SlideShare a Scribd company logo
DLゼミ (論文紹介)
Generative Image Dynamics
北海道大学大学院 情報科学研究院
情報理工学部門 複合情報工学分野 調和系工学研究室
博士後期課程3年 森 雄斗
2024/07/29
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
論文情報 2
タイトル
Generative Image Dynamics
著者
Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski
Google Research
掲載
CVPR2024 (CVPR2024 Best paper)
URL
プロジェクトページ
https://generative-dynamics.github.io/
論文本体
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Generative
_Image_Dynamics_CVPR_2024_paper.pdf
デモページ
https://generative-dynamics.github.io/#demo
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
概要 3
画像の動きに関する画像空間の事前分布 (image-
spaceprior) をモデル化する手法の提案
事前分布は、自然の周期的な物体の動きを学習
1枚の画像から拡散モデルを使用したSpectral volume
を予測
Spectral volumeから動画全体の動きに変換可能
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
人間が持つ予測能力 4
自然界は常に動いている
動きの再現は映像コンテンツの合成に重要
人間は静止画像を見て尤もらしい動き (の分布) を
想像できる
物体固有の物理特性や物理現象など複雑な動きをしている
人が見る静止画像
想像した動き
予想1
予想2
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
最近の生成モデルの発展と活用 5
拡散モデルの進歩[1]により、テキストを条件とした
実映像の分布などがモデル化可能に
本研究では、画像空間の動きのモデル化に取り組む
画像内の全画素の動きに対する事前分布を学習
学習対象の動画からSpectral volumeを計算
[1] で生成された画像の例
[1] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.Align your latents: High-resolution video
synthesis withlatent diffusion models. InProceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition,pages 22563–22575, 2023.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Spectral volume 6
Davisの研究[1] を参考
シーンのビデオで観察される動きを分析
周波数空間Spectral Volumeが単一画像から
モーションを予測するのに適している
空間的な位置と
時間的な変化を持つ
[1] Myers Abraham Davis. Visual vibration analysis. PhD thesis, Massachusetts Institute of Technology, 2016.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
手法の概要 7
単一の画像 𝐼0 から周期的な動きを特徴とするビデオ
𝐼1, 𝐼2, . . , 𝐼𝑇 を生成することが目標
1. LDMでSpectral Volumeを予測
2. Spectral Volumeを逆離散フーリエ変換でモーションに変換
Latent Diffusion Model (LDM)
潜在拡散モデル
Spectral
Volume 𝑆
Motion Texture
𝐹 = (𝐹1,𝐹2, … , 𝐹𝑇)
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
モーション表現 8
2D変位ベクトル𝐹𝑡 𝑝
将来の時刻𝑡におけるピクセル𝑝の位置
時刻𝑡の予測画像𝐼′𝑡
𝐼′𝑡 𝑝 + 𝐹𝑡(𝑝) = 𝐼0(𝑝)
自然的な動きは、異なる周波数、振幅、位相で表現
可能
𝐹はビデオの長さに応じて拡大する必要あり
ビデオの長期的な時間的一貫性は保証しない
実際のビデオから抽出した
平均パワースペクトル
Spectral Volumeを採用
=ビデオから抽出した各ピクセ
ルの軌跡の時間フーリエ変換
𝒮 𝑝 = 𝐹𝐹𝑇(ℱ 𝑝 )
ℱ 𝑝 = 𝐹𝑦 𝑝 𝑡 = 1,2, … , 𝑇
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
周波数適応正規化 9
𝑆の係数を画像サイズで[0,1]にスケーリングすると
高周波数の係数が0に近づく
先行研究の手法
今回は周波数適応正規化を提案
各個別の周波数に対してスケーリング係数を設定
スケーリングされたフーリエ係数に累乗変換を適用
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
モーション予測のバックボーン 10
潜在拡散モデル (LDM) を採用
変分オートエンコーダー (VAE)
入力画像を潜在空間に圧縮するencoder 𝑧 = 𝐸(𝐼)
潜在特徴から入力を再構成するdecoder 𝐼 = 𝐷(𝑧)
U-Netベースの拡散モデル
ガウスノイズから始めて、特徴を除去することを学習
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
画像のレンダリング 11
予測されたSpectral volume 𝒮を用いて時刻𝑡における
画像𝐼𝑡 をレンダリング
時間領域の2D変位ベクトルを導出
ℱ 𝑝 = 𝐹𝐹𝑇−1
(𝒮 𝑝 )
深層画像ベースのレンダリングを採用
複数のピクセルが同じ出力位置にマッピングさせる可能姓が
あるため
フレーム補間に関するfeature pyramid softmax splatting
strategy[1]
[1] Simon Niklaus and Feng Liu. Softmax splatting for videoframe interpolation. InProceedings of the IEEE/CVF Con-ference on
Computer Vision and Pattern Recognition, pages5437–5446, 2020.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
実験 - データセット 12
オンラインソースや実際に撮影した映像から
周期的な動きを示す自然映像3,015本を収集
テスト用に10%を使用し、残りを学習用に使用
公開はしていない
10フレームごとを入力画像として抽出し、
その後の149フレームの動きの軌跡をspectral volume
のGTとして利用
生成された動画例
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
実験 - 評価 13
画像合成
Frechet Inception Distance (FID) [1]
Inception-v3で取得した実際の画像と生成した画像の埋め込み
表現の分布を比較
Kernel Inception Distance (KID) [2]
サンプル数に依存しないFIDの拡張評価手法
動画合成
Frechet Video Distance (FVD)
FIDを動画に拡張した指標
[1] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-hard Nessler, and Sepp Hochreiter. Gans trained by a twotime-scale update rule
converge to a local nash equilib-rium.Advances in neural information processing systems,30, 2017
[2] Mikołaj Bi ́
nkowski, Danica J Sutherland, Michael Arbel,and Arthur Gretton. Demystifying MMD GANs.arXivpreprint arXiv:1801.01401, 2018.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
実験結果 - 定量評価 14
画像合成とビデオ合成の指標において
先行研究よりも高精度
現実的なシーンと似た動画の生成が可能
DTFVD: 自然モーションで構成さ
せるDynamic Textures Databaseで
訓練されたモデルを使用
※通常は
18ウィン
ドウ
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
実験結果 – 定量評価 15
ビデオの品質と時間的一貫性の評価
異なるスライディングウィンドウでの評価
生成されたビデオは時間経過による
品質劣化の影響を受けない
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
実験結果 - 定性評価 16
生成された動画の動きのパターンが類似
時間経過でも動画の滑らかさや振動性に変化
を維持
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
アブレーションスタディ 17
適切な周波数帯数 𝐾 の推定
16以上の周波数帯域では少しの改善のみ
モジュールの追加により正答率が上昇
適応的周波数の正規化
非ノイジングモジュール
単純なDMに置き換える
softmax splatting
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
モデルで生成できない動画 18
非振動運動や高周波振動をモデル化できない
Spectral volumeの低周波数のみを予想
変位の大きい物体があるシーンでは
品質が低下する可能性がある
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
まとめ 19
画像の動きに関する画像空間の事前分布 (image-
spaceprior) をモデル化する手法の提案
事前分布は、自然の周期的な物体の動きを学習
1枚の画像から拡散モデルを使用したSpectral volume
を予測
Spectral volumeから動画全体の動きに変換可能
Ad

More Related Content

What's hot (20)

【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
Deep Learning JP
 
Direct feedback alignment provides learning in Deep Neural Networks
Direct feedback alignment provides learning in Deep Neural NetworksDirect feedback alignment provides learning in Deep Neural Networks
Direct feedback alignment provides learning in Deep Neural Networks
Deep Learning JP
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
Masahiro Suzuki
 
テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明
tmtm otm
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
Yusuke Uchida
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
Deep Learning JP
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留する
Takahiro Kubo
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly
Deep Learning JP
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida
 
【DL輪読会】Flow Matching for Generative Modeling
【DL輪読会】Flow Matching for Generative Modeling【DL輪読会】Flow Matching for Generative Modeling
【DL輪読会】Flow Matching for Generative Modeling
Deep Learning JP
 
【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
Deep Learning JP
 
Direct feedback alignment provides learning in Deep Neural Networks
Direct feedback alignment provides learning in Deep Neural NetworksDirect feedback alignment provides learning in Deep Neural Networks
Direct feedback alignment provides learning in Deep Neural Networks
Deep Learning JP
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
Masahiro Suzuki
 
テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明
tmtm otm
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
Yusuke Uchida
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
Deep Learning JP
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留する
Takahiro Kubo
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly
Deep Learning JP
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida
 
【DL輪読会】Flow Matching for Generative Modeling
【DL輪読会】Flow Matching for Generative Modeling【DL輪読会】Flow Matching for Generative Modeling
【DL輪読会】Flow Matching for Generative Modeling
Deep Learning JP
 

Similar to 【DLゼミ】Generative Image Dynamics, CVPR2024 (20)

DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
harmonylab
 
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
harmonylab
 
Self-supervised Learning of Adversarial Example: Towards Good Generalizations...
Self-supervised Learning of Adversarial Example:Towards Good Generalizations...Self-supervised Learning of Adversarial Example:Towards Good Generalizations...
Self-supervised Learning of Adversarial Example: Towards Good Generalizations...
harmonylab
 
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic ArithmeticZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
harmonylab
 
ReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language ModelsReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language Models
harmonylab
 
A Generalist Agent
A Generalist AgentA Generalist Agent
A Generalist Agent
harmonylab
 
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
harmonylab
 
DLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
DLゼミ: MobileOne: An Improved One millisecond Mobile BackboneDLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
DLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
harmonylab
 
You Only Learn One Representation: Unified Network for Multiple Tasks
You Only Learn One Representation: Unified Network for Multiple TasksYou Only Learn One Representation: Unified Network for Multiple Tasks
You Only Learn One Representation: Unified Network for Multiple Tasks
harmonylab
 
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
harmonylab
 
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly DetectionTowards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
harmonylab
 
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for VisionMLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
harmonylab
 
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
harmonylab
 
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
harmonylab
 
深層学習を用いたバス乗客画像の属性推定 に関する研究
深層学習を用いたバス乗客画像の属性推定 に関する研究深層学習を用いたバス乗客画像の属性推定 に関する研究
深層学習を用いたバス乗客画像の属性推定 に関する研究
harmonylab
 
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
harmonylab
 
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
harmonylab
 
2021 09 29_dl_hirata
2021 09 29_dl_hirata2021 09 29_dl_hirata
2021 09 29_dl_hirata
harmonylab
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
harmonylab
 
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose EstimationDLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
harmonylab
 
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
harmonylab
 
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
DLゼミ:Primitive Generation and Semantic-related Alignment for Universal Zero-S...
harmonylab
 
Self-supervised Learning of Adversarial Example: Towards Good Generalizations...
Self-supervised Learning of Adversarial Example:Towards Good Generalizations...Self-supervised Learning of Adversarial Example:Towards Good Generalizations...
Self-supervised Learning of Adversarial Example: Towards Good Generalizations...
harmonylab
 
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic ArithmeticZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
harmonylab
 
ReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language ModelsReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language Models
harmonylab
 
A Generalist Agent
A Generalist AgentA Generalist Agent
A Generalist Agent
harmonylab
 
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
harmonylab
 
DLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
DLゼミ: MobileOne: An Improved One millisecond Mobile BackboneDLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
DLゼミ: MobileOne: An Improved One millisecond Mobile Backbone
harmonylab
 
You Only Learn One Representation: Unified Network for Multiple Tasks
You Only Learn One Representation: Unified Network for Multiple TasksYou Only Learn One Representation: Unified Network for Multiple Tasks
You Only Learn One Representation: Unified Network for Multiple Tasks
harmonylab
 
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
harmonylab
 
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly DetectionTowards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
harmonylab
 
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for VisionMLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
harmonylab
 
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
harmonylab
 
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
harmonylab
 
深層学習を用いたバス乗客画像の属性推定 に関する研究
深層学習を用いたバス乗客画像の属性推定 に関する研究深層学習を用いたバス乗客画像の属性推定 に関する研究
深層学習を用いたバス乗客画像の属性推定 に関する研究
harmonylab
 
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
ロードヒーティング制御における深層学習を用いた路面画像認識に関する研究
harmonylab
 
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
harmonylab
 
2021 09 29_dl_hirata
2021 09 29_dl_hirata2021 09 29_dl_hirata
2021 09 29_dl_hirata
harmonylab
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
harmonylab
 
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose EstimationDLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
harmonylab
 
Ad

More from harmonylab (20)

【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
harmonylab
 
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
 
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
harmonylab
 
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
harmonylab
 
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
harmonylab
 
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
harmonylab
 
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
harmonylab
 
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究 【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
harmonylab
 
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
harmonylab
 
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Tr...
From Pretraining Data to Language Models to Downstream Tasks:Tracking the Tr...From Pretraining Data to Language Models to Downstream Tasks:Tracking the Tr...
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Tr...
harmonylab
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
harmonylab
 
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
harmonylab
 
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
harmonylab
 
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
harmonylab
 
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
harmonylab
 
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat ModelsDLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
harmonylab
 
Voyager: An Open-Ended Embodied Agent with Large Language Models
Voyager: An Open-Ended Embodied Agent with Large Language ModelsVoyager: An Open-Ended Embodied Agent with Large Language Models
Voyager: An Open-Ended Embodied Agent with Large Language Models
harmonylab
 
形態素解析を用いた帝国議会議事速記録の変遷に関する研究
形態素解析を用いた帝国議会議事速記録の変遷に関する研究形態素解析を用いた帝国議会議事速記録の変遷に関する研究
形態素解析を用いた帝国議会議事速記録の変遷に関する研究
harmonylab
 
灯油タンク内の液面高計測を用いた 灯油残量推定システムに関する研究
灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究
灯油タンク内の液面高計測を用いた 灯油残量推定システムに関する研究
harmonylab
 
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
harmonylab
 
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
【卒業論文】深層学習によるログ異常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
 
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
【卒業論文】LLMを用いたエージェントの相互作用による俳句の生成と評価に関する研究
harmonylab
 
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
【修士論文】帝国議会および国会議事速記録における可能表現の長期的変遷に関する研究
harmonylab
 
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
【修士論文】競輪における注目レース選定とLLMを用いたレース紹介記事生成に関する研究
harmonylab
 
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
【卒業論文】ステレオカメラによる車両制御における深層学習の適用に関する研究(A Study on Application of Deep Learning...
harmonylab
 
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
A Study on the Method for Generating Deformed Route Maps for Supporting Detou...
harmonylab
 
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究 【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
【修士論文】LLMを用いた俳句推敲と批評文生成に関する研究
harmonylab
 
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
【修士論文】視覚言語モデルを用いた衣服画像ペアの比較文章生成に関する研究(A Study on the Generation of Comparative...
harmonylab
 
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Tr...
From Pretraining Data to Language Models to Downstream Tasks:Tracking the Tr...From Pretraining Data to Language Models to Downstream Tasks:Tracking the Tr...
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Tr...
harmonylab
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
【修士論文】代替出勤者の選定業務における依頼順決定方法に関する研究   千坂知也
harmonylab
 
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
【修士論文】経路探索のための媒介中心性に基づく道路ネットワーク階層化手法に関する研究
harmonylab
 
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...
harmonylab
 
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
【卒業論文】印象タグを用いた衣服画像生成システムに関する研究
harmonylab
 
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
【卒業論文】大規模言語モデルを用いたマニュアル文章修正手法に関する研究
harmonylab
 
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat ModelsDLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
DLゼミ: Llama 2: Open Foundation and Fine-Tuned Chat Models
harmonylab
 
Voyager: An Open-Ended Embodied Agent with Large Language Models
Voyager: An Open-Ended Embodied Agent with Large Language ModelsVoyager: An Open-Ended Embodied Agent with Large Language Models
Voyager: An Open-Ended Embodied Agent with Large Language Models
harmonylab
 
形態素解析を用いた帝国議会議事速記録の変遷に関する研究
形態素解析を用いた帝国議会議事速記録の変遷に関する研究形態素解析を用いた帝国議会議事速記録の変遷に関する研究
形態素解析を用いた帝国議会議事速記録の変遷に関する研究
harmonylab
 
灯油タンク内の液面高計測を用いた 灯油残量推定システムに関する研究
灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究
灯油タンク内の液面高計測を用いた 灯油残量推定システムに関する研究
harmonylab
 
Ad

【DLゼミ】Generative Image Dynamics, CVPR2024

  • 1. DLゼミ (論文紹介) Generative Image Dynamics 北海道大学大学院 情報科学研究院 情報理工学部門 複合情報工学分野 調和系工学研究室 博士後期課程3年 森 雄斗 2024/07/29
  • 2. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 論文情報 2 タイトル Generative Image Dynamics 著者 Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski Google Research 掲載 CVPR2024 (CVPR2024 Best paper) URL プロジェクトページ https://generative-dynamics.github.io/ 論文本体 https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Generative _Image_Dynamics_CVPR_2024_paper.pdf デモページ https://generative-dynamics.github.io/#demo
  • 3. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 概要 3 画像の動きに関する画像空間の事前分布 (image- spaceprior) をモデル化する手法の提案 事前分布は、自然の周期的な物体の動きを学習 1枚の画像から拡散モデルを使用したSpectral volume を予測 Spectral volumeから動画全体の動きに変換可能
  • 4. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 人間が持つ予測能力 4 自然界は常に動いている 動きの再現は映像コンテンツの合成に重要 人間は静止画像を見て尤もらしい動き (の分布) を 想像できる 物体固有の物理特性や物理現象など複雑な動きをしている 人が見る静止画像 想像した動き 予想1 予想2
  • 5. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 最近の生成モデルの発展と活用 5 拡散モデルの進歩[1]により、テキストを条件とした 実映像の分布などがモデル化可能に 本研究では、画像空間の動きのモデル化に取り組む 画像内の全画素の動きに対する事前分布を学習 学習対象の動画からSpectral volumeを計算 [1] で生成された画像の例 [1] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.Align your latents: High-resolution video synthesis withlatent diffusion models. InProceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition,pages 22563–22575, 2023.
  • 6. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Spectral volume 6 Davisの研究[1] を参考 シーンのビデオで観察される動きを分析 周波数空間Spectral Volumeが単一画像から モーションを予測するのに適している 空間的な位置と 時間的な変化を持つ [1] Myers Abraham Davis. Visual vibration analysis. PhD thesis, Massachusetts Institute of Technology, 2016.
  • 7. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 手法の概要 7 単一の画像 𝐼0 から周期的な動きを特徴とするビデオ 𝐼1, 𝐼2, . . , 𝐼𝑇 を生成することが目標 1. LDMでSpectral Volumeを予測 2. Spectral Volumeを逆離散フーリエ変換でモーションに変換 Latent Diffusion Model (LDM) 潜在拡散モデル Spectral Volume 𝑆 Motion Texture 𝐹 = (𝐹1,𝐹2, … , 𝐹𝑇)
  • 8. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. モーション表現 8 2D変位ベクトル𝐹𝑡 𝑝 将来の時刻𝑡におけるピクセル𝑝の位置 時刻𝑡の予測画像𝐼′𝑡 𝐼′𝑡 𝑝 + 𝐹𝑡(𝑝) = 𝐼0(𝑝) 自然的な動きは、異なる周波数、振幅、位相で表現 可能 𝐹はビデオの長さに応じて拡大する必要あり ビデオの長期的な時間的一貫性は保証しない 実際のビデオから抽出した 平均パワースペクトル Spectral Volumeを採用 =ビデオから抽出した各ピクセ ルの軌跡の時間フーリエ変換 𝒮 𝑝 = 𝐹𝐹𝑇(ℱ 𝑝 ) ℱ 𝑝 = 𝐹𝑦 𝑝 𝑡 = 1,2, … , 𝑇
  • 9. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 周波数適応正規化 9 𝑆の係数を画像サイズで[0,1]にスケーリングすると 高周波数の係数が0に近づく 先行研究の手法 今回は周波数適応正規化を提案 各個別の周波数に対してスケーリング係数を設定 スケーリングされたフーリエ係数に累乗変換を適用
  • 10. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. モーション予測のバックボーン 10 潜在拡散モデル (LDM) を採用 変分オートエンコーダー (VAE) 入力画像を潜在空間に圧縮するencoder 𝑧 = 𝐸(𝐼) 潜在特徴から入力を再構成するdecoder 𝐼 = 𝐷(𝑧) U-Netベースの拡散モデル ガウスノイズから始めて、特徴を除去することを学習
  • 11. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 画像のレンダリング 11 予測されたSpectral volume 𝒮を用いて時刻𝑡における 画像𝐼𝑡 をレンダリング 時間領域の2D変位ベクトルを導出 ℱ 𝑝 = 𝐹𝐹𝑇−1 (𝒮 𝑝 ) 深層画像ベースのレンダリングを採用 複数のピクセルが同じ出力位置にマッピングさせる可能姓が あるため フレーム補間に関するfeature pyramid softmax splatting strategy[1] [1] Simon Niklaus and Feng Liu. Softmax splatting for videoframe interpolation. InProceedings of the IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, pages5437–5446, 2020.
  • 12. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 実験 - データセット 12 オンラインソースや実際に撮影した映像から 周期的な動きを示す自然映像3,015本を収集 テスト用に10%を使用し、残りを学習用に使用 公開はしていない 10フレームごとを入力画像として抽出し、 その後の149フレームの動きの軌跡をspectral volume のGTとして利用 生成された動画例
  • 13. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 実験 - 評価 13 画像合成 Frechet Inception Distance (FID) [1] Inception-v3で取得した実際の画像と生成した画像の埋め込み 表現の分布を比較 Kernel Inception Distance (KID) [2] サンプル数に依存しないFIDの拡張評価手法 動画合成 Frechet Video Distance (FVD) FIDを動画に拡張した指標 [1] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-hard Nessler, and Sepp Hochreiter. Gans trained by a twotime-scale update rule converge to a local nash equilib-rium.Advances in neural information processing systems,30, 2017 [2] Mikołaj Bi ́ nkowski, Danica J Sutherland, Michael Arbel,and Arthur Gretton. Demystifying MMD GANs.arXivpreprint arXiv:1801.01401, 2018.
  • 14. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 実験結果 - 定量評価 14 画像合成とビデオ合成の指標において 先行研究よりも高精度 現実的なシーンと似た動画の生成が可能 DTFVD: 自然モーションで構成さ せるDynamic Textures Databaseで 訓練されたモデルを使用 ※通常は 18ウィン ドウ
  • 15. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 実験結果 – 定量評価 15 ビデオの品質と時間的一貫性の評価 異なるスライディングウィンドウでの評価 生成されたビデオは時間経過による 品質劣化の影響を受けない
  • 16. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 実験結果 - 定性評価 16 生成された動画の動きのパターンが類似 時間経過でも動画の滑らかさや振動性に変化 を維持
  • 17. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. アブレーションスタディ 17 適切な周波数帯数 𝐾 の推定 16以上の周波数帯域では少しの改善のみ モジュールの追加により正答率が上昇 適応的周波数の正規化 非ノイジングモジュール 単純なDMに置き換える softmax splatting
  • 18. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. モデルで生成できない動画 18 非振動運動や高周波振動をモデル化できない Spectral volumeの低周波数のみを予想 変位の大きい物体があるシーンでは 品質が低下する可能性がある
  • 19. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. まとめ 19 画像の動きに関する画像空間の事前分布 (image- spaceprior) をモデル化する手法の提案 事前分布は、自然の周期的な物体の動きを学習 1枚の画像から拡散モデルを使用したSpectral volume を予測 Spectral volumeから動画全体の動きに変換可能

Editor's Notes

  • #7: Davisの研究は博士論文 (Visual Vibration Analysis)
  • #18: DM = diffusion model