SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
A Probabilistic U-Net for Segmentation of Ambiguous Images
Tomoki Tanimura, Keio University
http://deeplearning.jp/
1
RNS
§ .0
§ P 0 8: : ,
§ 81 1 2 1 2
§ , I MCDAG MC K
§
§
§
§
§
§
§
§
§
§
§
§
§ §
§
§
§
§
§
§
§
N , ,- ,
§
§ C : F
§ , IS R , R
§ M ,- , ,
§
§
§
§
§
§
G
§
§
§
§ R
§
§ T R - C
C
§
§ - 1 G I
=
§
-
=
§
§ G ( )
Graders
§
§
§
§
§
§
+ -
§
+
§
U-Net -
-
§
+
Segmentation
§
-+ -
§
-
+
§
C
- + - + -
AE
C
§ + ( )
)
§ E 3
§ 1 -
§ Segmentation Variant6
§ U-Net z6 6 A
-
[DL輪読会]A Probabilistic U-Net for Segmentation of Ambiguous Images
-
①Prior Net
Posterior
-
②segmentation map
- :
LossLoss
§ Posterior (Prior )
ν
ω
X
θ
ψ
z
S Y
§
§
§
§
§
§
§
§ C [ C R B
§
§ ( - .
§
§ ) ) )
§ D 4 E G I
§
§ LD T
2 2 - - - - - - -
-
§
§
§ -
§ -
§
] 2 2
§ 2 . 2 . epS v
§ s V tI E A
§ E xn gl
§ d h fa [ .2 I o ci
P Irm
U
§ (2 2 21 2 = : 2 21
§ Y a T
§ : (, : 21 21 dP (,
§ 1 = ) = E GI
§ S d S d cD
T
§ (2 2 21 2 = : 2 21
§ c Y
§ : (, a : 21 a 21 P (,
§ 1 = ) = E S G
§ Ud Ud eD
GT Pred
S
2I Pred
S
2I GT
S
GT Pred 2 Pred 2 GT
GT Pred 2 Pred 2 GT
§ GT Pred
§
GT2Pred 2 Pred 2 GT
§ 2 ) G
§ G
§ 2 ) ()
G 1
§
§ = 2 4
§ G =
§
§ G
§
§ d 1/: 2/ /
§ e 1/: af G/:: / 7 : 4
§ /7:7:5 ./972/ 7 :
§ -
§ b
§
§ 3 2
§ V V c gGT ,
§ 72 /98C 72 /98 C 7 6 / / 797 4
§ :C : C 7 6 / / 797 4
§ 1/ C 1/ C 7 6
§ 5 / 7 :C 5 / 7 : C 7 6
§ /2C /2 C 7 6 / 797
g
§
§
§ n D
§
§ d 4 D T
§ m 3 e D i
§ S D 3
§ a 3 2 3
§ o 3 G
(
§ )
a
§ , ,6 14 8 - bS
§ PD N a U
§
§ e ) - (
§ N 4 , 1 4 d
e a -
§ ) cbI P :I
§ N ) T
§ ( - T
§ ( 1 U ) I ( C
§ )C( T d ( 1
U G
U D
§ - -
§ EN
§
§ -
§ N U
EN
U
I- E H
§
§ M I-
A
§
§ I- 2
V A
N
§
§ N -
§
§ G -
() ( 2 C
§ () (
3 (
§
N S o
iT r
Prior m P n fix
V Posterior GT
Prior U-Net
§ iT r Gt
§ - e n V
§ -
Ug
§ -
a
N G
§ A - - -
A
§ UT - - - A
V E e S a
§
§
§
§
§
§
§ N Gi - - + S P pm
§ s n E N g N - C
- U r
§ t + n - - + U S TV + -
o e ec
§ r ya e TV AC
Ad

More Related Content

What's hot (20)

【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
Deep Learning JP
 
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
Deep Learning JP
 
物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)
HironoriKanazawa
 
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
KCS Keio Computer Society
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
Deep Learning JP
 
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
Deep Learning JP
 
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
Deep Learning JP
 
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
Deep Learning JP
 
R Markdownによるドキュメント生成と バージョン管理入門
R Markdownによるドキュメント生成と バージョン管理入門R Markdownによるドキュメント生成と バージョン管理入門
R Markdownによるドキュメント生成と バージョン管理入門
nocchi_airport
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
Action Recognitionの歴史と最新動向
Action Recognitionの歴史と最新動向Action Recognitionの歴史と最新動向
Action Recognitionの歴史と最新動向
Ohnishi Katsunori
 
StyleGAN解説 CVPR2019読み会@DeNA
StyleGAN解説 CVPR2019読み会@DeNAStyleGAN解説 CVPR2019読み会@DeNA
StyleGAN解説 CVPR2019読み会@DeNA
Kento Doi
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17
Takuya Akiba
 
BERT入門
BERT入門BERT入門
BERT入門
Ken'ichi Matsui
 
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
Deep Learning JP
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
Seiya Tokui
 
第 1 回 Jetson ユーザー勉強会
第 1 回 Jetson ユーザー勉強会第 1 回 Jetson ユーザー勉強会
第 1 回 Jetson ユーザー勉強会
NVIDIA Japan
 
【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者
cvpaper. challenge
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
Deep Learning JP
 
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
[DL Hacks]Simple Online Realtime Tracking with a Deep Association Metric
Deep Learning JP
 
物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)物体検出の歴史(R-CNNからSSD・YOLOまで)
物体検出の歴史(R-CNNからSSD・YOLOまで)
HironoriKanazawa
 
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
Outrageously Large Neural Networks:The Sparsely-Gated Mixture-of-Experts Laye...
KCS Keio Computer Society
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
Deep Learning JP
 
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
[DLHacks 実装] DeepPose: Human Pose Estimation via Deep Neural Networks
Deep Learning JP
 
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
Deep Learning JP
 
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
Deep Learning JP
 
R Markdownによるドキュメント生成と バージョン管理入門
R Markdownによるドキュメント生成と バージョン管理入門R Markdownによるドキュメント生成と バージョン管理入門
R Markdownによるドキュメント生成と バージョン管理入門
nocchi_airport
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
Action Recognitionの歴史と最新動向
Action Recognitionの歴史と最新動向Action Recognitionの歴史と最新動向
Action Recognitionの歴史と最新動向
Ohnishi Katsunori
 
StyleGAN解説 CVPR2019読み会@DeNA
StyleGAN解説 CVPR2019読み会@DeNAStyleGAN解説 CVPR2019読み会@DeNA
StyleGAN解説 CVPR2019読み会@DeNA
Kento Doi
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17
Takuya Akiba
 
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
Deep Learning JP
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
Seiya Tokui
 
第 1 回 Jetson ユーザー勉強会
第 1 回 Jetson ユーザー勉強会第 1 回 Jetson ユーザー勉強会
第 1 回 Jetson ユーザー勉強会
NVIDIA Japan
 
【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者
cvpaper. challenge
 

Similar to [DL輪読会]A Probabilistic U-Net for Segmentation of Ambiguous Images (20)

Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Ken'ichi Matsui
 
DevOps導入支援サービス
DevOps導入支援サービスDevOps導入支援サービス
DevOps導入支援サービス
Arata Fujimura
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
 
DevOps導入支援サービス(Ver.2)
DevOps導入支援サービス(Ver.2)DevOps導入支援サービス(Ver.2)
DevOps導入支援サービス(Ver.2)
Arata Fujimura
 
Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門
Takeshi Mikami
 
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Jinwoong Kim
 
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
Hirofumi Hayashi
 
Distributed Denial of Service Attack Prevention at Source Machines
Distributed Denial of Service Attack Prevention at Source MachinesDistributed Denial of Service Attack Prevention at Source Machines
Distributed Denial of Service Attack Prevention at Source Machines
Shinagawa Laboratory, The University of Tokyo
 
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
Deep Learning JP
 
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factoryリアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
 
第二次政策提言 抜粋版 2019.3.22
第二次政策提言 抜粋版 2019.3.22第二次政策提言 抜粋版 2019.3.22
第二次政策提言 抜粋版 2019.3.22
立憲パートナーズ社会構想研究会(非公式)
 
Kubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべてKubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべて
LINE Corporation
 
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
IBM Analytics Japan
 
[DL Hacks 実装]Attention is All You Need
[DL Hacks 実装]Attention is All You Need[DL Hacks 実装]Attention is All You Need
[DL Hacks 実装]Attention is All You Need
Deep Learning JP
 
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Takeshi Mikami
 
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
Ken Sawada
 
Towards formal verification of neural networks
Towards formal verification of neural networksTowards formal verification of neural networks
Towards formal verification of neural networks
Masahiro Sakai
 
Edge trends mizuno
Edge trends mizunoEdge trends mizuno
Edge trends mizuno
shintaro mizuno
 
вестник южно уральского-государственного_университета._серия_математика._меха...
вестник южно уральского-государственного_университета._серия_математика._меха...вестник южно уральского-государственного_университета._серия_математика._меха...
вестник южно уральского-государственного_университета._серия_математика._меха...
Иван Иванов
 
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
cvpaper. challenge
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Ken'ichi Matsui
 
DevOps導入支援サービス
DevOps導入支援サービスDevOps導入支援サービス
DevOps導入支援サービス
Arata Fujimura
 
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
 
DevOps導入支援サービス(Ver.2)
DevOps導入支援サービス(Ver.2)DevOps導入支援サービス(Ver.2)
DevOps導入支援サービス(Ver.2)
Arata Fujimura
 
Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門
Takeshi Mikami
 
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Continuous Delivery with Spinnaker on K8s(kubernetes) Cluster
Jinwoong Kim
 
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
Hirofumi Hayashi
 
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
Deep Learning JP
 
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factoryリアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
 
Kubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべてKubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべて
LINE Corporation
 
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
IBM Analytics Japan
 
[DL Hacks 実装]Attention is All You Need
[DL Hacks 実装]Attention is All You Need[DL Hacks 実装]Attention is All You Need
[DL Hacks 実装]Attention is All You Need
Deep Learning JP
 
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Takeshi Mikami
 
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
Ken Sawada
 
Towards formal verification of neural networks
Towards formal verification of neural networksTowards formal verification of neural networks
Towards formal verification of neural networks
Masahiro Sakai
 
вестник южно уральского-государственного_университета._серия_математика._меха...
вестник южно уральского-государственного_университета._серия_математика._меха...вестник южно уральского-государственного_университета._серия_математика._меха...
вестник южно уральского-государственного_университета._серия_математика._меха...
Иван Иванов
 
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
cvpaper. challenge
 
Ad

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
Ad

Recently uploaded (20)

TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 

[DL輪読会]A Probabilistic U-Net for Segmentation of Ambiguous Images