SlideShare a Scribd company logo
Flip Flops
CS1104-11 Lecture 11: Sequential Logic:
Latches & Flip-flops
2
Lecture 11: Sequential Logic
Latches & Flip-flops
 Introduction
 Memory Elements
 Pulse-Triggered Latch
 S-R Latch
 Gated S-R Latch
 Gated D Latch
 Edge-Triggered Flip-flops
 S-R Flip-flop
 D Flip-flop
 J-K Flip-flop
 T Flip-flop
 Asynchronous Inputs
CS1104-11 Introduction 3
Introduction
 A sequential circuit consists of a feedback path,
and employs some memory elements.
Combinational
logic
Memory
elements
Combinational
outputs Memory outputs
External inputs
Sequential circuit = Combinational logic + Memory Elements
CS1104-11 Introduction 4
Introduction
 There are two types of sequential circuits:
 synchronous: outputs change only at specific time
 asynchronous: outputs change at any time
 Multivibrator: a class of sequential circuits. They
can be:
 bistable (2 stable states)
 monostable or one-shot (1 stable state)
 astable (no stable state)
 Bistable logic devices: latches and flip-flops.
 Latches and flip-flops differ in the method used for
changing their state.
CS1104-11 Memory Elements 5
Memory Elements
 Memory element: a device which can remember
value indefinitely, or change value on command
from its inputs.
 Characteristic table:
Command
(at time t)
Q(t) Q(t+1)
Set X 1
Reset X 0
0 0
Memorise /
No Change 1 1
command
Memory
element stored value
Q
Q(t): current state
Q(t+1) or Q+
: next state
CS1104-11 Memory Elements 6
Memory Elements
 Memory element with clock. Flip-flops are memory
elements that change state on clock signals.
 Clock is usually a square wave.
command
Memory
element stored value
Q
clock
Positive edges Negative edges
Positive pulses
CS1104-11 Memory Elements 7
Memory Elements
 Two types of triggering/activation:
 pulse-triggered
 edge-triggered
 Pulse-triggered
 latches
 ON = 1, OFF = 0
 Edge-triggered
 flip-flops
 positive edge-triggered (ON = from 0 to 1; OFF = other
time)
 negative edge-triggered (ON = from 1 to 0; OFF = other
time)
CS1104-11 S-R Latch 8
S-R Latch
 Complementary outputs: Q and Q'.
 When Q is HIGH, the latch is in SET state.
 When Q is LOW, the latch is in RESET state.
 For active-HIGH input S-R latch (also known as NOR
gate latch),
R=HIGH (and S=LOW)  RESET state
S=HIGH (and R=LOW)  SET state
both inputs LOW  no change
both inputs HIGH  Q and Q' both LOW (invalid)!
CS1104-11 S-R Latch 9
S-R Latch
 Characteristics table for active-high input S-R latch:
S R Q Q'
0 0 NC NC No change. Latch
remained in present state.
1 0 1 0 Latch SET.
0 1 0 1 Latch RESET.
1 1 0 0 Invalid condition.
S
R
Q
Q'
CS1104-11 S-R Latch 10
S-R Latch
 Active-HIGH input S-R latch
R
S
Q
Q'
S R Q Q'
1 0 1 0 initial
0 0 1 0 (afer S=1, R=0)
0 1 0 1
0 0 0 1 (after S=0, R=1)
1 1 0 0 invalid!
0
1
1
0
0
0
1
0
1
0
0
1
0
0
0
1
1
1
0
0
CS1104-11 Gated D Latch 11
Gated D Latch
 Make R input equal to S'  gated D latch.
 D latch eliminates the undesirable condition of invalid
state in the S-R latch.
D
EN
Q
Q'
D
Q
Q'
EN
CS1104-11 Gated D Latch 12
Gated D Latch
 When EN is HIGH,
 D=HIGH  latch is SET
 D=LOW  latch is RESET
 Hence when EN is HIGH, Q ‘follows’ the D (data)
input.
 Characteristic table:
When EN=1, Q(t+1) = D
EN D Q(t+1)
1 0 0 Reset
1 1 1 Set
0 X Q(t) No change
CS1104-11 Gated D Latch 13
Latch Circuits: Not Suitable
 Latch circuits are not suitable in synchronous logic
circuits.
 When the enable signal is active, the excitation
inputs are gated directly to the output Q. Thus, any
change in the excitation input immediately causes a
change in the latch output.
 The problem is solved by using a special timing
control signal called a clock to restrict the times at
which the states of the memory elements may
change.
 This leads us to the edge-triggered memory
elements called flip-flops.
CS1104-11 Edge-Triggered Flip-flops 14
Edge-Triggered Flip-flops
 Flip-flops: synchronous bistable devices
 Output changes state at a specified point on a
triggering input called the clock.
 Change state either at the positive edge (rising edge)
or at the negative edge (falling edge) of the clock
signal.
Positive edges Negative edges
Clock signal
CS1104-11 Edge-Triggered Flip-flops 15
Edge-Triggered Flip-flops
 S-R, D and J-K edge-triggered flip-flops. Note the “>”
symbol at the clock input.
S
C
R
Q
Q'
S
C
R
Q
Q'
D
C
Q
Q'
D
C
Q
Q'
J
C
K
Q
Q'
J
C
K
Q
Q'
Positive edge-triggered flip-flops
Negative edge-triggered flip-flops
CS1104-11 SR Flip-flop 16
S-R Flip-flop
 S-R flip-flop: on the triggering edge of the clock pulse,
 S=HIGH (and R=LOW)  SET state
 R=HIGH (and S=LOW)  RESET state
 both inputs LOW  no change
 both inputs HIGH  invalid
 Characteristic table of positive edge-triggered S-R flip-
flop:
X = irrelevant (“don’t care”)
 = clock transition LOW to HIGH
S R CLK Q(t+1) Comments
0 0 X Q(t) No change
0 1  0 Reset
1 0  1 Set
1 1  ? Invalid
CS1104-11 SR Flip-flop 17
S-R Flip-flop
 It comprises 3 parts:
 a basic NAND latch
 a pulse-steering circuit
 a pulse transition detector (or edge detector) circuit
 The pulse transition detector detects a rising (or
falling) edge and produces a very short-duration
spike.
CS1104-11 SR Flip-flop 18
S-R Flip-flop
The pulse transition detector.
S
Q
Q'
CLK
Pulse
transition
detector
R
Positive-going transition
(rising edge)
CLK
CLK'
CLK*
CLK'
CLK
CLK*
Negative-going transition
(falling edge)
CLK'
CLK
CLK*
CLK
CLK'
CLK*
CS1104-11 D Flip-flop 19
D Flip-flop
 D flip-flop: single input D (data)
 D=HIGH  SET state
 D=LOW  RESET state
 Q follows D at the clock edge.
 Convert S-R flip-flop into a D flip-flop: add an inverter.
A positive edge-triggered D flip-
flop formed with an S-R flip-flop.
S
C
R
Q
Q'
CLK
D D CLK Q(t+1) Comments
1  1 Set
0  0 Reset
 = clock transition LOW to HIGH
CS1104-11 J-K Flip-Ffop 20
J-K Flip-flop
 J-K flip-flop: Q and Q' are fed back to the pulse-
steering NAND gates.
 No invalid state.
 Include a toggle state.
 J=HIGH (and K=LOW)  SET state
 K=HIGH (and J=LOW)  RESET state
 both inputs LOW  no change
 both inputs HIGH  toggle
CS1104-11 J-K Flip-flop 21
J-K Flip-flop
 J-K flip-flop.
 Characteristic table.
J
Q
Q'
CLK
Pulse
transition
detector
K
J K CLK Q(t+1) Comments
0 0  Q(t) No change
0 1  0 Reset
1 0  1 Set
1 1  Q(t)' Toggle
Q J K Q(t+1)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0
Q(t+1) = J.Q' + K'.Q
CS1104-11 T Flip-flop 22
T Flip-flop
 T flip-flop: single-input version of the J-K flip flop,
formed by tying both inputs together.
 Characteristic table.
T CLK Q(t+1) Comments
0  Q(t) No change
1  Q(t)' Toggle
Q T Q(t+1)
0 0 0
0 1 1
1 0 1
1 1 0
Q(t+1) = T.Q' + T'.Q
T
Q
Q'
CLK
Pulse
transition
detector
J
C
K
Q
Q'
CLK
T
End of segment

More Related Content

Similar to Digital-logic-design-16148_flip-flop1.ppt (20)

PPTX
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
ThanmayiKumar
 
PDF
Sequential circuit latchs and Flip-Flops.
msa29cse
 
PPT
Sequential Logic Circuit
Ramasubbu .P
 
PPTX
Flip flop
Bhaskar Kumar Jha
 
PPT
14827 unit 4_clocked_flip_flops
Sandeep Kumar
 
PPTX
Flipflop
sohamdodia27
 
PDF
498947837-chapter6.pdf sequential logic circuit latch flip flop
dhfsgf6
 
PPTX
DIGITAL ELECTRONICS: UNIT-III SYNCHRONOUS SEQUENTIAL CIRCUITS
Sridhar191373
 
PPTX
Sequential circuits
DrSonali Vyas
 
PPTX
Chapter 6: Sequential Logic
Er. Nawaraj Bhandari
 
PPTX
flip flops.pptx
Yash746626
 
PPTX
Sequentialcircuits
Raghu Vamsi
 
PPTX
Flip flops
Shashi Lata
 
PDF
Digital Electronics-Design of SYNCHRONOUS SEQUENTIAL CIRCUITS
C.Helen Sulochana
 
PPTX
Latch and Flipflop.pptx
ramkumarraja7
 
PPTX
Sequential logic circuits flip-flop pt 1
Sarah Sue Calbio
 
PPTX
GROUP 4 DIGITAL elect S-R FLIP FLOP.pptx
LeanderNanneteMlambo
 
PPTX
UNIT - III.pptx
amudhak10
 
PPT
10529144.ppt
imadshaheen2
 
PPTX
Flip flop
Moni Adhikary
 
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
ThanmayiKumar
 
Sequential circuit latchs and Flip-Flops.
msa29cse
 
Sequential Logic Circuit
Ramasubbu .P
 
14827 unit 4_clocked_flip_flops
Sandeep Kumar
 
Flipflop
sohamdodia27
 
498947837-chapter6.pdf sequential logic circuit latch flip flop
dhfsgf6
 
DIGITAL ELECTRONICS: UNIT-III SYNCHRONOUS SEQUENTIAL CIRCUITS
Sridhar191373
 
Sequential circuits
DrSonali Vyas
 
Chapter 6: Sequential Logic
Er. Nawaraj Bhandari
 
flip flops.pptx
Yash746626
 
Sequentialcircuits
Raghu Vamsi
 
Flip flops
Shashi Lata
 
Digital Electronics-Design of SYNCHRONOUS SEQUENTIAL CIRCUITS
C.Helen Sulochana
 
Latch and Flipflop.pptx
ramkumarraja7
 
Sequential logic circuits flip-flop pt 1
Sarah Sue Calbio
 
GROUP 4 DIGITAL elect S-R FLIP FLOP.pptx
LeanderNanneteMlambo
 
UNIT - III.pptx
amudhak10
 
10529144.ppt
imadshaheen2
 
Flip flop
Moni Adhikary
 

More from SherifElGohary7 (20)

PPT
introduction to html and cssIntroHTML.ppt
SherifElGohary7
 
PPT
introduction to html and css html1.ppt
SherifElGohary7
 
PPT
2-Test biocompatibilitalty testing .ppt
SherifElGohary7
 
PPTX
articulating mirrors laser application 1610922286.pptx
SherifElGohary7
 
PPTX
Intrusion Detection and Prevention Systems.pptx
SherifElGohary7
 
PPTX
AAMI medical device standards program.pptx
SherifElGohary7
 
PPT
dppc-breach-notification-slides-201804.ppt
SherifElGohary7
 
PPTX
presentationsPPT-HIPAA-Privacy-Rule-Training.pptx
SherifElGohary7
 
PPT
Lectureof nano 1588236675-biosensors (1).ppt
SherifElGohary7
 
PPT
Lecture digital logic design Chapter4_4Web.ppt
SherifElGohary7
 
PPT
Encoder-Decoder-Multiplexers-and-Demultiplexers.ppt
SherifElGohary7
 
PPT
Lecture of BloodGlucoseMonitoring2008.ppt
SherifElGohary7
 
PDF
IT GovernanceChallenges facing IT Governance.pdf
SherifElGohary7
 
PPT
Chapter 12 CSR and Corporate Governance.ppt
SherifElGohary7
 
PDF
Digital logic design of 2nd Lecture 2.pdf
SherifElGohary7
 
PDF
Medical biophysics of Introduction-18.pdf
SherifElGohary7
 
PPT
Lecture-digital-27_T_and_JK_Flip-Flops.ppt
SherifElGohary7
 
PPT
Lecture-digital logic design-32_Counters.ppt
SherifElGohary7
 
PPT
Lecture-Logic Design_circuit-15-Registers.ppt
SherifElGohary7
 
PPT
lecture_binary_logic_and_logic_gates.ppt
SherifElGohary7
 
introduction to html and cssIntroHTML.ppt
SherifElGohary7
 
introduction to html and css html1.ppt
SherifElGohary7
 
2-Test biocompatibilitalty testing .ppt
SherifElGohary7
 
articulating mirrors laser application 1610922286.pptx
SherifElGohary7
 
Intrusion Detection and Prevention Systems.pptx
SherifElGohary7
 
AAMI medical device standards program.pptx
SherifElGohary7
 
dppc-breach-notification-slides-201804.ppt
SherifElGohary7
 
presentationsPPT-HIPAA-Privacy-Rule-Training.pptx
SherifElGohary7
 
Lectureof nano 1588236675-biosensors (1).ppt
SherifElGohary7
 
Lecture digital logic design Chapter4_4Web.ppt
SherifElGohary7
 
Encoder-Decoder-Multiplexers-and-Demultiplexers.ppt
SherifElGohary7
 
Lecture of BloodGlucoseMonitoring2008.ppt
SherifElGohary7
 
IT GovernanceChallenges facing IT Governance.pdf
SherifElGohary7
 
Chapter 12 CSR and Corporate Governance.ppt
SherifElGohary7
 
Digital logic design of 2nd Lecture 2.pdf
SherifElGohary7
 
Medical biophysics of Introduction-18.pdf
SherifElGohary7
 
Lecture-digital-27_T_and_JK_Flip-Flops.ppt
SherifElGohary7
 
Lecture-digital logic design-32_Counters.ppt
SherifElGohary7
 
Lecture-Logic Design_circuit-15-Registers.ppt
SherifElGohary7
 
lecture_binary_logic_and_logic_gates.ppt
SherifElGohary7
 
Ad

Recently uploaded (20)

PPTX
Fluid statistics and Numerical on pascal law
Ravindra Kolhe
 
PPTX
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
PDF
Irrigation Project Report, CTEVT, Diploma in Civil engineering
civilhack22
 
PDF
All chapters of Strength of materials.ppt
girmabiniyam1234
 
PPTX
filteration _ pre.pptx 11111110001.pptx
awasthivaibhav825
 
PPTX
Online Cab Booking and Management System.pptx
diptipaneri80
 
PDF
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
PDF
SG1-ALM-MS-EL-30-0008 (00) MS - Isolators and disconnecting switches.pdf
djiceramil
 
PPTX
ENSA_Module_7.pptx_wide_area_network_concepts
RanaMukherjee24
 
PPTX
Water resources Engineering GIS KRT.pptx
Krunal Thanki
 
PDF
IEEE EMBC 2025 「Improving electrolaryngeal speech enhancement via a represent...
NU_I_TODALAB
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
Ground improvement techniques-DEWATERING
DivakarSai4
 
PPTX
Precedence and Associativity in C prog. language
Mahendra Dheer
 
PDF
勉強会資料_An Image is Worth More Than 16x16 Patches
NABLAS株式会社
 
PPTX
Unit II: Meteorology of Air Pollution and Control Engineering:
sundharamm
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PDF
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
Fluid statistics and Numerical on pascal law
Ravindra Kolhe
 
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
Irrigation Project Report, CTEVT, Diploma in Civil engineering
civilhack22
 
All chapters of Strength of materials.ppt
girmabiniyam1234
 
filteration _ pre.pptx 11111110001.pptx
awasthivaibhav825
 
Online Cab Booking and Management System.pptx
diptipaneri80
 
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
SG1-ALM-MS-EL-30-0008 (00) MS - Isolators and disconnecting switches.pdf
djiceramil
 
ENSA_Module_7.pptx_wide_area_network_concepts
RanaMukherjee24
 
Water resources Engineering GIS KRT.pptx
Krunal Thanki
 
IEEE EMBC 2025 「Improving electrolaryngeal speech enhancement via a represent...
NU_I_TODALAB
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
Ground improvement techniques-DEWATERING
DivakarSai4
 
Precedence and Associativity in C prog. language
Mahendra Dheer
 
勉強会資料_An Image is Worth More Than 16x16 Patches
NABLAS株式会社
 
Unit II: Meteorology of Air Pollution and Control Engineering:
sundharamm
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
Inventory management chapter in automation and robotics.
atisht0104
 
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
Ad

Digital-logic-design-16148_flip-flop1.ppt

  • 2. CS1104-11 Lecture 11: Sequential Logic: Latches & Flip-flops 2 Lecture 11: Sequential Logic Latches & Flip-flops  Introduction  Memory Elements  Pulse-Triggered Latch  S-R Latch  Gated S-R Latch  Gated D Latch  Edge-Triggered Flip-flops  S-R Flip-flop  D Flip-flop  J-K Flip-flop  T Flip-flop  Asynchronous Inputs
  • 3. CS1104-11 Introduction 3 Introduction  A sequential circuit consists of a feedback path, and employs some memory elements. Combinational logic Memory elements Combinational outputs Memory outputs External inputs Sequential circuit = Combinational logic + Memory Elements
  • 4. CS1104-11 Introduction 4 Introduction  There are two types of sequential circuits:  synchronous: outputs change only at specific time  asynchronous: outputs change at any time  Multivibrator: a class of sequential circuits. They can be:  bistable (2 stable states)  monostable or one-shot (1 stable state)  astable (no stable state)  Bistable logic devices: latches and flip-flops.  Latches and flip-flops differ in the method used for changing their state.
  • 5. CS1104-11 Memory Elements 5 Memory Elements  Memory element: a device which can remember value indefinitely, or change value on command from its inputs.  Characteristic table: Command (at time t) Q(t) Q(t+1) Set X 1 Reset X 0 0 0 Memorise / No Change 1 1 command Memory element stored value Q Q(t): current state Q(t+1) or Q+ : next state
  • 6. CS1104-11 Memory Elements 6 Memory Elements  Memory element with clock. Flip-flops are memory elements that change state on clock signals.  Clock is usually a square wave. command Memory element stored value Q clock Positive edges Negative edges Positive pulses
  • 7. CS1104-11 Memory Elements 7 Memory Elements  Two types of triggering/activation:  pulse-triggered  edge-triggered  Pulse-triggered  latches  ON = 1, OFF = 0  Edge-triggered  flip-flops  positive edge-triggered (ON = from 0 to 1; OFF = other time)  negative edge-triggered (ON = from 1 to 0; OFF = other time)
  • 8. CS1104-11 S-R Latch 8 S-R Latch  Complementary outputs: Q and Q'.  When Q is HIGH, the latch is in SET state.  When Q is LOW, the latch is in RESET state.  For active-HIGH input S-R latch (also known as NOR gate latch), R=HIGH (and S=LOW)  RESET state S=HIGH (and R=LOW)  SET state both inputs LOW  no change both inputs HIGH  Q and Q' both LOW (invalid)!
  • 9. CS1104-11 S-R Latch 9 S-R Latch  Characteristics table for active-high input S-R latch: S R Q Q' 0 0 NC NC No change. Latch remained in present state. 1 0 1 0 Latch SET. 0 1 0 1 Latch RESET. 1 1 0 0 Invalid condition. S R Q Q'
  • 10. CS1104-11 S-R Latch 10 S-R Latch  Active-HIGH input S-R latch R S Q Q' S R Q Q' 1 0 1 0 initial 0 0 1 0 (afer S=1, R=0) 0 1 0 1 0 0 0 1 (after S=0, R=1) 1 1 0 0 invalid! 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0
  • 11. CS1104-11 Gated D Latch 11 Gated D Latch  Make R input equal to S'  gated D latch.  D latch eliminates the undesirable condition of invalid state in the S-R latch. D EN Q Q' D Q Q' EN
  • 12. CS1104-11 Gated D Latch 12 Gated D Latch  When EN is HIGH,  D=HIGH  latch is SET  D=LOW  latch is RESET  Hence when EN is HIGH, Q ‘follows’ the D (data) input.  Characteristic table: When EN=1, Q(t+1) = D EN D Q(t+1) 1 0 0 Reset 1 1 1 Set 0 X Q(t) No change
  • 13. CS1104-11 Gated D Latch 13 Latch Circuits: Not Suitable  Latch circuits are not suitable in synchronous logic circuits.  When the enable signal is active, the excitation inputs are gated directly to the output Q. Thus, any change in the excitation input immediately causes a change in the latch output.  The problem is solved by using a special timing control signal called a clock to restrict the times at which the states of the memory elements may change.  This leads us to the edge-triggered memory elements called flip-flops.
  • 14. CS1104-11 Edge-Triggered Flip-flops 14 Edge-Triggered Flip-flops  Flip-flops: synchronous bistable devices  Output changes state at a specified point on a triggering input called the clock.  Change state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock signal. Positive edges Negative edges Clock signal
  • 15. CS1104-11 Edge-Triggered Flip-flops 15 Edge-Triggered Flip-flops  S-R, D and J-K edge-triggered flip-flops. Note the “>” symbol at the clock input. S C R Q Q' S C R Q Q' D C Q Q' D C Q Q' J C K Q Q' J C K Q Q' Positive edge-triggered flip-flops Negative edge-triggered flip-flops
  • 16. CS1104-11 SR Flip-flop 16 S-R Flip-flop  S-R flip-flop: on the triggering edge of the clock pulse,  S=HIGH (and R=LOW)  SET state  R=HIGH (and S=LOW)  RESET state  both inputs LOW  no change  both inputs HIGH  invalid  Characteristic table of positive edge-triggered S-R flip- flop: X = irrelevant (“don’t care”)  = clock transition LOW to HIGH S R CLK Q(t+1) Comments 0 0 X Q(t) No change 0 1  0 Reset 1 0  1 Set 1 1  ? Invalid
  • 17. CS1104-11 SR Flip-flop 17 S-R Flip-flop  It comprises 3 parts:  a basic NAND latch  a pulse-steering circuit  a pulse transition detector (or edge detector) circuit  The pulse transition detector detects a rising (or falling) edge and produces a very short-duration spike.
  • 18. CS1104-11 SR Flip-flop 18 S-R Flip-flop The pulse transition detector. S Q Q' CLK Pulse transition detector R Positive-going transition (rising edge) CLK CLK' CLK* CLK' CLK CLK* Negative-going transition (falling edge) CLK' CLK CLK* CLK CLK' CLK*
  • 19. CS1104-11 D Flip-flop 19 D Flip-flop  D flip-flop: single input D (data)  D=HIGH  SET state  D=LOW  RESET state  Q follows D at the clock edge.  Convert S-R flip-flop into a D flip-flop: add an inverter. A positive edge-triggered D flip- flop formed with an S-R flip-flop. S C R Q Q' CLK D D CLK Q(t+1) Comments 1  1 Set 0  0 Reset  = clock transition LOW to HIGH
  • 20. CS1104-11 J-K Flip-Ffop 20 J-K Flip-flop  J-K flip-flop: Q and Q' are fed back to the pulse- steering NAND gates.  No invalid state.  Include a toggle state.  J=HIGH (and K=LOW)  SET state  K=HIGH (and J=LOW)  RESET state  both inputs LOW  no change  both inputs HIGH  toggle
  • 21. CS1104-11 J-K Flip-flop 21 J-K Flip-flop  J-K flip-flop.  Characteristic table. J Q Q' CLK Pulse transition detector K J K CLK Q(t+1) Comments 0 0  Q(t) No change 0 1  0 Reset 1 0  1 Set 1 1  Q(t)' Toggle Q J K Q(t+1) 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 Q(t+1) = J.Q' + K'.Q
  • 22. CS1104-11 T Flip-flop 22 T Flip-flop  T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs together.  Characteristic table. T CLK Q(t+1) Comments 0  Q(t) No change 1  Q(t)' Toggle Q T Q(t+1) 0 0 0 0 1 1 1 0 1 1 1 0 Q(t+1) = T.Q' + T'.Q T Q Q' CLK Pulse transition detector J C K Q Q' CLK T