SlideShare a Scribd company logo
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"
& "Learning Semantic Representations for Unsupervised
Domain Adaptation" (ICML2018 )
Presentater: Kei Akuzawa, Matsuo Lab. M2
•
•
•
• ICML2018
• [Hoffman+] CyCADA: Cycle-Consistent Adversarial Domain Adaptation
• [Xie+] Learning Semantic Representations for Unsupervised Domain Adaptation
• : Source Target
Source
Target
• :
• Source: (X_s, Y_s)
• Target:
• Unsupervised Domain Adaptation: (X_t) <-
• Supervised Domain Adaptation: (X_t, Y_t)
Source Target
Ganin+ 2016
• :
•
•
•
• Bengio ……(Talk at the ICML'2018 Workshop on Learning with Limited Labels, July 13th, 2018.)
• Current ML theory is strongly dependent on the iid assumption
• Real-life applications often require generalizations in regimes not seen during training
• Humans can project themselves in situations they have never been (e.g. imagine
being on another planet, or going through exceptional events like in many movies)
,
•
• Ganin+ 2016
• Tzeng+ 2017
• Saito+ 2018
•
• Taigman+ 2017
• Shrivastava+ 2017
• Hosseini-Asl+ 2018
Ganin+ 2016
Shrivastava+ 2017
:
• Source
q(y|x)
( !"[$% & ' ] ≠ !*[$* & ' ] )
• z( )
p(z|x) p(y|z)
• z ?:
• MMD,
x
z
dy
z
:
Ganin+ 2016
• :
• Discriminator (z)
• Encoder Discriminator (z)
• Min-Max (z)
!!
•
• Fair Prediction: (Domain)
• Style Transfer:
• Domain Generalization:
:
• Target y
•
•
• Unsupervised Image Translation
(X_s) (X_t^')
(X_t^', y_s)
• Learning Semantic Representations for Unsupervised Domain Adaptation
• + ( )
• CyCADA: Cycle-Consistent Adversarial Domain Adaptation
• + ( )
1.
• Title:
Learning Semantic Representations for Unsupervised Domain Adaptation
• Authors:
Shaoan Xie, Zibin Zheng, Liang Chen, Chuan Chen
• Info:
ICML2018 accepted (oral)
• Abstract:
[ , ]
Noisy
Centroid Noise
[ , ]
[ , ]
Saito+ 2018
:
•
•
H-divergence
( )
: C
!!
( C)
Semantic Alignment
• Semantic Alignment [saito+ 2017]
1.
2.
3. (w/ )
4.
• (Noisy)
•
•
• Centroid
Centroid
( )
Centroid
:
• DAN Semantic Loss
• Centroid
•
• MNIST-USPS-SVHN
• DAN
•
• [ ]
(Semantic Alignment )
• Semantic Alignment Noisy
• Noise
2.
• Title:
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
• Authors:
Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei
Efros, Trevor Darrell
• Info:
ICML2018 accepted (oral)
• Abstract:
(Pixel)
Domain Translation CycleGAN
•
• Semantic Alignment
•
• c.f. ( ) [Jo and
Bengio, 2017]
• ( )
•
•
• Cycle-GAN
•
• Cycle-GAN
•
4 Component
• Cycle-GAN
• Semantic Consistency
• Classifier
• Feature Adaptation
: Cycle-GAN
Cycle-GAN
->
: Semantic Consistency Loss
(f_s pre-train )
: Classifier
: Feature Adaptation
Domain Adversarial Network
:
• SVHN -> MNIST
Pixel
Adaptation Feature
Adaptation
• Pixel Feature
: Cycle Loss Semantic Loss
• SVHN -> MNIST
Semantic Alignment
• Semantic Segmentation( )
Cycle Loss
Cycle
: Semantic Segmentation
•
• Cycle-GAN Cycle Loss Semantic
Loss
•
•
•
• [Saito+ 2018b]:
• [Hosseini-Asl+ 2018]:
References
• Y.Ganin,E.Ustinova,H.Ajakan,P.Germain,H.Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky.
Domain- adversarial training of neural networks. JMLR, 17(59):1–35, 2016.
• Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adversarial discriminative domain adaptation. In
Computer Vision and Pattern Recognition (CVPR), 2017.
• Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada. Asymmetric Tri-training for Unsupervised Domain
Adaptation. The 34th International Conference on Machine Learning (ICML 2017), 2017.
• Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, Tatsuya Harada. Maximum Classifier Discrepancy for
Unsupervised Domain Adaptation. The 31th IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2018), 2018, (oral).
• Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by
Backpropagation, arXiv, 2018b
• Taigman, Y., Polyak, A., and Wolf, L. Unsupervised cross-domain image generation. In International
Conference on Learning Representations, 2017a.
• Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R. Learning from simulated and
unsupervised im- ages through adversarial training. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.
• Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, Richard Socher, Augmented Cyclic Adversarial Learning for
Domain Adaptation, arxiv, 2018
• Jason Jo, Yoshua Bengio, Measuring the tendency of CNNs to Learn Surface Statistical Regularities, arxiv
2017, https://arxiv.org/abs/1711.11561

More Related Content

What's hot (20)

PPTX
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
Deep Learning JP
 
PPTX
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII
 
PDF
深層生成モデルと世界モデル
Masahiro Suzuki
 
PPTX
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
PDF
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Deep Learning JP
 
PDF
グラフニューラルネットワークとグラフ組合せ問題
joisino
 
PDF
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
PDF
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
PPTX
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
Deep Learning JP
 
PPTX
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
Deep Learning JP
 
PDF
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
PDF
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII
 
PPTX
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
Deep Learning JP
 
PDF
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
PPTX
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
 
PPTX
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
PDF
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
Deep Learning JP
 
PPTX
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
PDF
実装レベルで学ぶVQVAE
ぱんいち すみもと
 
PDF
SSII2019企画: 点群深層学習の研究動向
SSII
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
Deep Learning JP
 
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII
 
深層生成モデルと世界モデル
Masahiro Suzuki
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Deep Learning JP
 
グラフニューラルネットワークとグラフ組合せ問題
joisino
 
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
Deep Learning JP
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
Deep Learning JP
 
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
Deep Learning JP
 
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
Deep Learning JP
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
実装レベルで学ぶVQVAE
ぱんいち すみもと
 
SSII2019企画: 点群深層学習の研究動向
SSII
 

Similar to [DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Semantic Representations for Unsupervised Domain Adaptation" (20)

PDF
Image Translation with GAN
Junho Cho
 
PDF
“Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018) 他
Kento Doi
 
PDF
[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the Wild
Deep Learning JP
 
PDF
Transformer based approaches for visual representation learning
Ryohei Suzuki
 
PDF
Visual Transformers
Kwanghee Choi
 
PDF
Unsupervised Cross-Domain Image Generation
Junho Cho
 
PDF
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
PDF
About Unsupervised Image-to-Image Translation
Mehdi Shibahara
 
PPTX
Recognize, Describe, and Generate: Introduction of Recent Work at MIL
Yoshitaka Ushiku
 
PDF
Generative Adversarial Networksの基礎と応用について
So Hasegawa
 
PDF
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
cvpaper. challenge
 
PDF
AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transforma...
Tomoyuki Suzuki
 
PDF
GAN Report 1 Monthly Report Generative Adversarial Part1
peterchondro
 
PDF
Domain transfer サーベイ
ぱんいち すみもと
 
PDF
Video + Language 2019
Goergen Institute for Data Science
 
PPTX
Transformer in Vision
Sangmin Woo
 
PDF
Deep learning based drug protein interaction
NAVER Engineering
 
PDF
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
PDF
更適應性的AOI-深度強化學習之應用
CHENHuiMei
 
Image Translation with GAN
Junho Cho
 
“Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018) 他
Kento Doi
 
[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the Wild
Deep Learning JP
 
Transformer based approaches for visual representation learning
Ryohei Suzuki
 
Visual Transformers
Kwanghee Choi
 
Unsupervised Cross-Domain Image Generation
Junho Cho
 
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
About Unsupervised Image-to-Image Translation
Mehdi Shibahara
 
Recognize, Describe, and Generate: Introduction of Recent Work at MIL
Yoshitaka Ushiku
 
Generative Adversarial Networksの基礎と応用について
So Hasegawa
 
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
cvpaper. challenge
 
AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transforma...
Tomoyuki Suzuki
 
GAN Report 1 Monthly Report Generative Adversarial Part1
peterchondro
 
Domain transfer サーベイ
ぱんいち すみもと
 
Video + Language 2019
Goergen Institute for Data Science
 
Transformer in Vision
Sangmin Woo
 
Deep learning based drug protein interaction
NAVER Engineering
 
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
更適應性的AOI-深度強化學習之應用
CHENHuiMei
 
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
PPTX
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
PPTX
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
PPTX
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
PPTX
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
Deep Learning JP
 
Ad

Recently uploaded (20)

PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PPTX
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
PPTX
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PDF
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
Digital Circuits, important subject in CS
contactparinay1
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 

[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Semantic Representations for Unsupervised Domain Adaptation"

  • 1. 1 DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ "CyCADA: Cycle-Consistent Adversarial Domain Adaptation" & "Learning Semantic Representations for Unsupervised Domain Adaptation" (ICML2018 ) Presentater: Kei Akuzawa, Matsuo Lab. M2
  • 2. • • • • ICML2018 • [Hoffman+] CyCADA: Cycle-Consistent Adversarial Domain Adaptation • [Xie+] Learning Semantic Representations for Unsupervised Domain Adaptation
  • 3. • : Source Target Source Target • : • Source: (X_s, Y_s) • Target: • Unsupervised Domain Adaptation: (X_t) <- • Supervised Domain Adaptation: (X_t, Y_t)
  • 5. • : • • • • Bengio ……(Talk at the ICML'2018 Workshop on Learning with Limited Labels, July 13th, 2018.) • Current ML theory is strongly dependent on the iid assumption • Real-life applications often require generalizations in regimes not seen during training • Humans can project themselves in situations they have never been (e.g. imagine being on another planet, or going through exceptional events like in many movies) ,
  • 6. • • Ganin+ 2016 • Tzeng+ 2017 • Saito+ 2018 • • Taigman+ 2017 • Shrivastava+ 2017 • Hosseini-Asl+ 2018 Ganin+ 2016 Shrivastava+ 2017
  • 7. : • Source q(y|x) ( !"[$% & ' ] ≠ !*[$* & ' ] ) • z( ) p(z|x) p(y|z) • z ?: • MMD, x z dy z
  • 8. : Ganin+ 2016 • : • Discriminator (z) • Encoder Discriminator (z) • Min-Max (z)
  • 9. !! • • Fair Prediction: (Domain) • Style Transfer: • Domain Generalization:
  • 10. : • Target y • • • Unsupervised Image Translation (X_s) (X_t^') (X_t^', y_s)
  • 11. • Learning Semantic Representations for Unsupervised Domain Adaptation • + ( ) • CyCADA: Cycle-Consistent Adversarial Domain Adaptation • + ( )
  • 12. 1. • Title: Learning Semantic Representations for Unsupervised Domain Adaptation • Authors: Shaoan Xie, Zibin Zheng, Liang Chen, Chuan Chen • Info: ICML2018 accepted (oral) • Abstract: [ , ] Noisy Centroid Noise [ , ]
  • 13. [ , ] Saito+ 2018
  • 15. : C !! ( C) Semantic Alignment
  • 16. • Semantic Alignment [saito+ 2017] 1. 2. 3. (w/ ) 4. • (Noisy) • • • Centroid
  • 18. : • DAN Semantic Loss • Centroid •
  • 20. • [ ] (Semantic Alignment ) • Semantic Alignment Noisy • Noise
  • 21. 2. • Title: CyCADA: Cycle-Consistent Adversarial Domain Adaptation • Authors: Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, Trevor Darrell • Info: ICML2018 accepted (oral) • Abstract: (Pixel) Domain Translation CycleGAN
  • 22. • • Semantic Alignment • • c.f. ( ) [Jo and Bengio, 2017] • ( ) • • • Cycle-GAN • • Cycle-GAN •
  • 23. 4 Component • Cycle-GAN • Semantic Consistency • Classifier • Feature Adaptation
  • 25. : Semantic Consistency Loss (f_s pre-train )
  • 27. : Feature Adaptation Domain Adversarial Network
  • 28. : • SVHN -> MNIST Pixel Adaptation Feature Adaptation • Pixel Feature
  • 29. : Cycle Loss Semantic Loss • SVHN -> MNIST Semantic Alignment • Semantic Segmentation( ) Cycle Loss Cycle
  • 31. • • Cycle-GAN Cycle Loss Semantic Loss
  • 32. • • • • [Saito+ 2018b]: • [Hosseini-Asl+ 2018]:
  • 33. References • Y.Ganin,E.Ustinova,H.Ajakan,P.Germain,H.Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain- adversarial training of neural networks. JMLR, 17(59):1–35, 2016. • Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adversarial discriminative domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2017. • Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada. Asymmetric Tri-training for Unsupervised Domain Adaptation. The 34th International Conference on Machine Learning (ICML 2017), 2017. • Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, Tatsuya Harada. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation. The 31th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2018), 2018, (oral). • Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by Backpropagation, arXiv, 2018b • Taigman, Y., Polyak, A., and Wolf, L. Unsupervised cross-domain image generation. In International Conference on Learning Representations, 2017a. • Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R. Learning from simulated and unsupervised im- ages through adversarial training. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. • Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, Richard Socher, Augmented Cyclic Adversarial Learning for Domain Adaptation, arxiv, 2018 • Jason Jo, Yoshua Bengio, Measuring the tendency of CNNs to Learn Surface Statistical Regularities, arxiv 2017, https://arxiv.org/abs/1711.11561