment analysis? •Wider breadth of datasets and sources in scope requires larger data governance support •Data governance cannot start at the data warehouse •Data volume is higher so the process must be more reliant on programmatic administration •Less people/process dependence Volume Variety VelocityVeracity The Challenges With Governing Big Data
  • 7. @joe_Caserta#dgconference What’s Old is New Again  Before Data Warehousing Data Governance  Users trying to produce reports from raw source data  No Data Conformance  No Master Data Management  No Data Quality processes  No Trust: Two analysts were almost guaranteed to come up with two different sets of numbers!  Before Big Data Governance  We can put “anything” in Hadoop  We can analyze anything  We’re scientists, we don’t need IT, we make the rules  Rule #1: Dumping data into Hadoop with no repeatable process, procedure, or data governance will create a mess  Rule #2: Information harvested from an ungoverned systems will take us back to the old days: No Trust = Not Actionable
  • 8. @joe_Caserta#dgconference Making it Right  The promise is an “agile” data culture where communities of users are encouraged to explore new datasets in new ways  New tools  External data  Data blending  Decentralization  With all the V’s, data scientists, new tools, new data we must rely LESS on HUMANS  We need more systemic administration  We need systems, tools to help with big data governance  This space is EXTREMELY immature!  Steps towards Big Data Governance 1. Establish difference between traditional data and big data governance 2. Establish basic rules for where new data governance can be applied 3. Establish processes for graduating the products of data science to governance 4. Establish a set of tools to make governing Big Data feasible
  • 9. @joe_Caserta#dgconference Process Architecture Communication Organization IFP Governance Administration Compliance Reporting Standards Value Proposition Risk/Reward Information Accountabilities Stewardship Architecture Enterprise Data Council Data Integrity Metrics Control Mechanisms Principles and Standards Information Usability Communication BDG provides vision, oversight and accountability for leveraging corporate information assets to create competitive advantage, and accelerate the vision of integrated delivery. Value Creation • Acts on Requirements Build Capabilities • Does the Work • Responsible for adherence Governance Committees Data Stewards Project Teams Enterprise Data Council • Executive Oversight • Prioritizes work Drives change Accountable for results Definitions Big Data Governance Organization
  • 10. @joe_Caserta#dgconference •This is the ‘people’ part. Establishing Enterprise Data Council, Data Stewards, etc.Organization •Definitions, lineage (where does this data come from), business definitions, technical metadataMetadata •Identify and control sensitive data, regulatory compliancePrivacy/Security •Data must be complete and correct. Measure, improve, certify Data Quality and Monitoring •Policies around data frequency, source availability, etc.Business Process Integration •Ensure consistent business critical data i.e. Members, Providers, Agents, etc.Master Data Management •Data retention, purge schedule, storage/archiving Information Lifecycle Management (ILM) Components of Data Governance • Add Big Data to overall framework and assign responsibility • Add data scientists to the Stewardship program • Assign stewards to new data sets (twitter, call center logs, etc.) • Graph databases are more flexible than relational • Lower latency service required • Distributed data quality and matching algorithms • Data Quality and Monitoring (probably home grown, drools?) • Quality checks not only SQL: machine learning, Pig and Map Reduce • Acting on large dataset quality checks may require distribution • Larger scale • New datatypes • Integrate with Hive Metastore, HCatalog, home grown tables • Secure and mask multiple data types (not just tabular) • Deletes are more uncommon (unless there is regulatory requirement) • Take advantage of compression and archiving (like AWS Glacier) • Data detection and masking on unstructured data upon ingest • Near-zero latency, DevOps, Core component of business operations For Big Data
  • 11. @joe_Caserta#dgconference Big Data Governance Realities  Full data governance can only be applied to “Structured” data  The data must have a known and well documented schema  This can include materialized endpoints such as files or tables OR projections such as a Hive table  Governed structured data must have:  A known schema with Metadata  A known and certified lineage  A monitored, quality test, managed process for ingestion and transformation  A governed usage  Data isn’t just for enterprise BI tools anymore  We talk about unstructured data in Hadoop but more-so it’s semi- structured/structured with a definable schema.  Even in the case of unstructured data, structure must be extracted/applied in just about every case imaginable before analysis can be performed.
  • 12. @joe_Caserta#dgconference The Data Scientists Can Help!  Data Science to Big Data Warehouse mapping  Full Data Governance Requirements  Provide full process lineage  Data certification process by data stewards and business owners  Ongoing Data Quality monitoring that includes Quality Checks  Provide requirements for Data Lake  Proper metadata established:  Catalog  Data Definitions  Lineage  Quality monitoring  Know and validate data completeness
  • 13. @joe_Caserta#dgconference Big Data Warehouse Data Science Workspace Data Lake – Integrated Sandbox Landing Area – Source Data in “Full Fidelity” The Big Data Governance Pyramid Metadata  Catalog ILM  who has access, how long do we “manage it” Raw machine data collection, collect everything Data is ready to be turned into information: organized, well defined, complete. Agile business insight through data- munging, machine learning, blending with external data, development of to-be BDW facts Metadata  Catalog ILM  who has access, how long do we “manage it” Data Quality and Monitoring  Monitoring of completeness of data Metadata  Catalog ILM  who has access, how long do we “manage it” Data Quality and Monitoring  Monitoring of completeness of data  Hadoop has different governance demands at each tier.  Only top tier of the pyramid is fully governed.  We refer to this as the Trusted tier of the Big Data Warehouse. Fully Data Governed ( trusted) User community arbitrary queries and reporting
  • 14. @joe_Caserta#dgconference People, Processes and Business commitment is still critical!  - (Incubating) promises many of the features we need, however is fairly immature (Version 0.5). Recommendation: Roll your own custom lifecycle management workflow using Oozie + retention metadata The Information Lifecycle Part of Big Data Caution: Some Assembly Required The V’s require robust tooling:  Unfortunately the toolset is pretty thin: Some of the most hopeful tools are brand new or in incubation!  Components like ILM have fair tooling, others like MDM and Data Quality are sparse
  • 15. @joe_Caserta#dgconference Master Data Management  Traditional MDM will do depending on your data size and requirements:  Relational is awkward, extreme normalization, poor usability and performance NoSQL stores like HBase has benefits  If you need super high performance low millisecond response times to incorporate into your Big Data ETL  Flexible Schema  Graph database is near perfect fit. Relationships and graph analysis bring master data to life! Data quality and matching processes are required Little to no community or vendor support More will come with YARN (more Commercial and Open Source IP will be leveragable in Hadoop framework) - Recommendation: Buy + Enhance or Build.
  • 16. @joe_Caserta#dgconference Data User Interface Services WorkflowRules Security Members Providers Agents Plans Policies Consistent Policy Enforcement and Security Integration with exiting ecosystem Data Governance through Workflow Management Data Quality enforcement through metadata-driven rules Time-Variant Hierarchies and attributes High Performance, Flexible, Scalable Database – Think Graph! Master Data Management Components
  • 17. @joe_Caserta#dgconference Staging Library Consolidated Library Standardization Matching Integrated Library Survivorship Source ID Name Home Address Birth Date SSN SYS A 123 Jim Stagnitto 123 Main St 8/20/1959 123-45-6789 SYS B ABC J. Stagnitto 132 Main Street 8/20/1959 123-45-6789 SYS C XYZ James Stag NULL 8/20/1959 NULL Source ID Name Home Address Birth Date SSN Std Name Std Addr MDM ID SYS A 123 Jim Stagnitto 123 Main St 8/20/1959 123-45-6789 James Stagnitto 123 Main Street 1 SYS B ABC J. Stagnitto 132 Main Street 8/20/1959 123-45-6789 James Stagnitto 132 Main Street 1 SYS C XYZ James Stag NULL 8/20/1959 NULL James Stag NULL 1 MDM ID Name Home Address Birth Date SSN 1 James Stagnitto 123 Main Street 8/20/1959 123-45-6789 Mastering Customer and Provider Data Validation
  • 19. @joe_Caserta#dgconference Graph Databases (NoSQL) to the Rescue  Hierarchical relationships are never rigid  Relational models with tables and columns not flexible enough  Neo4j is the leading graph database  Many MDM systems are going graph:  Pitney Bowes - Spectrum MDM  Reltio - Worry-Free Data for Life Sciences.
  • 20. @joe_Caserta#dgconference Securing Big Data  Determining Who Sees What:  Need to be able to secure as many data types as possible  Auto-discovery important!  Current products:  Sentry – SQL security semantics to Hive  Knox – Central authentication mechanism to Hadoop  Cloudera Navigator – Central security auditing  Hadoop - Good old *NIX permission with LDAP  Dataguise – Auto-discovery, masking, encryption  Datameer – The BI Tool for Hadoop Recommendation: Assemble based on existing tools
  • 21. @joe_Caserta#dgconference • For now Hive Metastore, HCatalog + Custom might be best • HCatalog gives great “abstraction” services • Maps to a relational schema • Developers don’t need to worry about data formats and storage • Can use SuperLuminate to get started Recommendation: Leverage HCatalog + Custom metadata tables Metadata
  • 22. @joe_Caserta#dgconference They gave developers and data scientists a reason to use it: • Easy to use storage handlers • Automatic partitioning • Schema backwards compatibility • Monitoring and dependency Checks The Twitter Way  Twitter was suffering from a data science wild west.  Developed their own enterprise Data Access Layer (DAL)
  • 23. @joe_Caserta#dgconference Data Quality and Monitoring  To TRUST your information a robust set of tools for continuous monitoring is needed  Accuracy and completeness of data must be ensured.  Any piece of information in the Big Data Warehouse must have monitoring:  Basic Stats: source to target counts  Error Events: did we trap any errors during processing  Business Checks: is the metric “within expectations”, How does it compare with an abridged alternate calculation. Large gap in commercial projects /open source project offerings
  • 24. @joe_Caserta#dgconference Data Quality and Monitoring Recommendation DQ metadata Hive Pig MR Quality Check Builder DQ Notifier and Logger DQ Events and Timeseries Facts DQ ENGINE • BUILD a robust data quality subsystem: • HBase for metadata and error event facts • Oozie for orchestration • Based on Data Warehouse ETL Toolkit
  • 25. @joe_Caserta#dgconference Closing Thoughts – Enable the Future  Today’s business environment requires the convergence of data quality, data management, data engineering and business policies.  Make sure your data can be trusted and people can be held accountable for impact caused by low data quality.  Get experts to help calm the turbulence… it can be exhausting!  Blaze new trails! Polyglot Persistence – “where any decent sized enterprise will have a variety of different data storage technologies for different kinds of data. There will still be large amounts of it managed in relational stores, but increasingly we'll be first asking how we want to manipulate the data and only then figuring out what technology is the best bet for it.” -- Martin Fowler

Editor's Notes

  • #8: We focused our attention on building a single version of the truth We mainly applied data governance on the EDW itself and a few primary supporting systems –like MDM. We had a fairly restrictive set of tools for using the EDW data  Enterprise BI tools  It was easier to GOVERN how the data would be used.
  • #15: Apache Falcon is a data processing and management solution for Hadoop designed for data motion, coordination of data pipelines, lifecycle management, and data discovery. Falcon enables end consumers to quickly onboard their data and its associated processing and management tasks on Hadoop clusters.
  • #17: Workflow: OpenSymphony Rules: Drools Database: Neo4j Interface: Cytoscape