This is a brief introduction to Snowflake Cloud Data Platform and our revolutionary architecture. It contains a discussion of some of our unique features along with some real world metrics from our global customer base.
Snowflake concepts & hands on expertise to help get you started on implementing Data warehouses using Snowflake. Necessary information and skills that will help you master Snowflake essentials.
Data mesh is a decentralized approach to managing and accessing analytical data at scale. It distributes responsibility for data pipelines and quality to domain experts. The key principles are domain-centric ownership, treating data as a product, and using a common self-service infrastructure platform. Snowflake is well-suited for implementing a data mesh with its capabilities for sharing data and functions securely across accounts and clouds, with built-in governance and a data marketplace for discovery. A data mesh implemented on Snowflake's data cloud can support truly global and multi-cloud data sharing and management according to data mesh principles.
Introducing Snowflake, an elastic data warehouse delivered as a service in the cloud. It aims to simplify data warehousing by removing the need for customers to manage infrastructure, scaling, and tuning. Snowflake uses a multi-cluster architecture to provide elastic scaling of storage, compute, and concurrency. It can bring together structured and semi-structured data for analysis without requiring data transformation. Customers have seen significant improvements in performance, cost savings, and the ability to add new workloads compared to traditional on-premises data warehousing solutions.
Snowflake's Kent Graziano talks about what makes a data warehouse as a service and some of the key features of Snowflake's data warehouse as a service.
As cloud computing continues to gather speed, organizations with years’ worth of data stored on legacy on-premise technologies are facing issues with scale, speed, and complexity. Your customers and business partners are likely eager to get data from you, especially if you can make the process easy and secure.
Challenges with performance are not uncommon and ongoing interventions are required just to “keep the lights on”.
Discover how Snowflake empowers you to meet your analytics needs by unlocking the potential of your data.
Agenda of Webinar :
~Understand Snowflake and its Architecture
~Quickly load data into Snowflake
~Leverage the latest in Snowflake’s unlimited performance and scale to make the data ready for analytics
~Deliver secure and governed access to all data – no more silos
Organizations are struggling to make sense of their data within antiquated data platforms. Snowflake, the data warehouse built for the cloud, can help.
Introduction to Snowflake Datawarehouse and Architecture for Big data company. Centralized data management. Snowpipe and Copy into a command for data loading. Stream loading and Batch Processing.
This document outlines an agenda for a 90-minute workshop on Snowflake. The agenda includes introductions, an overview of Snowflake and data warehousing, demonstrations of how users utilize Snowflake, hands-on exercises loading sample data and running queries, and discussions of Snowflake architecture and capabilities. Real-world customer examples are also presented, such as a pharmacy building new applications on Snowflake and an education company using it to unify their data sources and achieve a 16x performance improvement.
Data Warehouse - Incremental Migration to the CloudMichael Rainey
A data warehouse (DW) migration is no small undertaking, especially when moving from on-premises to the cloud. A typical data warehouse has numerous data sources connecting and loading data into the DW, ETL tools and data integration scripts performing transformations, and reporting, advanced analytics, or ad-hoc query tools accessing the data for insights and analysis. That’s a lot to coordinate and the data warehouse cannot be migrated all at once. Using a data replication technology such as Oracle GoldenGate, the data warehouse migration can be performed incrementally by keeping the data in-sync between the original DW and the new, cloud DW. This session will dive into the steps necessary for this incremental migration approach and walk through a customer use case scenario, leaving attendees with an understanding of how to perform a data warehouse migration to the cloud.
Presented at RMOUG Training Days 2019
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...Databricks
A traditional data team has roles including data engineer, data scientist, and data analyst. However, many organizations are finding success by integrating a new role – the analytics engineer. The analytics engineer develops a code-based data infrastructure that can serve both analytics and data science teams. He or she develops re-usable data models using the software engineering practices of version control and unit testing, and provides the critical domain expertise that ensures that data products are relevant and insightful. In this talk we’ll talk about the role and skill set of the analytics engineer, and discuss how dbt, an open source programming environment, empowers anyone with a SQL skillset to fulfill this new role on the data team. We’ll demonstrate how to use dbt to build version-controlled data models on top of Delta Lake, test both the code and our assumptions about the underlying data, and orchestrate complete data pipelines on Apache Spark™.
Master the Multi-Clustered Data Warehouse - SnowflakeMatillion
Snowflake is one of the most powerful, efficient data warehouses on the market today—and we joined forces with the Snowflake team to show you how it works!
In this webinar:
- Learn how to optimize Snowflake
- Hear insider tips and tricks on how to improve performance
- Get expert insights from Craig Collier, Technical Architect from Snowflake, and Kalyan Arangam, Solution Architect from Matillion
- Find out how leading brands like Converse, Duo Security, and Pets at Home use Snowflake and Matillion ETL to make data-driven decisions
- Discover how Matillion ETL and Snowflake work together to modernize your data world
- Learn how to utilize the impressive scalability of Snowflake and Matillion
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Presentation on Data Mesh: The paradigm shift is a new type of eco-system architecture, which is a shift left towards a modern distributed architecture in which it allows domain-specific data and views “data-as-a-product,” enabling each domain to handle its own data pipelines.
The document discusses Snowflake, a cloud data platform. It covers Snowflake's data landscape and benefits over legacy systems. It also describes how Snowflake can be deployed on AWS, Azure and GCP. Pricing is noted to vary by region but not cloud platform. The document outlines Snowflake's editions, architecture using a shared-nothing model, support for structured data, storage compression, and virtual warehouses that can autoscale. Security features like MFA and encryption are highlighted.
How to Take Advantage of an Enterprise Data Warehouse in the CloudDenodo
Watch full webinar here: [https://buff.ly/2CIOtys]
As organizations collect increasing amounts of diverse data, integrating that data for analytics becomes more difficult. Technology that scales poorly and fails to support semi-structured data fails to meet the ever-increasing demands of today’s enterprise. In short, companies everywhere can’t consolidate their data into a single location for analytics.
In this Denodo DataFest 2018 session we’ll cover:
Bypassing the mandate of a single enterprise data warehouse
Modern data sharing to easily connect different data types located in multiple repositories for deeper analytics
How cloud data warehouses can scale both storage and compute, independently and elastically, to meet variable workloads
Presentation by Harsha Kapre, Snowflake
This document provides an introduction and overview of implementing Data Vault 2.0 on Snowflake. It begins with an agenda and the presenter's background. It then discusses why customers are asking for Data Vault and provides an overview of the Data Vault methodology including its core components of hubs, links, and satellites. The document applies Snowflake features like separation of workloads and agile warehouse scaling to support Data Vault implementations. It also addresses modeling semi-structured data and building virtual information marts using views.
Enterprise Architecture vs. Data ArchitectureDATAVERSITY
Enterprise Architecture (EA) provides a visual blueprint of the organization, and shows key interrelationships between data, process, applications, and more. By abstracting these assets in a graphical view, it’s possible to see key interrelationships, particularly as they relate to data and its business impact across the organization. Join us for a discussion on how Data Architecture is a key component of an overall Enterprise Architecture for enhanced business value and success.
Building a Logical Data Fabric using Data Virtualization (ASEAN)Denodo
Watch full webinar here: https://bit.ly/3FF1ubd
In the recent Building the Unified Data Warehouse and Data Lake report by leading industry analysts TDWI, we have discovered 64% of organizations stated the objective for a unified Data Warehouse and Data Lakes is to get more business value and 84% of organizations polled felt that a unified approach to Data Warehouses and Data Lakes was either extremely or moderately important.
In this session, you will learn how your organization can apply a logical data fabric and the associated technologies of machine learning, artificial intelligence, and data virtualization can reduce time to value. Hence, increasing the overall business value of your data assets.
KEY TAKEAWAYS:
- How a Logical Data Fabric is the right approach to assist organizations to unify their data.
- The advanced features of a Logical Data Fabric that assist with the democratization of data, providing an agile and governed approach to business analytics and data science.
- How a Logical Data Fabric with Data Virtualization enhances your legacy data integration landscape to simplify data access and encourage self-service.
Every day, businesses across a wide variety of industries share data to support insights that drive efficiency and new business opportunities. However, existing methods for sharing data involve great effort on the part of data providers to share data, and involve great effort on the part of data customers to make use of that data.
However, existing approaches to data sharing (such as e-mail, FTP, EDI, and APIs) have significant overhead and friction. For one, legacy approaches such as e-mail and FTP were never intended to support the big data volumes of today. Other data sharing methods also involve enormous effort. All of these methods require not only that the data be extracted, copied, transformed, and loaded, but also that related schemas and metadata must be transported as well. This creates a burden on data providers to deconstruct and stage data sets. This burden and effort is mirrored for the data recipient, who must reconstruct the data.
As a result, companies are handicapped in their ability to fully realize the value in their data assets.
Snowflake Data Sharing allows companies to grant instant access to ready-to-use data to any number of partners or data customers without any data movement, copying, or complex pipelines.
Using Snowflake Data Sharing, companies can derive new insights and value from data much more quickly and with significantly less effort than current data sharing methods. As a result, companies now have a new approach and a powerful new tool to get the full value out of their data assets.
Snowflake is an analytic data warehouse provided as software-as-a-service (SaaS). It uses a unique architecture designed for the cloud, with a shared-disk database and shared-nothing architecture. Snowflake's architecture consists of three layers - the database layer, query processing layer, and cloud services layer - which are deployed and managed entirely on cloud platforms like AWS and Azure. Snowflake offers different editions like Standard, Premier, Enterprise, and Enterprise for Sensitive Data that provide additional features, support, and security capabilities.
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021Tristan Baker
Past, present and future of data mesh at Intuit. This deck describes a vision and strategy for improving data worker productivity through a Data Mesh approach to organizing data and holding data producers accountable. Delivered at the inaugural Data Mesh Leaning meetup on 5/13/2021.
Data Lakehouse, Data Mesh, and Data Fabric (r2)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a modern data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. They all may sound great in theory, but I'll dig into the concerns you need to be aware of before taking the plunge. I’ll also include use cases so you can see what approach will work best for your big data needs. And I'll discuss Microsoft version of the data mesh.
Actionable Insights with AI - Snowflake for Data ScienceHarald Erb
Talk @ ScaleUp 360° AI Infrastructures DACH, 2021: Data scientists spend 80% and more of their time searching for and preparing data. This talk explains Snowflake’s Platform capabilities like near-unlimited data storage and instant and near-infinite compute resources and how the platform can be used to seamlessly integrate and support the machine learning libraries and tools data scientists rely on.
This document discusses Snowflake's data governance capabilities including challenges around data silos, complexity of data management, and balancing security and governance with data utilization. It provides an overview of Snowflake's platform for ingesting and sharing data across various sources and consumers. Key governance capabilities in Snowflake like object tagging, classification, anonymization, access history and row/column level policies are described. The document also previews upcoming conditional masking policies and provides examples of implementing object tagging and access policies in Snowflake.
Democratizing Data Quality Through a Centralized PlatformDatabricks
Bad data leads to bad decisions and broken customer experiences. Organizations depend on complete and accurate data to power their business, maintain efficiency, and uphold customer trust. With thousands of datasets and pipelines running, how do we ensure that all data meets quality standards, and that expectations are clear between producers and consumers? Investing in shared, flexible components and practices for monitoring data health is crucial for a complex data organization to rapidly and effectively scale.
At Zillow, we built a centralized platform to meet our data quality needs across stakeholders. The platform is accessible to engineers, scientists, and analysts, and seamlessly integrates with existing data pipelines and data discovery tools. In this presentation, we will provide an overview of our platform’s capabilities, including:
Giving producers and consumers the ability to define and view data quality expectations using a self-service onboarding portal
Performing data quality validations using libraries built to work with spark
Dynamically generating pipelines that can be abstracted away from users
Flagging data that doesn’t meet quality standards at the earliest stage and giving producers the opportunity to resolve issues before use by downstream consumers
Exposing data quality metrics alongside each dataset to provide producers and consumers with a comprehensive picture of health over time
Snowflake’s Cloud Data Platform and Modern AnalyticsSenturus
Snowflake's Cloud Data Platform provides a fully managed data warehouse as a service. It offers elastic scaling of storage and compute independently, with multiple clusters accessing a shared set of data. Its architecture separates storage, compute, and services across independent cloud infrastructure for high availability and resilience. Snowflake handles all data management tasks and provides automatic scaling and updates with no downtime.
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
This document outlines an agenda for a 90-minute workshop on Snowflake. The agenda includes introductions, an overview of Snowflake and data warehousing, demonstrations of how users utilize Snowflake, hands-on exercises loading sample data and running queries, and discussions of Snowflake architecture and capabilities. Real-world customer examples are also presented, such as a pharmacy building new applications on Snowflake and an education company using it to unify their data sources and achieve a 16x performance improvement.
Data Warehouse - Incremental Migration to the CloudMichael Rainey
A data warehouse (DW) migration is no small undertaking, especially when moving from on-premises to the cloud. A typical data warehouse has numerous data sources connecting and loading data into the DW, ETL tools and data integration scripts performing transformations, and reporting, advanced analytics, or ad-hoc query tools accessing the data for insights and analysis. That’s a lot to coordinate and the data warehouse cannot be migrated all at once. Using a data replication technology such as Oracle GoldenGate, the data warehouse migration can be performed incrementally by keeping the data in-sync between the original DW and the new, cloud DW. This session will dive into the steps necessary for this incremental migration approach and walk through a customer use case scenario, leaving attendees with an understanding of how to perform a data warehouse migration to the cloud.
Presented at RMOUG Training Days 2019
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...Databricks
A traditional data team has roles including data engineer, data scientist, and data analyst. However, many organizations are finding success by integrating a new role – the analytics engineer. The analytics engineer develops a code-based data infrastructure that can serve both analytics and data science teams. He or she develops re-usable data models using the software engineering practices of version control and unit testing, and provides the critical domain expertise that ensures that data products are relevant and insightful. In this talk we’ll talk about the role and skill set of the analytics engineer, and discuss how dbt, an open source programming environment, empowers anyone with a SQL skillset to fulfill this new role on the data team. We’ll demonstrate how to use dbt to build version-controlled data models on top of Delta Lake, test both the code and our assumptions about the underlying data, and orchestrate complete data pipelines on Apache Spark™.
Master the Multi-Clustered Data Warehouse - SnowflakeMatillion
Snowflake is one of the most powerful, efficient data warehouses on the market today—and we joined forces with the Snowflake team to show you how it works!
In this webinar:
- Learn how to optimize Snowflake
- Hear insider tips and tricks on how to improve performance
- Get expert insights from Craig Collier, Technical Architect from Snowflake, and Kalyan Arangam, Solution Architect from Matillion
- Find out how leading brands like Converse, Duo Security, and Pets at Home use Snowflake and Matillion ETL to make data-driven decisions
- Discover how Matillion ETL and Snowflake work together to modernize your data world
- Learn how to utilize the impressive scalability of Snowflake and Matillion
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Presentation on Data Mesh: The paradigm shift is a new type of eco-system architecture, which is a shift left towards a modern distributed architecture in which it allows domain-specific data and views “data-as-a-product,” enabling each domain to handle its own data pipelines.
The document discusses Snowflake, a cloud data platform. It covers Snowflake's data landscape and benefits over legacy systems. It also describes how Snowflake can be deployed on AWS, Azure and GCP. Pricing is noted to vary by region but not cloud platform. The document outlines Snowflake's editions, architecture using a shared-nothing model, support for structured data, storage compression, and virtual warehouses that can autoscale. Security features like MFA and encryption are highlighted.
How to Take Advantage of an Enterprise Data Warehouse in the CloudDenodo
Watch full webinar here: [https://buff.ly/2CIOtys]
As organizations collect increasing amounts of diverse data, integrating that data for analytics becomes more difficult. Technology that scales poorly and fails to support semi-structured data fails to meet the ever-increasing demands of today’s enterprise. In short, companies everywhere can’t consolidate their data into a single location for analytics.
In this Denodo DataFest 2018 session we’ll cover:
Bypassing the mandate of a single enterprise data warehouse
Modern data sharing to easily connect different data types located in multiple repositories for deeper analytics
How cloud data warehouses can scale both storage and compute, independently and elastically, to meet variable workloads
Presentation by Harsha Kapre, Snowflake
This document provides an introduction and overview of implementing Data Vault 2.0 on Snowflake. It begins with an agenda and the presenter's background. It then discusses why customers are asking for Data Vault and provides an overview of the Data Vault methodology including its core components of hubs, links, and satellites. The document applies Snowflake features like separation of workloads and agile warehouse scaling to support Data Vault implementations. It also addresses modeling semi-structured data and building virtual information marts using views.
Enterprise Architecture vs. Data ArchitectureDATAVERSITY
Enterprise Architecture (EA) provides a visual blueprint of the organization, and shows key interrelationships between data, process, applications, and more. By abstracting these assets in a graphical view, it’s possible to see key interrelationships, particularly as they relate to data and its business impact across the organization. Join us for a discussion on how Data Architecture is a key component of an overall Enterprise Architecture for enhanced business value and success.
Building a Logical Data Fabric using Data Virtualization (ASEAN)Denodo
Watch full webinar here: https://bit.ly/3FF1ubd
In the recent Building the Unified Data Warehouse and Data Lake report by leading industry analysts TDWI, we have discovered 64% of organizations stated the objective for a unified Data Warehouse and Data Lakes is to get more business value and 84% of organizations polled felt that a unified approach to Data Warehouses and Data Lakes was either extremely or moderately important.
In this session, you will learn how your organization can apply a logical data fabric and the associated technologies of machine learning, artificial intelligence, and data virtualization can reduce time to value. Hence, increasing the overall business value of your data assets.
KEY TAKEAWAYS:
- How a Logical Data Fabric is the right approach to assist organizations to unify their data.
- The advanced features of a Logical Data Fabric that assist with the democratization of data, providing an agile and governed approach to business analytics and data science.
- How a Logical Data Fabric with Data Virtualization enhances your legacy data integration landscape to simplify data access and encourage self-service.
Every day, businesses across a wide variety of industries share data to support insights that drive efficiency and new business opportunities. However, existing methods for sharing data involve great effort on the part of data providers to share data, and involve great effort on the part of data customers to make use of that data.
However, existing approaches to data sharing (such as e-mail, FTP, EDI, and APIs) have significant overhead and friction. For one, legacy approaches such as e-mail and FTP were never intended to support the big data volumes of today. Other data sharing methods also involve enormous effort. All of these methods require not only that the data be extracted, copied, transformed, and loaded, but also that related schemas and metadata must be transported as well. This creates a burden on data providers to deconstruct and stage data sets. This burden and effort is mirrored for the data recipient, who must reconstruct the data.
As a result, companies are handicapped in their ability to fully realize the value in their data assets.
Snowflake Data Sharing allows companies to grant instant access to ready-to-use data to any number of partners or data customers without any data movement, copying, or complex pipelines.
Using Snowflake Data Sharing, companies can derive new insights and value from data much more quickly and with significantly less effort than current data sharing methods. As a result, companies now have a new approach and a powerful new tool to get the full value out of their data assets.
Snowflake is an analytic data warehouse provided as software-as-a-service (SaaS). It uses a unique architecture designed for the cloud, with a shared-disk database and shared-nothing architecture. Snowflake's architecture consists of three layers - the database layer, query processing layer, and cloud services layer - which are deployed and managed entirely on cloud platforms like AWS and Azure. Snowflake offers different editions like Standard, Premier, Enterprise, and Enterprise for Sensitive Data that provide additional features, support, and security capabilities.
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021Tristan Baker
Past, present and future of data mesh at Intuit. This deck describes a vision and strategy for improving data worker productivity through a Data Mesh approach to organizing data and holding data producers accountable. Delivered at the inaugural Data Mesh Leaning meetup on 5/13/2021.
Data Lakehouse, Data Mesh, and Data Fabric (r2)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a modern data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. They all may sound great in theory, but I'll dig into the concerns you need to be aware of before taking the plunge. I’ll also include use cases so you can see what approach will work best for your big data needs. And I'll discuss Microsoft version of the data mesh.
Actionable Insights with AI - Snowflake for Data ScienceHarald Erb
Talk @ ScaleUp 360° AI Infrastructures DACH, 2021: Data scientists spend 80% and more of their time searching for and preparing data. This talk explains Snowflake’s Platform capabilities like near-unlimited data storage and instant and near-infinite compute resources and how the platform can be used to seamlessly integrate and support the machine learning libraries and tools data scientists rely on.
This document discusses Snowflake's data governance capabilities including challenges around data silos, complexity of data management, and balancing security and governance with data utilization. It provides an overview of Snowflake's platform for ingesting and sharing data across various sources and consumers. Key governance capabilities in Snowflake like object tagging, classification, anonymization, access history and row/column level policies are described. The document also previews upcoming conditional masking policies and provides examples of implementing object tagging and access policies in Snowflake.
Democratizing Data Quality Through a Centralized PlatformDatabricks
Bad data leads to bad decisions and broken customer experiences. Organizations depend on complete and accurate data to power their business, maintain efficiency, and uphold customer trust. With thousands of datasets and pipelines running, how do we ensure that all data meets quality standards, and that expectations are clear between producers and consumers? Investing in shared, flexible components and practices for monitoring data health is crucial for a complex data organization to rapidly and effectively scale.
At Zillow, we built a centralized platform to meet our data quality needs across stakeholders. The platform is accessible to engineers, scientists, and analysts, and seamlessly integrates with existing data pipelines and data discovery tools. In this presentation, we will provide an overview of our platform’s capabilities, including:
Giving producers and consumers the ability to define and view data quality expectations using a self-service onboarding portal
Performing data quality validations using libraries built to work with spark
Dynamically generating pipelines that can be abstracted away from users
Flagging data that doesn’t meet quality standards at the earliest stage and giving producers the opportunity to resolve issues before use by downstream consumers
Exposing data quality metrics alongside each dataset to provide producers and consumers with a comprehensive picture of health over time
Snowflake’s Cloud Data Platform and Modern AnalyticsSenturus
Snowflake's Cloud Data Platform provides a fully managed data warehouse as a service. It offers elastic scaling of storage and compute independently, with multiple clusters accessing a shared set of data. Its architecture separates storage, compute, and services across independent cloud infrastructure for high availability and resilience. Snowflake handles all data management tasks and provides automatic scaling and updates with no downtime.
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
Customer migration to Azure SQL database, December 2019George Walters
This is a real life story on how a software as a service application moved to the cloud, to azure, over a period of two years. We discuss migration, business drivers, technology, and how it got done. We talk through more modern ways to refactor or change code to get into the cloud nowadays.
This document discusses a new approach to data management that is needed as data volumes continue to grow exponentially. It introduces DataSet as a real-time data platform that offers several advantages over traditional approaches: it provides real-time insights from massive amounts of data through fast querying; is easy to operate as a cloud-native SaaS platform; and offers a lower total cost of ownership compared to open source alternatives. The platform aims to unify all an organization's log and event data in one place for unlimited retention periods if required.
The document discusses the challenges of modern data, analytics, and AI workloads. Most enterprises struggle with siloed data systems that make integration and productivity difficult. The future of data lies with a data lakehouse platform that can unify data engineering, analytics, data warehousing, and machine learning workloads on a single open platform. The Databricks Lakehouse platform aims to address these challenges with its open data lake approach and capabilities for data engineering, SQL analytics, governance, and machine learning.
Demystifying Data Warehousing as a Service (GLOC 2019)Kent Graziano
Snowflake is a cloud data warehouse as a service (DWaaS) that allows users to load and query data without having to manage infrastructure. It addresses common data challenges like data silos, inflexibility, complexity, performance issues, and high costs. Snowflake is built for the cloud, uses standard SQL, and is delivered as a service. It has many features that make it easy to use including automatic query optimization, separation of storage and compute, elastic scaling, and security by design.
Data Driven Advanced Analytics using Denodo Platform on AWSDenodo
The document discusses challenges with data-driven cloud modernization and how the Denodo platform can help address them. It outlines Denodo's capabilities like universal connectivity, data services APIs, security and governance features. Example use cases are presented around real-time analytics, centralized access control and transitioning to the cloud. Key benefits of the Denodo data virtualization approach are that it provides a logical view of data across sources and enables self-service analytics while reducing costs and IT dependencies.
Demystifying Data Warehouse as a Service (DWaaS)Kent Graziano
This is from the talk I gave at the 30th Anniversary NoCOUG meeting in San Jose, CA.
We all know that data warehouses and best practices for them are changing dramatically today. As organizations build new data warehouses and modernize established ones, they are turning to Data Warehousing as a Service (DWaaS) in hopes of taking advantage of the performance, concurrency, simplicity, and lower cost of a SaaS solution or simply to reduce their data center footprint (and the maintenance that goes with that).
But what is a DWaaS really? How is it different from traditional on-premises data warehousing?
In this talk I will:
• Demystify DWaaS by defining it and its goals
• Discuss the real-world benefits of DWaaS
• Discuss some of the coolest features in a DWaaS solution as exemplified by the Snowflake Elastic Data Warehouse.
Modern Data Management for Federal ModernizationDenodo
Watch full webinar here: https://bit.ly/2QaVfE7
Faster, more agile data management is at the heart of government modernization. However, Traditional data delivery systems are limited in realizing a modernized and future-proof data architecture.
This webinar will address how data virtualization can modernize existing systems and enable new data strategies. Join this session to learn how government agencies can use data virtualization to:
- Enable governed, inter-agency data sharing
- Simplify data acquisition, search and tagging
- Streamline data delivery for transition to cloud, data science initiatives, and more
The GoodData platform utilizes a virtualized OpenStack environment and high performance redundant hardware infrastructure. It features services for data integration, analytics, visualization, automation, and security across multiple clusters managed through a cloud control center. The platform is designed for scalability, flexibility, and redundancy.
Leveraging the Cloud for Big Data Analytics 12.11.18Cloudera, Inc.
Learn how organizations are deriving unique customer insights, improving product and services efficiency, and reducing business risk with a modern big data architecture powered by Cloudera on AWS. In this webinar, you see how fast and easy it is to deploy a modern data management platform—in your cloud, on your terms.
How to Build Continuous Ingestion for the Internet of ThingsCloudera, Inc.
The Internet of Things is moving into the mainstream and this new world of data-driven products is transforming a vast number of industry sectors and technologies.
However, IoT creates a new challenge: how to build and operationalize continual data ingestion from such a wide and ever-changing array of endpoints so that the data arrives consumption-ready and can drive analysis and action within the business.
In this webinar, Sean Anderson from Cloudera and Kirit Busu, Director of Product Management at StreamSets, will discuss Hadoop's ecosystem and IoT capabilities and provide advice about common patterns and best practices. Using specific examples, they will demonstrate how to build and run end-to-end IOT data flows using StreamSets and Cloudera infrastructure.
Solving enterprise challenges through scale out storage & big compute finalAvere Systems
Google Cloud Platform, Avere Systems, and Cycle Computing experts will share best practices for advancing solutions to big challenges faced by enterprises with growing compute and storage needs. In this “best practices” webinar, you’ll hear how these companies are working to improve results that drive businesses forward through scalability, performance, and ease of management.
The slides were from a webinar presented January 24, 2017. The audience learned:
- How enterprises are using Google Cloud Platform to gain compute and storage capacity on-demand
- Best practices for efficient use of cloud compute and storage resources
- Overcoming the need for file systems within a hybrid cloud environment
- Understand how to eliminate latency between cloud and data center architectures
- Learn how to best manage simulation, analytics, and big data workloads in dynamic environments
- Look at market dynamics drawing companies to new storage models over the next several years
Presenters communicated a foundation to build infrastructure to support ongoing demand growth.
The Future of Data Management: The Enterprise Data HubCloudera, Inc.
The document discusses the future of data management through the use of an enterprise data hub (EDH). It notes that an EDH provides a centralized platform for ingesting, storing, exploring, processing, analyzing and serving diverse data from across an organization on a large scale in a cost effective manner. This approach overcomes limitations of traditional data silos and enables new analytic capabilities.
Modernizing Global Shared Data Analytics Platform and our Alluxio JourneyAlluxio, Inc.
Data Orchestration Summit 2020 organized by Alluxio
https://www.alluxio.io/data-orchestration-summit-2020/
Modernizing Global Shared Data Analytics Platform and our Alluxio Journey
Sandipan Chakraborty, Director of Engineering (Rakuten)
About Alluxio: alluxio.io
Engage with the open source community on slack: alluxio.io/slack
Prezentace z webináře dne 10.3.2022
Prezentovali:
Jaroslav Malina - Senior Channel Sales Manager, Oracle
Josef Krejčí - Technology Sales Consultant, Oracle
Josef Šlahůnek - Cloud Systems sales Consultant, Oracle
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...Denodo
Watch full webinar here: https://bit.ly/32TT2Uu
Data virtualization is not just for self-service, it’s also a first-class citizen when it comes to modern data platform architectures. Technology has forced many businesses to rethink their delivery models. Startups emerged, leveraging the internet and mobile technology to better meet customer needs (like Amazon and Lyft), disrupting entire categories of business, and grew to dominate their categories.
Schedule a complimentary Data Virtualization Discovery Session with g2o.
Traditional companies are still struggling to meet rising customer expectations. During this webinar with the experts from g2o and Denodo we covered the following:
- How modern data platforms enable businesses to address these new customer expectation
- How you can drive value from your investment in a data platform now
- How you can use data virtualization to enable multi-cloud strategies
Leveraging the strategy insights of g2o and the power of the Denodo platform, companies do not need to undergo the costly removal and replacement of legacy systems to modernize their systems. g2o and Denodo can provide a strategy to create a modern data architecture within a company’s existing infrastructure.
Big data journey to the cloud 5.30.18 asher bartchCloudera, Inc.
We hope this session was valuable in teaching you more about Cloudera Enterprise on AWS, and how fast and easy it is to deploy a modern data management platform—in your cloud and on your terms.
Balance agility and governance with #TrueDataOps and The Data CloudKent Graziano
DataOps is the application of DevOps concepts to data. The DataOps Manifesto outlines WHAT that means, similar to how the Agile Manifesto outlines the goals of the Agile Software movement. But, as the demand for data governance has increased, and the demand to do “more with less” and be more agile has put more pressure on data teams, we all need more guidance on HOW to manage all this. Seeing that need, a small group of industry thought leaders and practitioners got together and created the #TrueDataOps philosophy to describe the best way to deliver DataOps by defining the core pillars that must underpin a successful approach. Combining this approach with an agile and governed platform like Snowflake’s Data Cloud allows organizations to indeed balance these seemingly competing goals while still delivering value at scale.
Given in Montreal on 14-Dec-2021
HOW TO SAVE PILEs of $$$BY CREATING THE BEST DATA MODEL THE FIRST TIME (Ksc...Kent Graziano
A good data model, done right the first time, can save you time and money. We have all seen the charts on the increasing cost of finding a mistake/bug/error late in a software development cycle. Would you like to reduce, or even eliminate, your risk of finding one of those errors late in the game? Of course you would! Who wouldn't? Nobody plans to miss a requirement or make a bad design decision (well nobody sane anyway). No data modeler or database designer worth their salt wants to leave a model incomplete or incorrect. So what can you do to minimize the risk?
In this talk I will show you a best practice approach to developing your data models and database designs that I have been using for over 15 years. It is a simple, repeatable process for reviewing your data models. It is one that even a non-modeler could follow. I will share my checklist of what to look for and what to ask the data modeler (or yourself) to make sure you get the best possible data model. As a bonus I will share how I use SQL Developer Data Modeler (a no-cost data modeling tool) to collect the information and report it.
This talk will introduce you to the Data Cloud, how it works, and the problems it solves for companies across the globe and across industries. The Data Cloud is a global network where thousands of organizations mobilize data with near-unlimited scale, concurrency, and performance. Inside the Data Cloud, organizations unite their siloed data, easily discover and securely share governed data, and execute diverse analytic workloads. Wherever data or users live, Snowflake delivers a single and seamless experience across multiple public clouds. Snowflake’s platform is the engine that powers and provides access to the Data Cloud
[Given at DAMA WI, Nov 2018] With the increasing prevalence of semi-structured data from IoT devices, web logs, and other sources, data architects and modelers have to learn how to interpret and project data from things like JSON. While the concept of loading data without upfront modeling is appealing to many, ultimately, in order to make sense of the data and use it to drive business value, we have to turn that schema-on-read data into a real schema! That means data modeling! In this session I will walk through both simple and complex JSON documents, decompose them, then turn them into a representative data model using Oracle SQL Developer Data Modeler. I will show you how they might look using both traditional 3NF and data vault styles of modeling. In this session you will:
1. See what a JSON document looks like
2. Understand how to read it
3. Learn how to convert it to a standard data model
Agile Data Engineering: Introduction to Data Vault 2.0 (2018)Kent Graziano
(updated slides used for North Texas DAMA meetup Oct 2018) As we move more and more towards the need for everyone to do Agile Data Warehousing, we need a data modeling method that can be agile with us. Data Vault Data Modeling is an agile data modeling technique for designing highly flexible, scalable, and adaptable data structures for enterprise data warehouse repositories. It is a hybrid approach using the best of 3NF and dimensional modeling. It is not a replacement for star schema data marts (and should not be used as such). This approach has been used in projects around the world (Europe, Australia, USA) for over 15 years and is now growing in popularity. The purpose of this presentation is to provide attendees with an introduction to the components of the Data Vault Data Model, what they are for and how to build them. The examples will give attendees the basics:
• What the basic components of a DV model are
• How to build, and design structures incrementally, without constant refactoring
Extreme BI: Creating Virtualized Hybrid Type 1+2 DimensionsKent Graziano
From a talk I gave at WWDVC and ECO in 2015 about how we built virtual dimensions (views) on a data vault-style data warehouse (see Data Warehousing in the Real World for full details on that architecture)
Agile Data Warehousing: Using SDDM to Build a Virtualized ODSKent Graziano
(This is the talk I gave at Houston DAMA and Agile Denver BI meetups)
At a past client, in order to meet timelines to fulfill urgent, unmet reporting needs, I found it necessary to build a virtualized Operational Data Store as the first phase of a new Data Vault 2.0 project. This allowed me to deliver new objects, quickly and incrementally to the report developer so we could quickly show the business users their data. In order to limit the need for refactoring in later stages of the data warehouse development, I chose to build this virtualization layer on top of a Type 2 persistent staging layer. All of this was done using Oracle SQL Developer Data Modeler (SDDM) against (gasp!) a MS SQL Server Database. In this talk I will show you the architecture for this approach, the rationale, and then the tricks I used in SDDM to build all the stage tables and views very quickly. In the end you will see actual SQL code for a virtual ODS that can easily be translated to an Oracle database.
Agile Data Engineering - Intro to Data Vault Modeling (2016)Kent Graziano
The document provides an introduction to Data Vault data modeling and discusses how it enables agile data warehousing. It describes the core structures of a Data Vault model including hubs, links, and satellites. It explains how the Data Vault approach provides benefits such as model agility, productivity, and extensibility. The document also summarizes the key changes in the Data Vault 2.0 methodology.
Agile Methods and Data Warehousing (2016 update)Kent Graziano
This presentation takes a look at the Agile Manifesto and the 12 Principles of Agile Development and discusses how these apply to Data Warehousing and Business Intelligence projects. Several examples and details from my past experience are included. Includes more details on using Data Vault as well. (I gave this presentation at OUGF14 in Helsinki, Finland and again in 2016 for TDWI Nashville.)
These are the slides from my talk at Data Day Texas 2016 (#ddtx16).
The world of data warehousing has changed! With the advent of Big Data, Streaming Data, IoT, and The Cloud, what is a modern data management professional to do? It may seem to be a very different world with different concepts, terms, and techniques. Or is it? Lots of people still talk about having a data warehouse or several data marts across their organization. But what does that really mean today in 2016? How about the Corporate Information Factory (CIF), the Data Vault, an Operational Data Store (ODS), or just star schemas? Where do they fit now (or do they)? And now we have the Extended Data Warehouse (XDW) as well. How do all these things help us bring value and data-based decisions to our organizations? Where do Big Data and the Cloud fit? Is there a coherent architecture we can define? This talk will endeavor to cut through the hype and the buzzword bingo to help you figure out what part of this is helpful. I will discuss what I have seen in the real world (working and not working!) and a bit of where I think we are going and need to go in 2016 and beyond.
Worst Practices in Data Warehouse DesignKent Graziano
This presentation was given at OakTable World 2014 (#OTW14) in San Francisco. After many years of designing data warehouses and consulting on data warehouse architectures, I have seen a lot of bad design choices by supposedly experienced professional. A sense of professionalism, confidentiality agreements, and some sense of common decency have prevented me from calling people out on some of this. No more! In this session I will walk you through a typical bad design like many I have seen. I will show you what I see when I reverse engineer a supposedly complete design and walk through what is wrong with it and discuss options to correct it. This will be a test of your knowledge of data warehouse best practices by seeing if you can recognize these worst practices.
Data Vault 2.0: Using MD5 Hashes for Change Data CaptureKent Graziano
This presentation was given at OakTable World 2014 (#OTW14) in San Francisco as a short Ted-style 10 minute talk. In it I introduce Data Vault 2.0 and its innovative approach to doing change data capture in a data warehouse by using MD5 Hash columns.
I gave this presentation at OUGF14 in Helsinki, Finland and again for TDWI Nashville. This presentation takes a look at the Agile Manifesto and the 12 Principles of Agile Development and discusses how these apply to Data Warehousing and Business Intelligence projects. Several examples and details from my past experience are included.
Agile Data Warehouse Modeling: Introduction to Data Vault Data ModelingKent Graziano
The document introduces Data Vault modeling as an agile approach to data warehousing. It discusses how Data Vault addresses some limitations of traditional dimensional modeling by allowing for more flexible, adaptable designs. The Data Vault model consists of three simple structures - hubs, links, and satellites. Hubs contain unique business keys, links represent relationships between keys, and satellites hold descriptive attributes. This structure supports incremental development and rapid changes to meet evolving business needs in an agile manner.
Top Five Cool Features in Oracle SQL Developer Data ModelerKent Graziano
This is the presentation I gave at OUGF14 in Helsinki, Finland in June 2014.
Oracle SQL Developer Data Modeler (SDDM) has been around for a few years now and is up to version 4.x. It really is an industrial strength data modeling tool that can be used for any data modeling task you need to tackle. Over the years I have found quite a few features and utilities in the tool that I rely on to make me more efficient (and agile) in developing my models. This presentation will demonstrate at least five of these features, tips, and tricks for you. I will walk through things like modifying the delivered reporting templates, how to create and applying object naming templates, how to use a table template and transformation script to add audit columns to every table, and using the new meta data export tool and several other cool things you might not know are there. Since there will likely be patches and new releases before the conference, there is a good chance there will be some new things for me to show you as well. This might be a bit of a whirlwind demo, so get SDDM installed on your device and bring it to the session so you can follow along.
(OTW13) Agile Data Warehousing: Introduction to Data Vault ModelingKent Graziano
This is the presentation I gave at OakTable World 2013 in San Francisco. #OTW13 was held at the Children's Creativity Museum next to the Moscone Convention Center and was in parallel with Oracle OpenWorld 2013.
The session discussed our attempts to be more agile in designing enterprise data warehouses and how the Data Vault Data Modeling technique helps in that approach.
Using OBIEE and Data Vault to Virtualize Your BI Environment: An Agile ApproachKent Graziano
This document discusses using Oracle Business Intelligence Enterprise Edition (OBIEE) and the Data Vault data modeling technique to virtualize a business intelligence environment in an agile way. Data Vault provides a flexible and adaptable modeling approach that allows for rapid changes. OBIEE allows for the virtualization of dimensional models built on a Data Vault foundation, enabling quick iteration and delivery of reports and dashboards to users. Together, Data Vault and OBIEE provide an agile approach to business intelligence.
Given at Oracle Open World 2011: Not to be confused with Oracle Database Vault (a commercial db security product), Data Vault Modeling is a specific data modeling technique for designing highly flexible, scalable, and adaptable data structures for enterprise data warehouse repositories. It has been in use globally for over 10 years now but is not widely known. The purpose of this presentation is to provide an overview of the features of a Data Vault modeled EDW that distinguish it from the more traditional third normal form (3NF) or dimensional (i.e., star schema) modeling approaches used in most shops today. Topics will include dealing with evolving data requirements in an EDW (i.e., model agility), partitioning of data elements based on rate of change (and how that affects load speed and storage requirements), and where it fits in a typical Oracle EDW architecture. See more content like this by following my blog http://kentgraziano.com or follow me on twitter @kentgraziano.
Not to be confused with Oracle Database Vault (a commercial db security product), Data Vault Modeling is a specific data modeling technique for designing highly flexible, scalable, and adaptable data structures for enterprise data warehouse repositories. It is not a replacement for star schema data marts (and should not be used as such). This approach has been used in projects around the world (Europe, Australia, USA) for the last 10 years but is still not widely known or understood. The purpose of this presentation is to provide attendees with a detailed introduction to the technical components of the Data Vault Data Model, what they are for and how to build them. The examples will give attendees the basics for how to build, and design structures when using the Data Vault modeling technique. The target audience is anyone wishing to explore implementing a Data Vault style data model for an Enterprise Data Warehouse, Operational Data Warehouse, or Dynamic Data Integration Store. See more content like this by following my blog http://kentgraziano.com or follow me on twitter @kentgraziano.
How iCode cybertech Helped Me Recover My Lost Fundsireneschmid345
I was devastated when I realized that I had fallen victim to an online fraud, losing a significant amount of money in the process. After countless hours of searching for a solution, I came across iCode cybertech. From the moment I reached out to their team, I felt a sense of hope that I can recommend iCode Cybertech enough for anyone who has faced similar challenges. Their commitment to helping clients and their exceptional service truly set them apart. Thank you, iCode cybertech, for turning my situation around!
[email protected]