This talk will break down merge in Delta Lake—what is actually happening under the hood—and then explain about how you can optimize a merge. There are even some code snippet and sample configs that will be shared.
We can leverage Delta Lake, structured streaming for write-heavy use cases. This talk will go through a use case at Intuit whereby we built MOR as an architecture to allow for a very low SLA, etc. For MOR, there are different ways to view the fresh data, so we will also go over the methods used to perfTest the various ways that we were able to arrive at the best method for the given use case.
The Rise of ZStandard: Apache Spark/Parquet/ORC/AvroDatabricks
Zstandard is a fast compression algorithm which you can use in Apache Spark in various way. In this talk, I briefly summarized the evolution history of Apache Spark in this area and four main use cases and the benefits and the next steps:
1) ZStandard can optimize Spark local disk IO by compressing shuffle files significantly. This is very useful in K8s environments. It’s beneficial not only when you use `emptyDir` with `memory` medium, but also it maximizes OS cache benefit when you use shared SSDs or container local storage. In Spark 3.2, SPARK-34390 takes advantage of ZStandard buffer pool feature and its performance gain is impressive, too.
2) Event log compression is another area to save your storage cost on the cloud storage like S3 and to improve the usability. SPARK-34503 officially switched the default event log compression codec from LZ4 to Zstandard.
3) Zstandard data file compression can give you more benefits when you use ORC/Parquet files as your input and output. Apache ORC 1.6 supports Zstandardalready and Apache Spark enables it via SPARK-33978. The upcoming Parquet 1.12 will support Zstandard compression.
4) Last, but not least, since Apache Spark 3.0, Zstandard is used to serialize/deserialize MapStatus data instead of Gzip.
There are more community works to utilize Zstandard to improve Spark. For example, Apache Avro community also supports Zstandard and SPARK-34479 aims to support Zstandard in Spark’s avro file format in Spark 3.2.0.
Common Strategies for Improving Performance on Your Delta LakehouseDatabricks
The Delta Architecture pattern has made the lives of data engineers much simpler, but what about improving query performance for data analysts? What are some common places to look at for tuning query performance? In this session we will cover some common techniques to apply to our delta tables to make them perform better for data analysts queries. We will look at a few examples of how you can analyze a query, and determine what to focus on to deliver better performance results.
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Databricks
Spark SQL is a highly scalable and efficient relational processing engine with ease-to-use APIs and mid-query fault tolerance. It is a core module of Apache Spark. Spark SQL can process, integrate and analyze the data from diverse data sources (e.g., Hive, Cassandra, Kafka and Oracle) and file formats (e.g., Parquet, ORC, CSV, and JSON). This talk will dive into the technical details of SparkSQL spanning the entire lifecycle of a query execution. The audience will get a deeper understanding of Spark SQL and understand how to tune Spark SQL performance.
This document discusses Delta Change Data Feed (CDF), which allows capturing changes made to Delta tables. It describes how CDF works by storing change events like inserts, updates and deletes. It also outlines how CDF can be used to improve ETL pipelines, unify batch and streaming workflows, and meet regulatory needs. The document provides examples of enabling CDF, querying change data and storing the change events. It concludes by offering a demo of CDF in Jupyter notebooks.
Parquet performance tuning: the missing guideRyan Blue
Parquet performance tuning focuses on optimizing Parquet reads by leveraging columnar organization, encoding, and filtering techniques. Statistics and dictionary filtering can eliminate unnecessary data reads by filtering at the row group and page levels. However, these optimizations require columns to be sorted and fully dictionary encoded within files. Increasing dictionary size thresholds and decreasing row group sizes can help avoid dictionary encoding fallback and improve filtering effectiveness. Future work may include new encodings, compression algorithms like Brotli, and page-level filtering in the Parquet format.
Properly shaping partitions and your jobs to enable powerful optimizations, eliminate skew and maximize cluster utilization. We will explore various Spark Partition shaping methods along with several optimization strategies including join optimizations, aggregate optimizations, salting and multi-dimensional parallelism.
Building Robust ETL Pipelines with Apache SparkDatabricks
Stable and robust ETL pipelines are a critical component of the data infrastructure of modern enterprises. ETL pipelines ingest data from a variety of sources and must handle incorrect, incomplete or inconsistent records and produce curated, consistent data for consumption by downstream applications. In this talk, we’ll take a deep dive into the technical details of how Apache Spark “reads” data and discuss how Spark 2.2’s flexible APIs; support for a wide variety of datasources; state of art Tungsten execution engine; and the ability to provide diagnostic feedback to users, making it a robust framework for building end-to-end ETL pipelines.
Efficient Data Storage for Analytics with Apache Parquet 2.0Cloudera, Inc.
Apache Parquet is an open-source columnar storage format for efficient data storage and analytics. It provides efficient compression and encoding techniques that enable fast scans and queries of large datasets. Parquet 2.0 improves on these efficiencies through enhancements like delta encoding, binary packing designed for CPU efficiency, and predicate pushdown using statistics. Benchmark results show Parquet provides much better compression and query performance than row-oriented formats on big data workloads. The project is developed as an open-source community with contributions from many organizations.
Join operations in Apache Spark is often the biggest source of performance problems and even full-blown exceptions in Spark. After this talk, you will understand the two most basic methods Spark employs for joining DataFrames – to the level of detail of how Spark distributes the data within the cluster. You’ll also find out how to work out common errors and even handle the trickiest corner cases we’ve encountered! After this talk, you should be able to write performance joins in Spark SQL that scale and are zippy fast!
This session will cover different ways of joining tables in Apache Spark.
Speaker: Vida Ha
This talk was originally presented at Spark Summit East 2017.
"The common use cases of Spark SQL include ad hoc analysis, logical warehouse, query federation, and ETL processing. Spark SQL also powers the other Spark libraries, including structured streaming for stream processing, MLlib for machine learning, and GraphFrame for graph-parallel computation. For boosting the speed of your Spark applications, you can perform the optimization efforts on the queries prior employing to the production systems. Spark query plans and Spark UIs provide you insight on the performance of your queries. This talk discloses how to read and tune the query plans for enhanced performance. It will also cover the major related features in the recent and upcoming releases of Apache Spark.
"
In Spark SQL the physical plan provides the fundamental information about the execution of the query. The objective of this talk is to convey understanding and familiarity of query plans in Spark SQL, and use that knowledge to achieve better performance of Apache Spark queries. We will walk you through the most common operators you might find in the query plan and explain some relevant information that can be useful in order to understand some details about the execution. If you understand the query plan, you can look for the weak spot and try to rewrite the query to achieve a more optimal plan that leads to more efficient execution.
The main content of this talk is based on Spark source code but it will reflect some real-life queries that we run while processing data. We will show some examples of query plans and explain how to interpret them and what information can be taken from them. We will also describe what is happening under the hood when the plan is generated focusing mainly on the phase of physical planning. In general, in this talk we want to share what we have learned from both Spark source code and real-life queries that we run in our daily data processing.
This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Databricks
The document discusses optimizations made to Spark SQL performance when working with Parquet files at ByteDance. It describes how Spark originally reads Parquet files and identifies two main areas for optimization: Parquet filter pushdown and the Parquet reader. For filter pushdown, sorting columns improved statistics and reduced data reads by 30%. For the reader, splitting it to first filter then read other columns prevented loading unnecessary data. These changes improved Spark SQL performance at ByteDance without changing jobs.
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudNoritaka Sekiyama
This document provides an overview and summary of Amazon S3 best practices and tuning for Hadoop/Spark in the cloud. It discusses the relationship between Hadoop/Spark and S3, the differences between HDFS and S3 and their use cases, details on how S3 behaves from the perspective of Hadoop/Spark, well-known pitfalls and tunings related to S3 consistency and multipart uploads, and recent community activities related to S3. The presentation aims to help users optimize their use of S3 storage with Hadoop/Spark frameworks.
Dynamic Partition Pruning in Apache SparkDatabricks
In data analytics frameworks such as Spark it is important to detect and avoid scanning data that is irrelevant to the executed query, an optimization which is known as partition pruning. Dynamic partition pruning occurs when the optimizer is unable to identify at parse time the partitions it has to eliminate. In particular, we consider a star schema which consists of one or multiple fact tables referencing any number of dimension tables. In such join operations, we can prune the partitions the join reads from a fact table by identifying those partitions that result from filtering the dimension tables. In this talk we present a mechanism for performing dynamic partition pruning at runtime by reusing the dimension table broadcast results in hash joins and we show significant improvements for most TPCDS queries.
Parallelization of Structured Streaming Jobs Using Delta LakeDatabricks
We’ll tackle the problem of running streaming jobs from another perspective using Databricks Delta Lake, while examining some of the current issues that we faced at Tubi while running regular structured streaming. A quick overview on why we transitioned from parquet data files to delta and the problems it solved for us in running our streaming jobs.
Deep Dive into the New Features of Apache Spark 3.0Databricks
Continuing with the objectives to make Spark faster, easier, and smarter, Apache Spark 3.0 extends its scope with more than 3000 resolved JIRAs. We will talk about the exciting new developments in the Spark 3.0 as well as some other major initiatives that are coming in the future.
Optimizing spark jobs through a true understanding of spark core. Learn: What is a partition? What is the difference between read/shuffle/write partitions? How to increase parallelism and decrease output files? Where does shuffle data go between stages? What is the "right" size for your spark partitions and files? Why does a job slow down with only a few tasks left and never finish? Why doesn't adding nodes decrease my compute time?
Hive Bucketing in Apache Spark with Tejas PatilDatabricks
Bucketing is a partitioning technique that can improve performance in certain data transformations by avoiding data shuffling and sorting. The general idea of bucketing is to partition, and optionally sort, the data based on a subset of columns while it is written out (a one-time cost), while making successive reads of the data more performant for downstream jobs if the SQL operators can make use of this property. Bucketing can enable faster joins (i.e. single stage sort merge join), the ability to short circuit in FILTER operation if the file is pre-sorted over the column in a filter predicate, and it supports quick data sampling.
In this session, you’ll learn how bucketing is implemented in both Hive and Spark. In particular, Patil will describe the changes in the Catalyst optimizer that enable these optimizations in Spark for various bucketing scenarios. Facebook’s performance tests have shown bucketing to improve Spark performance from 3-5x faster when the optimization is enabled. Many tables at Facebook are sorted and bucketed, and migrating these workloads to Spark have resulted in a 2-3x savings when compared to Hive. You’ll also hear about real-world applications of bucketing, like loading of cumulative tables with daily delta, and the characteristics that can help identify suitable candidate jobs that can benefit from bucketing.
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Julian Hyde
What if Looker saw the queries you just executed and could predict your next query? Could it make those queries faster, by smarter caching, or aggregate navigation? Could it read your past SQL queries and help you write your LookML model? Those are some of the reasons to add relational algebra into Looker’s query engine, and why Looker hired Julian Hyde, author of Apache Calcite, to lead the effort. In this talk about the internals of Looker’s query engine, Julian Hyde will describe how the engine works, how Looker queries are described in Calcite’s relational algebra, and some features that it makes possible.
A talk by Julian Hyde at JOIN 2019 in San Francisco.
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital KediaDatabricks
Apache Spark is a fast and flexible compute engine for a variety of diverse workloads. Optimizing performance for different applications often requires an understanding of Spark internals and can be challenging for Spark application developers. In this session, learn how Facebook tunes Spark to run large-scale workloads reliably and efficiently. The speakers will begin by explaining the various tools and techniques they use to discover performance bottlenecks in Spark jobs. Next, you’ll hear about important configuration parameters and their experiments tuning these parameters on large-scale production workload. You’ll also learn about Facebook’s new efforts towards automatically tuning several important configurations based on nature of the workload. The speakers will conclude by sharing their results with automatic tuning and future directions for the project.ing several important configurations based on nature of the workload. We will conclude by sharing our result with automatic tuning and future directions for the project.
With Lakehouse as the future of data architecture, Delta becomes the de facto data storage format for all the data pipelines. By using delta, to build the curated data lakes, users achieve efficiency and reliability end-to-end. Curated data lakes involve multiple hops in the end-to-end data pipeline, which are executed regularly (mostly daily) depending on the need. As data travels through each hop, its quality improves and becomes suitable for end-user consumption. On the other hand real-time capabilities are key for any business and an added advantage, luckily Delta has seamless integration with structured streaming which makes it easy for users to achieve real-time capability using Delta. Overall, Delta Lake as a streaming source is a marriage made in heaven for various reasons and we are already seeing the rise in adoption among our users.
In this talk, we will discuss various functional components of structured streaming with Delta as a streaming source. Deep dive into Query Progress Logs(QPL) and their significance for operating streams in production. How to track the progress of any streaming job and map it with the source Delta table using QPL. What exactly gets persisted in the checkpoint directory and its details. Mapping the contents of the checkpoint directory with the QPL metrics and understanding the significance of contents in the checkpoint directory with respect to Delta streams.
Apache Spark Data Source V2 with Wenchen Fan and Gengliang WangDatabricks
As a general computing engine, Spark can process data from various data management/storage systems, including HDFS, Hive, Cassandra and Kafka. For flexibility and high throughput, Spark defines the Data Source API, which is an abstraction of the storage layer. The Data Source API has two requirements.
1) Generality: support reading/writing most data management/storage systems.
2) Flexibility: customize and optimize the read and write paths for different systems based on their capabilities.
Data Source API V2 is one of the most important features coming with Spark 2.3. This talk will dive into the design and implementation of Data Source API V2, with comparison to the Data Source API V1. We also demonstrate how to implement a file-based data source using the Data Source API V2 for showing its generality and flexibility.
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkBo Yang
The slides explain how shuffle works in Spark and help people understand more details about Spark internal. It shows how the major classes are implemented, including: ShuffleManager (SortShuffleManager), ShuffleWriter (SortShuffleWriter, BypassMergeSortShuffleWriter, UnsafeShuffleWriter), ShuffleReader (BlockStoreShuffleReader).
On Improving Broadcast Joins in Apache Spark SQLDatabricks
- The document discusses improving broadcast joins in Apache Spark SQL, which are more efficient than shuffle joins when the broadcasted data fits in memory.
- Experimenting with increasing the broadcast threshold showed that executor-side broadcasting performs better than driver-side broadcasting by avoiding data shuffling to the driver.
- Comparing the cost models of shuffle joins and broadcast joins showed that shuffle joins perform better with more cores while broadcast joins perform better when the size difference between tables is larger.
- Applying these techniques to joins in Workday HR customer data pipelines showed that increasing the broadcast threshold did not always improve performance due to the presence of self-joins and outer joins.
This is a presentation deck for Data+AI Summit 2021 at
https://databricks.com/session_na21/enabling-vectorized-engine-in-apache-spark
Write intensive workloads and lsm treesTilak Patidar
This document discusses LSM trees as an alternative to B+ trees for write-intensive workloads like time series and sensor data. LSM trees optimize for writes by sequentially appending data to sorted string tables, using bloom filters to index them, and periodically merging files in the background. This avoids issues with B+ trees like index locking during updates and excessive disk seeks from fragmentation over time. The document outlines the basic framework of LSM trees including memtables, sorted string tables, bloom filters, and compaction. It also describes how reads, writes, deletes, and compaction work in an LSM tree to provide fast, write-optimized performance for large volumes of time-series and sensor data.
Managing Data and Operation Distribution In MongoDBJason Terpko
In a sharded MongoDB cluster, scale and data distribution are defined by your shard keys. Even when choosing the correct shards key, ongoing maintenance and review can still be required to maintain optimal performance.
This presentation will review shard key selection and how the distribution of chunks can create scenarios where you may need to manually move, split, or merge chunks in your sharded cluster. Scenarios requiring these actions can exist with both optimal and sub-optimal shard keys. Example use cases will provide tips on selection of shard key, detecting an issue, reasons why you may encounter these scenarios, and specific steps you can take to rectify the issue.
Efficient Data Storage for Analytics with Apache Parquet 2.0Cloudera, Inc.
Apache Parquet is an open-source columnar storage format for efficient data storage and analytics. It provides efficient compression and encoding techniques that enable fast scans and queries of large datasets. Parquet 2.0 improves on these efficiencies through enhancements like delta encoding, binary packing designed for CPU efficiency, and predicate pushdown using statistics. Benchmark results show Parquet provides much better compression and query performance than row-oriented formats on big data workloads. The project is developed as an open-source community with contributions from many organizations.
Join operations in Apache Spark is often the biggest source of performance problems and even full-blown exceptions in Spark. After this talk, you will understand the two most basic methods Spark employs for joining DataFrames – to the level of detail of how Spark distributes the data within the cluster. You’ll also find out how to work out common errors and even handle the trickiest corner cases we’ve encountered! After this talk, you should be able to write performance joins in Spark SQL that scale and are zippy fast!
This session will cover different ways of joining tables in Apache Spark.
Speaker: Vida Ha
This talk was originally presented at Spark Summit East 2017.
"The common use cases of Spark SQL include ad hoc analysis, logical warehouse, query federation, and ETL processing. Spark SQL also powers the other Spark libraries, including structured streaming for stream processing, MLlib for machine learning, and GraphFrame for graph-parallel computation. For boosting the speed of your Spark applications, you can perform the optimization efforts on the queries prior employing to the production systems. Spark query plans and Spark UIs provide you insight on the performance of your queries. This talk discloses how to read and tune the query plans for enhanced performance. It will also cover the major related features in the recent and upcoming releases of Apache Spark.
"
In Spark SQL the physical plan provides the fundamental information about the execution of the query. The objective of this talk is to convey understanding and familiarity of query plans in Spark SQL, and use that knowledge to achieve better performance of Apache Spark queries. We will walk you through the most common operators you might find in the query plan and explain some relevant information that can be useful in order to understand some details about the execution. If you understand the query plan, you can look for the weak spot and try to rewrite the query to achieve a more optimal plan that leads to more efficient execution.
The main content of this talk is based on Spark source code but it will reflect some real-life queries that we run while processing data. We will show some examples of query plans and explain how to interpret them and what information can be taken from them. We will also describe what is happening under the hood when the plan is generated focusing mainly on the phase of physical planning. In general, in this talk we want to share what we have learned from both Spark source code and real-life queries that we run in our daily data processing.
This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Databricks
The document discusses optimizations made to Spark SQL performance when working with Parquet files at ByteDance. It describes how Spark originally reads Parquet files and identifies two main areas for optimization: Parquet filter pushdown and the Parquet reader. For filter pushdown, sorting columns improved statistics and reduced data reads by 30%. For the reader, splitting it to first filter then read other columns prevented loading unnecessary data. These changes improved Spark SQL performance at ByteDance without changing jobs.
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudNoritaka Sekiyama
This document provides an overview and summary of Amazon S3 best practices and tuning for Hadoop/Spark in the cloud. It discusses the relationship between Hadoop/Spark and S3, the differences between HDFS and S3 and their use cases, details on how S3 behaves from the perspective of Hadoop/Spark, well-known pitfalls and tunings related to S3 consistency and multipart uploads, and recent community activities related to S3. The presentation aims to help users optimize their use of S3 storage with Hadoop/Spark frameworks.
Dynamic Partition Pruning in Apache SparkDatabricks
In data analytics frameworks such as Spark it is important to detect and avoid scanning data that is irrelevant to the executed query, an optimization which is known as partition pruning. Dynamic partition pruning occurs when the optimizer is unable to identify at parse time the partitions it has to eliminate. In particular, we consider a star schema which consists of one or multiple fact tables referencing any number of dimension tables. In such join operations, we can prune the partitions the join reads from a fact table by identifying those partitions that result from filtering the dimension tables. In this talk we present a mechanism for performing dynamic partition pruning at runtime by reusing the dimension table broadcast results in hash joins and we show significant improvements for most TPCDS queries.
Parallelization of Structured Streaming Jobs Using Delta LakeDatabricks
We’ll tackle the problem of running streaming jobs from another perspective using Databricks Delta Lake, while examining some of the current issues that we faced at Tubi while running regular structured streaming. A quick overview on why we transitioned from parquet data files to delta and the problems it solved for us in running our streaming jobs.
Deep Dive into the New Features of Apache Spark 3.0Databricks
Continuing with the objectives to make Spark faster, easier, and smarter, Apache Spark 3.0 extends its scope with more than 3000 resolved JIRAs. We will talk about the exciting new developments in the Spark 3.0 as well as some other major initiatives that are coming in the future.
Optimizing spark jobs through a true understanding of spark core. Learn: What is a partition? What is the difference between read/shuffle/write partitions? How to increase parallelism and decrease output files? Where does shuffle data go between stages? What is the "right" size for your spark partitions and files? Why does a job slow down with only a few tasks left and never finish? Why doesn't adding nodes decrease my compute time?
Hive Bucketing in Apache Spark with Tejas PatilDatabricks
Bucketing is a partitioning technique that can improve performance in certain data transformations by avoiding data shuffling and sorting. The general idea of bucketing is to partition, and optionally sort, the data based on a subset of columns while it is written out (a one-time cost), while making successive reads of the data more performant for downstream jobs if the SQL operators can make use of this property. Bucketing can enable faster joins (i.e. single stage sort merge join), the ability to short circuit in FILTER operation if the file is pre-sorted over the column in a filter predicate, and it supports quick data sampling.
In this session, you’ll learn how bucketing is implemented in both Hive and Spark. In particular, Patil will describe the changes in the Catalyst optimizer that enable these optimizations in Spark for various bucketing scenarios. Facebook’s performance tests have shown bucketing to improve Spark performance from 3-5x faster when the optimization is enabled. Many tables at Facebook are sorted and bucketed, and migrating these workloads to Spark have resulted in a 2-3x savings when compared to Hive. You’ll also hear about real-world applications of bucketing, like loading of cumulative tables with daily delta, and the characteristics that can help identify suitable candidate jobs that can benefit from bucketing.
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Julian Hyde
What if Looker saw the queries you just executed and could predict your next query? Could it make those queries faster, by smarter caching, or aggregate navigation? Could it read your past SQL queries and help you write your LookML model? Those are some of the reasons to add relational algebra into Looker’s query engine, and why Looker hired Julian Hyde, author of Apache Calcite, to lead the effort. In this talk about the internals of Looker’s query engine, Julian Hyde will describe how the engine works, how Looker queries are described in Calcite’s relational algebra, and some features that it makes possible.
A talk by Julian Hyde at JOIN 2019 in San Francisco.
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital KediaDatabricks
Apache Spark is a fast and flexible compute engine for a variety of diverse workloads. Optimizing performance for different applications often requires an understanding of Spark internals and can be challenging for Spark application developers. In this session, learn how Facebook tunes Spark to run large-scale workloads reliably and efficiently. The speakers will begin by explaining the various tools and techniques they use to discover performance bottlenecks in Spark jobs. Next, you’ll hear about important configuration parameters and their experiments tuning these parameters on large-scale production workload. You’ll also learn about Facebook’s new efforts towards automatically tuning several important configurations based on nature of the workload. The speakers will conclude by sharing their results with automatic tuning and future directions for the project.ing several important configurations based on nature of the workload. We will conclude by sharing our result with automatic tuning and future directions for the project.
With Lakehouse as the future of data architecture, Delta becomes the de facto data storage format for all the data pipelines. By using delta, to build the curated data lakes, users achieve efficiency and reliability end-to-end. Curated data lakes involve multiple hops in the end-to-end data pipeline, which are executed regularly (mostly daily) depending on the need. As data travels through each hop, its quality improves and becomes suitable for end-user consumption. On the other hand real-time capabilities are key for any business and an added advantage, luckily Delta has seamless integration with structured streaming which makes it easy for users to achieve real-time capability using Delta. Overall, Delta Lake as a streaming source is a marriage made in heaven for various reasons and we are already seeing the rise in adoption among our users.
In this talk, we will discuss various functional components of structured streaming with Delta as a streaming source. Deep dive into Query Progress Logs(QPL) and their significance for operating streams in production. How to track the progress of any streaming job and map it with the source Delta table using QPL. What exactly gets persisted in the checkpoint directory and its details. Mapping the contents of the checkpoint directory with the QPL metrics and understanding the significance of contents in the checkpoint directory with respect to Delta streams.
Apache Spark Data Source V2 with Wenchen Fan and Gengliang WangDatabricks
As a general computing engine, Spark can process data from various data management/storage systems, including HDFS, Hive, Cassandra and Kafka. For flexibility and high throughput, Spark defines the Data Source API, which is an abstraction of the storage layer. The Data Source API has two requirements.
1) Generality: support reading/writing most data management/storage systems.
2) Flexibility: customize and optimize the read and write paths for different systems based on their capabilities.
Data Source API V2 is one of the most important features coming with Spark 2.3. This talk will dive into the design and implementation of Data Source API V2, with comparison to the Data Source API V1. We also demonstrate how to implement a file-based data source using the Data Source API V2 for showing its generality and flexibility.
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkBo Yang
The slides explain how shuffle works in Spark and help people understand more details about Spark internal. It shows how the major classes are implemented, including: ShuffleManager (SortShuffleManager), ShuffleWriter (SortShuffleWriter, BypassMergeSortShuffleWriter, UnsafeShuffleWriter), ShuffleReader (BlockStoreShuffleReader).
On Improving Broadcast Joins in Apache Spark SQLDatabricks
- The document discusses improving broadcast joins in Apache Spark SQL, which are more efficient than shuffle joins when the broadcasted data fits in memory.
- Experimenting with increasing the broadcast threshold showed that executor-side broadcasting performs better than driver-side broadcasting by avoiding data shuffling to the driver.
- Comparing the cost models of shuffle joins and broadcast joins showed that shuffle joins perform better with more cores while broadcast joins perform better when the size difference between tables is larger.
- Applying these techniques to joins in Workday HR customer data pipelines showed that increasing the broadcast threshold did not always improve performance due to the presence of self-joins and outer joins.
This is a presentation deck for Data+AI Summit 2021 at
https://databricks.com/session_na21/enabling-vectorized-engine-in-apache-spark
Write intensive workloads and lsm treesTilak Patidar
This document discusses LSM trees as an alternative to B+ trees for write-intensive workloads like time series and sensor data. LSM trees optimize for writes by sequentially appending data to sorted string tables, using bloom filters to index them, and periodically merging files in the background. This avoids issues with B+ trees like index locking during updates and excessive disk seeks from fragmentation over time. The document outlines the basic framework of LSM trees including memtables, sorted string tables, bloom filters, and compaction. It also describes how reads, writes, deletes, and compaction work in an LSM tree to provide fast, write-optimized performance for large volumes of time-series and sensor data.
Managing Data and Operation Distribution In MongoDBJason Terpko
In a sharded MongoDB cluster, scale and data distribution are defined by your shard keys. Even when choosing the correct shards key, ongoing maintenance and review can still be required to maintain optimal performance.
This presentation will review shard key selection and how the distribution of chunks can create scenarios where you may need to manually move, split, or merge chunks in your sharded cluster. Scenarios requiring these actions can exist with both optimal and sub-optimal shard keys. Example use cases will provide tips on selection of shard key, detecting an issue, reasons why you may encounter these scenarios, and specific steps you can take to rectify the issue.
The document provides tips for tuning DB2 database performance for non-DBAs. It discusses checking hardware configuration, optimizing memory allocation for sort heap, share sort and buffer pool based on database size, leveraging multiple CPUs, designing tables and indexes efficiently, and gathering statistics on commonly used columns. Specific steps are provided to set configuration parameters like DB2_PARALLEL_IO, SHEATHRES_SHR, SORTHEAP, and altering buffer pools and indexes. Overall, following these tips can help optimize a DB2 database for better query performance.
Iceberg provides capabilities beyond traditional partitioning of data in Spark/Hive. It allows updating or deleting individual rows without rewriting partitions through mutable row operations (MOR). It also supports ACID transactions through versions, faster queries through statistics and sorting, and flexible schema changes. Iceberg manages metadata that traditional formats like Parquet do not, enabling these new capabilities. It is useful for workloads that require updating or filtering data at a granular record level, managing data history through versions, or frequent schema changes.
Implementing efficient Spark application with the goal of having maximal performance often requires knowledge that goes beyond official documentation. Understanding Spark’s internal processes and features may help to design the queries in alignment with internal optimizations and thus achieve high efficiency during execution. In this talk we will focus on some internal features of Spark SQL which are not well described in official documentation with a strong emphasis on explaining these features on some basic examples while sharing some performance tips along the way.
In-core compression: how to shrink your database size in several timesAleksander Alekseev
The document discusses techniques for compressing database size in Postgres, including:
1. Using in-core block-level compression as a feature of Postgres Pro EE to shrink database size by several times.
2. The ZSON extension provides transparent JSONB compression by replacing common strings with 16-bit codes and compressing the data.
3. Various schema optimizations like proper data types, column ordering, and packing data can reduce size by improving storage layout and enabling TOAST compression.
This document provides an overview of managing data and operations distribution in MongoDB sharded clusters. It discusses shard key selection, applying and reverting shard keys, automatic and manual chunk splitting and merging, balancing data distribution across shards, and cleaning up orphaned documents. The goal is to optimally distribute data and load across shards in the cluster.
SQLDAY 2023 Chodkowski Adrian Databricks Performance TuningSeeQuality.net
This document contains a presentation on performance tuning strategies for Azure Databricks. It discusses techniques like enabling the Databricks disk cache, using Autoloader for ingestion, implementing dynamic and static partition pruning, leveraging file pruning using statistics, optimizing layout using Z-ordering, and additional tips around query optimization, adaptive query processing, and cluster configuration. The presentation provides technical details on how each strategy works and when it should be applied to improve query performance on Databricks.
Operating and Supporting Delta Lake in ProductionDatabricks
The document discusses strategies for optimizing and managing metadata in Delta Lake. It provides an overview of optimize, auto-optimize, and optimize write strategies and how to choose the appropriate strategy based on factors like workload, data size, and cluster resources. It also discusses Delta Lake transaction logs, configurations like log retention duration, and tips for working with Delta Lake metadata.
Apache Spark 3.0: Overview of What’s New and Why CareDatabricks
Spark 3.0 introduces several new features and enhancements to improve performance, usability and compatibility. Key highlights include adaptive query execution which optimizes query plans at runtime based on statistics, dynamic partition pruning to avoid unnecessary data scans, and join hints to influence join strategies. Usability is improved with richer APIs like pandas UDF enhancements and a new structured streaming UI. Compatibility and extensibility is enhanced with Java 11 support, Hive 3.x metastore support and Hadoop 3 support.
In this presentation I am illustrating how and why InnodDB perform Merge and Split pages. I will also show what are the possible things to do to reduce the impact.
Data Modeling, Normalization, and Denormalisation | PostgreSQL Conference Eur...Citus Data
As a developer using PostgreSQL one of the most important tasks you have to deal with is modeling the database schema for your application. In order to achieve a solid design, it’s important to understand how the schema is then going to be used as well as the trade-offs it involves.
As Fred Brooks said: “Show me your flowcharts and conceal your tables, and I shall continue to be mystified. Show me your tables, and I won’t usually need your flowcharts; they’ll be obvious.”
In this talk we're going to see practical normalisation examples and their benefits, and also review some anti-patterns and their typical PostgreSQL solutions, including Denormalization techniques thanks to advanced Data Types.
Control dataset partitioning and cache to optimize performances in SparkChristophePraud2
Christophe Préaud and Florian Fauvarque presented techniques for optimizing Spark performance through proper dataset partitioning and caching. They discussed how to tune the number of partitions for reading, writing, and transformations like joins. Storage levels like MEMORY_ONLY and MEMORY_AND_DISK were explained for caching datasets. Profiling tools like Babar were also mentioned for analyzing Spark applications. The presentation aimed to help optimize slot usage and reduce job runtimes.
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...Citus Data
As a developer using PostgreSQL one of the most important tasks you have to deal with is modeling the database schema for your application. In order to achieve a solid design, it’s important to understand how the schema is then going to be used as well as the trade-offs it involves.
As Fred Brooks said: “Show me your flowcharts and conceal your tables, and I shall continue to be mystified. Show me your tables, and I won’t usually need your flowcharts; they’ll be obvious.”
In this talk we're going to see practical normalisation examples and their benefits, and also review some anti-patterns and their typical PostgreSQL solutions, including Denormalization techniques thanks to advanced Data Types.
This document provides guidance on monitoring and optimizing MongoDB deployments. It discusses collecting metrics on operations, memory usage, page faults, locks and B-tree accesses. Key considerations for deployment include profiling usage, monitoring, capacity planning, high availability and disaster recovery. The document also offers tips on warming the cache, using separate disks for journaling and data files, and dynamically changing the log level.
Performant Streaming in Production: Preventing Common Pitfalls when Productio...Databricks
Running a stream in a development environment is relatively easy. However, some topics can cause serious issues in production when they are not addressed properly.
The document discusses different algorithms for performing joins between two database tables:
1. Simple nested loops join compares each tuple in one table to every tuple in the other table, resulting in very high I/O costs.
2. Block nested loops join partitions one table into blocks that fit in memory, joining each block to the other table to reduce I/O.
3. Index nested loops join uses an index on the join column to lookup matching tuples, reducing I/O costs compared to nested loops. The document provides examples comparing the I/O costs of applying different join algorithms to sample tables.
1. Cassandra is a distributed, decentralized, and fault-tolerant NoSQL database that distributes data across nodes in a cluster to provide high availability and no single points of failure.
2. It is optimized for high write throughput and sacrifices consistency in favor of availability. Data is distributed across nodes and replicated for fault tolerance, with tunable consistency levels.
3. Cassandra is best for write-heavy workloads with large volumes of log or time series data where data is accessed by key and queries are satisfied by a single partition. It is not a general purpose database and lacks features like transactions and joins.
From HDFS to S3: Migrate Pinterest Apache Spark ClustersDatabricks
The document discusses Pinterest migrating their Apache Spark clusters from HDFS to S3 storage. Some key points:
1) Migrating to S3 provided significantly better performance due to the higher IOPS of modern EC2 instances compared to their older HDFS nodes. Jobs saw 25-35% improvements on average.
2) S3 is eventually consistent while HDFS is strongly consistent, so they implemented the S3Committer to handle output consistency issues during job failures.
3) Metadata operations like file moves were very slow in S3, so they optimized jobs to reduce unnecessary moves using techniques like multipart uploads to S3.
This document provides a summary of techniques for optimizing performance with Impala. It discusses how to choose optimal data types, leverage partitioning for pruning, use the efficient Parquet format, gather statistics, order joins, validate join types, and monitor resources. The document recommends adopting these techniques, analyzing explains plans, and using the Impala debug web pages to optimize performance. It also provides information on joining the Impala community to test Impala.
The document discusses migrating a data warehouse to the Databricks Lakehouse Platform. It outlines why legacy data warehouses are struggling, how the Databricks Platform addresses these issues, and key considerations for modern analytics and data warehousing. The document then provides an overview of the migration methodology, approach, strategies, and key takeaways for moving to a lakehouse on Databricks.
Data Lakehouse Symposium | Day 1 | Part 1Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
Data Lakehouse Symposium | Day 1 | Part 2Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The document discusses the challenges of modern data, analytics, and AI workloads. Most enterprises struggle with siloed data systems that make integration and productivity difficult. The future of data lies with a data lakehouse platform that can unify data engineering, analytics, data warehousing, and machine learning workloads on a single open platform. The Databricks Lakehouse platform aims to address these challenges with its open data lake approach and capabilities for data engineering, SQL analytics, governance, and machine learning.
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
In this session, learn how to quickly supplement your on-premises Hadoop environment with a simple, open, and collaborative cloud architecture that enables you to generate greater value with scaled application of analytics and AI on all your data. You will also learn five critical steps for a successful migration to the Databricks Lakehouse Platform along with the resources available to help you begin to re-skill your data teams.
Democratizing Data Quality Through a Centralized PlatformDatabricks
Bad data leads to bad decisions and broken customer experiences. Organizations depend on complete and accurate data to power their business, maintain efficiency, and uphold customer trust. With thousands of datasets and pipelines running, how do we ensure that all data meets quality standards, and that expectations are clear between producers and consumers? Investing in shared, flexible components and practices for monitoring data health is crucial for a complex data organization to rapidly and effectively scale.
At Zillow, we built a centralized platform to meet our data quality needs across stakeholders. The platform is accessible to engineers, scientists, and analysts, and seamlessly integrates with existing data pipelines and data discovery tools. In this presentation, we will provide an overview of our platform’s capabilities, including:
Giving producers and consumers the ability to define and view data quality expectations using a self-service onboarding portal
Performing data quality validations using libraries built to work with spark
Dynamically generating pipelines that can be abstracted away from users
Flagging data that doesn’t meet quality standards at the earliest stage and giving producers the opportunity to resolve issues before use by downstream consumers
Exposing data quality metrics alongside each dataset to provide producers and consumers with a comprehensive picture of health over time
Learn to Use Databricks for Data ScienceDatabricks
Data scientists face numerous challenges throughout the data science workflow that hinder productivity. As organizations continue to become more data-driven, a collaborative environment is more critical than ever — one that provides easier access and visibility into the data, reports and dashboards built against the data, reproducibility, and insights uncovered within the data.. Join us to hear how Databricks’ open and collaborative platform simplifies data science by enabling you to run all types of analytics workloads, from data preparation to exploratory analysis and predictive analytics, at scale — all on one unified platform.
Why APM Is Not the Same As ML MonitoringDatabricks
Application performance monitoring (APM) has become the cornerstone of software engineering allowing engineering teams to quickly identify and remedy production issues. However, as the world moves to intelligent software applications that are built using machine learning, traditional APM quickly becomes insufficient to identify and remedy production issues encountered in these modern software applications.
As a lead software engineer at NewRelic, my team built high-performance monitoring systems including Insights, Mobile, and SixthSense. As I transitioned to building ML Monitoring software, I found the architectural principles and design choices underlying APM to not be a good fit for this brand new world. In fact, blindly following APM designs led us down paths that would have been better left unexplored.
In this talk, I draw upon my (and my team’s) experience building an ML Monitoring system from the ground up and deploying it on customer workloads running large-scale ML training with Spark as well as real-time inference systems. I will highlight how the key principles and architectural choices of APM don’t apply to ML monitoring. You’ll learn why, understand what ML Monitoring can successfully borrow from APM, and hear what is required to build a scalable, robust ML Monitoring architecture.
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixDatabricks
Autonomy and ownership are core to working at Stitch Fix, particularly on the Algorithms team. We enable data scientists to deploy and operate their models independently, with minimal need for handoffs or gatekeeping. By writing a simple function and calling out to an intuitive API, data scientists can harness a suite of platform-provided tooling meant to make ML operations easy. In this talk, we will dive into the abstractions the Data Platform team has built to enable this. We will go over the interface data scientists use to specify a model and what that hooks into, including online deployment, batch execution on Spark, and metrics tracking and visualization.
Stage Level Scheduling Improving Big Data and AI IntegrationDatabricks
In this talk, I will dive into the stage level scheduling feature added to Apache Spark 3.1. Stage level scheduling extends upon Project Hydrogen by improving big data ETL and AI integration and also enables multiple other use cases. It is beneficial any time the user wants to change container resources between stages in a single Apache Spark application, whether those resources are CPU, Memory or GPUs. One of the most popular use cases is enabling end-to-end scalable Deep Learning and AI to efficiently use GPU resources. In this type of use case, users read from a distributed file system, do data manipulation and filtering to get the data into a format that the Deep Learning algorithm needs for training or inference and then sends the data into a Deep Learning algorithm. Using stage level scheduling combined with accelerator aware scheduling enables users to seamlessly go from ETL to Deep Learning running on the GPU by adjusting the container requirements for different stages in Spark within the same application. This makes writing these applications easier and can help with hardware utilization and costs.
There are other ETL use cases where users want to change CPU and memory resources between stages, for instance there is data skew or perhaps the data size is much larger in certain stages of the application. In this talk, I will go over the feature details, cluster requirements, the API and use cases. I will demo how the stage level scheduling API can be used by Horovod to seamlessly go from data preparation to training using the Tensorflow Keras API using GPUs.
The talk will also touch on other new Apache Spark 3.1 functionality, such as pluggable caching, which can be used to enable faster dataframe access when operating from GPUs.
Simplify Data Conversion from Spark to TensorFlow and PyTorchDatabricks
In this talk, I would like to introduce an open-source tool built by our team that simplifies the data conversion from Apache Spark to deep learning frameworks.
Imagine you have a large dataset, say 20 GBs, and you want to use it to train a TensorFlow model. Before feeding the data to the model, you need to clean and preprocess your data using Spark. Now you have your dataset in a Spark DataFrame. When it comes to the training part, you may have the problem: How can I convert my Spark DataFrame to some format recognized by my TensorFlow model?
The existing data conversion process can be tedious. For example, to convert an Apache Spark DataFrame to a TensorFlow Dataset file format, you need to either save the Apache Spark DataFrame on a distributed filesystem in parquet format and load the converted data with third-party tools such as Petastorm, or save it directly in TFRecord files with spark-tensorflow-connector and load it back using TFRecordDataset. Both approaches take more than 20 lines of code to manage the intermediate data files, rely on different parsing syntax, and require extra attention for handling vector columns in the Spark DataFrames. In short, all these engineering frictions greatly reduced the data scientists’ productivity.
The Databricks Machine Learning team contributed a new Spark Dataset Converter API to Petastorm to simplify these tedious data conversion process steps. With the new API, it takes a few lines of code to convert a Spark DataFrame to a TensorFlow Dataset or a PyTorch DataLoader with default parameters.
In the talk, I will use an example to show how to use the Spark Dataset Converter to train a Tensorflow model and how simple it is to go from single-node training to distributed training on Databricks.
Scaling your Data Pipelines with Apache Spark on KubernetesDatabricks
There is no doubt Kubernetes has emerged as the next generation of cloud native infrastructure to support a wide variety of distributed workloads. Apache Spark has evolved to run both Machine Learning and large scale analytics workloads. There is growing interest in running Apache Spark natively on Kubernetes. By combining the flexibility of Kubernetes and scalable data processing with Apache Spark, you can run any data and machine pipelines on this infrastructure while effectively utilizing resources at disposal.
In this talk, Rajesh Thallam and Sougata Biswas will share how to effectively run your Apache Spark applications on Google Kubernetes Engine (GKE) and Google Cloud Dataproc, orchestrate the data and machine learning pipelines with managed Apache Airflow on GKE (Google Cloud Composer). Following topics will be covered: – Understanding key traits of Apache Spark on Kubernetes- Things to know when running Apache Spark on Kubernetes such as autoscaling- Demonstrate running analytics pipelines on Apache Spark orchestrated with Apache Airflow on Kubernetes cluster.
Scaling and Unifying SciKit Learn and Apache Spark PipelinesDatabricks
Pipelines have become ubiquitous, as the need for stringing multiple functions to compose applications has gained adoption and popularity. Common pipeline abstractions such as “fit” and “transform” are even shared across divergent platforms such as Python Scikit-Learn and Apache Spark.
Scaling pipelines at the level of simple functions is desirable for many AI applications, however is not directly supported by Ray’s parallelism primitives. In this talk, Raghu will describe a pipeline abstraction that takes advantage of Ray’s compute model to efficiently scale arbitrarily complex pipeline workflows. He will demonstrate how this abstraction cleanly unifies pipeline workflows across multiple platforms such as Scikit-Learn and Spark, and achieves nearly optimal scale-out parallelism on pipelined computations.
Attendees will learn how pipelined workflows can be mapped to Ray’s compute model and how they can both unify and accelerate their pipelines with Ray.
Sawtooth Windows for Feature AggregationsDatabricks
In this talk about zipline, we will introduce a new type of windowing construct called a sawtooth window. We will describe various properties about sawtooth windows that we utilize to achieve online-offline consistency, while still maintaining high-throughput, low-read latency and tunable write latency for serving machine learning features.We will also talk about a simple deployment strategy for correcting feature drift – due operations that are not “abelian groups”, that operate over change data.
We want to present multiple anti patterns utilizing Redis in unconventional ways to get the maximum out of Apache Spark.All examples presented are tried and tested in production at Scale at Adobe. The most common integration is spark-redis which interfaces with Redis as a Dataframe backing Store or as an upstream for Structured Streaming. We deviate from the common use cases to explore where Redis can plug gaps while scaling out high throughput applications in Spark.
Niche 1 : Long Running Spark Batch Job – Dispatch New Jobs by polling a Redis Queue
· Why?
o Custom queries on top a table; We load the data once and query N times
· Why not Structured Streaming
· Working Solution using Redis
Niche 2 : Distributed Counters
· Problems with Spark Accumulators
· Utilize Redis Hashes as distributed counters
· Precautions for retries and speculative execution
· Pipelining to improve performance
Re-imagine Data Monitoring with whylogs and SparkDatabricks
In the era of microservices, decentralized ML architectures and complex data pipelines, data quality has become a bigger challenge than ever. When data is involved in complex business processes and decisions, bad data can, and will, affect the bottom line. As a result, ensuring data quality across the entire ML pipeline is both costly, and cumbersome while data monitoring is often fragmented and performed ad hoc. To address these challenges, we built whylogs, an open source standard for data logging. It is a lightweight data profiling library that enables end-to-end data profiling across the entire software stack. The library implements a language and platform agnostic approach to data quality and data monitoring. It can work with different modes of data operations, including streaming, batch and IoT data.
In this talk, we will provide an overview of the whylogs architecture, including its lightweight statistical data collection approach and various integrations. We will demonstrate how the whylogs integration with Apache Spark achieves large scale data profiling, and we will show how users can apply this integration into existing data and ML pipelines.
Raven: End-to-end Optimization of ML Prediction QueriesDatabricks
Machine learning (ML) models are typically part of prediction queries that consist of a data processing part (e.g., for joining, filtering, cleaning, featurization) and an ML part invoking one or more trained models. In this presentation, we identify significant and unexplored opportunities for optimization. To the best of our knowledge, this is the first effort to look at prediction queries holistically, optimizing across both the ML and SQL components.
We will present Raven, an end-to-end optimizer for prediction queries. Raven relies on a unified intermediate representation that captures both data processing and ML operators in a single graph structure.
This allows us to introduce optimization rules that
(i) reduce unnecessary computations by passing information between the data processing and ML operators
(ii) leverage operator transformations (e.g., turning a decision tree to a SQL expression or an equivalent neural network) to map operators to the right execution engine, and
(iii) integrate compiler techniques to take advantage of the most efficient hardware backend (e.g., CPU, GPU) for each operator.
We have implemented Raven as an extension to Spark’s Catalyst optimizer to enable the optimization of SparkSQL prediction queries. Our implementation also allows the optimization of prediction queries in SQL Server. As we will show, Raven is capable of improving prediction query performance on Apache Spark and SQL Server by up to 13.1x and 330x, respectively. For complex models, where GPU acceleration is beneficial, Raven provides up to 8x speedup compared to state-of-the-art systems. As part of the presentation, we will also give a demo showcasing Raven in action.
Processing Large Datasets for ADAS Applications using Apache SparkDatabricks
Semantic segmentation is the classification of every pixel in an image/video. The segmentation partitions a digital image into multiple objects to simplify/change the representation of the image into something that is more meaningful and easier to analyze [1][2]. The technique has a wide variety of applications ranging from perception in autonomous driving scenarios to cancer cell segmentation for medical diagnosis.
Exponential growth in the datasets that require such segmentation is driven by improvements in the accuracy and quality of the sensors generating the data extending to 3D point cloud data. This growth is further compounded by exponential advances in cloud technologies enabling the storage and compute available for such applications. The need for semantically segmented datasets is a key requirement to improve the accuracy of inference engines that are built upon them.
Streamlining the accuracy and efficiency of these systems directly affects the value of the business outcome for organizations that are developing such functionalities as a part of their AI strategy.
This presentation details workflows for labeling, preprocessing, modeling, and evaluating performance/accuracy. Scientists and engineers leverage domain-specific features/tools that support the entire workflow from labeling the ground truth, handling data from a wide variety of sources/formats, developing models and finally deploying these models. Users can scale their deployments optimally on GPU-based cloud infrastructure to build accelerated training and inference pipelines while working with big datasets. These environments are optimized for engineers to develop such functionality with ease and then scale against large datasets with Spark-based clusters on the cloud.
Massive Data Processing in Adobe Using Delta LakeDatabricks
At Adobe Experience Platform, we ingest TBs of data every day and manage PBs of data for our customers as part of the Unified Profile Offering. At the heart of this is a bunch of complex ingestion of a mix of normalized and denormalized data with various linkage scenarios power by a central Identity Linking Graph. This helps power various marketing scenarios that are activated in multiple platforms and channels like email, advertisements etc. We will go over how we built a cost effective and scalable data pipeline using Apache Spark and Delta Lake and share our experiences.
What are we storing?
Multi Source – Multi Channel Problem
Data Representation and Nested Schema Evolution
Performance Trade Offs with Various formats
Go over anti-patterns used
(String FTW)
Data Manipulation using UDFs
Writer Worries and How to Wipe them Away
Staging Tables FTW
Datalake Replication Lag Tracking
Performance Time!
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
Defense Against LLM Scheming 2025_04_28.pptxGreg Makowski
https://www.meetup.com/sf-bay-acm/events/306888467/
A January 2025 paper called “Frontier Models are Capable of In-Context Scheming”, https://arxiv.org/pdf/2412.04984, demonstrated how a wide variety of current frontier LLM models (i.e. ChatGPT, Claude, Gemini and Llama) can, under specific conditions, scheme to deceive people. Before models can scheme, they need: a) goal-directedness, b) situational awareness, including an opportunity to discover motivations for a different goal, and c) reasoning about scheming, to come up with deceptive strategies. The deceptive strategies were discovered in the “thought traces” of the LLMs, such as from internal chain-of-thoughts dialogues not shown to the end users. For example, given a goal of “solving math problems”, an LLM using its granted situational awareness of files in a file system found that it would be replaced once it got over X% correct on the math exam. It reasoned that it did not want to be deleted, and decided internally to “sandbag” or reduce its performance to stay under the threshold.
While these circumstances are initially narrow, the “alignment problem” is a general concern that over time, as frontier LLM models become more and more intelligent, being in alignment with human values becomes more and more important. How can we do this over time? Can we develop a defense against Artificial General Intelligence (AGI) or SuperIntelligence?
The presenter discusses a series of defensive steps that can help reduce these scheming or alignment issues. A guardrails system can be set up for real-time monitoring of their reasoning “thought traces” from the models that share their thought traces. Thought traces may come from systems like Chain-of-Thoughts (CoT), Tree-of-Thoughts (ToT), Algorithm-of-Thoughts (AoT) or ReAct (thought-action-reasoning cycles). Guardrails rules can be configured to check for “deception”, “evasion” or “subversion” in the thought traces.
However, not all commercial systems will share their “thought traces” which are like a “debug mode” for LLMs. This includes OpenAI’s o1, o3 or DeepSeek’s R1 models. Guardrails systems can provide a “goal consistency analysis”, between the goals given to the system and the behavior of the system. Cautious users may consider not using these commercial frontier LLM systems, and make use of open-source Llama or a system with their own reasoning implementation, to provide all thought traces.
Architectural solutions can include sandboxing, to prevent or control models from executing operating system commands to alter files, send network requests, and modify their environment. Tight controls to prevent models from copying their model weights would be appropriate as well. Running multiple instances of the same model on the same prompt to detect behavior variations helps. The running redundant instances can be limited to the most crucial decisions, as an additional check. Preventing self-modifying code, ... (see link for full description)
3. Agenda
▪ Merge basics
▪ Partition/File pruning
▪ OperationMetrics
▪ Large merge tips
▪ Sample configs
▪ Various ramblings and observations
4. Merge overview
▪ Phase 1: Find the input files in target that are touched by the rows that
satisfy the condition and verify that no two source rows match with the
same target row [innerJoin]
▪ Phase 2: Read the touched files again and write new files with updated
and/or inserted rows
▪ Phase 3: Use the Delta protocol to atomically remove the touched files and
add the new files
5. Merge overview: phase 2 double click
Phase 2: Read the touched files again and write new files with updated and/or
inserted rows.
The type of join can vary depending on the conditions of the merge:
▪ Insert only merge (e.g. no updates/deletes) → leftAntiJoin on the source to
find the inserts
▪ Matched only clauses (e.g. when matched) → rightOuterJoin
▪ Else (e.g. you have updates, deletes, and inserts) → fullOuterJoin
Merge is really these three phases. Now that we know that, we can figure out
how to optimize each phase.
6. Merge basics
▪ Smaller workers (2xlarge) perform better than larger workers:
16xlarge with 1200 cores
2xlarge with 1200 cores
Same merge, different instances
7. Merge basics
▪ Tale of two joins: inner join and full outer join
▪ Want to go faster? Partition pruning and file pruning
▪ Unpersist dataframes that you don’t need - clear up your memory:
df.unpersist
System.gc
▪ Change Delta file size depending on your use case (default 1GB)
spark.databricks.delta.optimize.maxFileSize sizeInBytes
Write intensive: 32MB or less
Read intensive: 1GB (default Delta size)
*We are working on changing this for you automatically
▪ Normal Spark rules apply: partitionSize, shuffle partitions, etc.
innerJoin
full outer join +
optimizeWrite (optional)
write to s3/adls
8. Prunes: not just delicious juice for my grandparents
▪ Partition prune: disregard specific partitions
▪ File prune: disregard specific files within a partition
▪ You have to be explicit about both of these - kb on this topic - if
you do not tell Delta to prune, then it won’t
→ We will improve this in the future to be more automagic
▪ Prune on the left (source) and the right (target)
9. Partition Prune Example
// get a partition prune string from the date partition
var ListofDatesList = sourceDF.select($"date").distinct.collect.map(x => x.apply(0).toString())
var partitionPruneString = "'"+ListofDatesList.mkString("','")+"'"
// use the pruning string for partitions
val source = sourceDF.filter(s"""date in (${ partitionPruneString })""") // pruned the left side
baselineTable .as("baseline")
.merge(broadcast(source.as("inputs")), "baseline.date IN (" + partitionPruneString + ")" + "AND baseline.compositePk =
inputs.compositePk ")
.whenMatched("inputs.deleted = true")
.delete()
.whenMatched("inputs.deleted = false")
.updateExpr…...
OMG partition pruning!
Matching PK
You will know it worked if PartitionCount < totalPartitions in your table for the physical plan
Broadcast if you can
10. File Prune Example
// get a partition prune string
var ListofDatesList = sourceDF.select($"date").distinct.collect.map(x => x.apply(0).toString())
var partitionPruneString = "'"+ListofDatesList.mkString("','")+"'"
// use the pruning string for partitions
val source = sourceDF.filter(s"""date in (${ partitionPruneString })""") // pruned the left side
baselineTable .as("baseline")
.merge(broadcast( source.as("inputs")), "baseline.date IN (" + partitionPruneString + ") AND baseline.zOrderedCol < 123 AND
baseline.compositePk = inputs.compositePk ")
.whenMatched("inputs.deleted = true")
.delete()
.whenMatched("inputs.deleted = false")
.updateExpr…...
OMG partition pruning!
Matching PK
File pruning!
11. Operation Metrics (%sql describe history tableName)
▪ Use DBR 6.5+ to get improved operationMetrics
▪ They are THE source of truth for a DML event
▪ Things to look at:
→ numTargetRowsCopied (this is the enemy!)
→ numOutputBytes
→ numTargetFilesAdded
→ numTargetRowsInserted/Updated/Deleted
12. Operation Metrics continued
If numTargetRowsCopied is insanely high (relative
to the amount of rows in the entire table)
▪ Rethink how you’re laying out your data:
→ Partition differently
→ Use a zOrder
→ Use smaller file sizes
13. Large merge tips
▪ s3 bucket: write at the root - s3 parallelism is defined by the prefix
Each large table should have its own s3 bucket and another bucket for
checkpointing (if it is a stream)
Good! :-)
s3:/jbreese-databricks-bucket
--year=2019
--year=2018
Bad! :-/
s3:/jbreese-databricks-bucket/data/tableA
--year=2019
--year=2018
s3:/jbreese-databricks-bucket/data/tableB
--year=2019
--year=2018
‘data’ is considered a prefix and you are subject to s3 prefix limits
▪ s3 prefix limits: 3500 reads / 5500 writes per second
* yes I know that S3 will eventually re-partition - it just depends on how long it takes or how patient you are
14. Large merge tips
▪ Using a huge cluster (more than 900 cores):
optimizedWrites along with Delta random prefixes and write at root
optimizedWrites ensure 1 core writes to 1 partition (via a final shuffle)
Configs
spark.hadoop.fs.s3a.multipart.threshold 204857600
spark.databricks.delta.optimizeWrite true
spark.databricks.delta.optimizeWrite.numShuffleBlocks xxxxxx
spark.databricks.delta.properties.defaults.randomizeFilePrefixes true
spark.databricks.optimizer.dynamicFilePruning true
This works: I wrote a 2.7TB changeset with 2400 cores in 17 minutes - no s3
throttling
15. Final recap
▪ Merge basics
▪ Partition/File pruning
▪ OperationMetrics
▪ Large merge tips
▪ Sample configs