The document summarizes recent research related to "theory of mind" in multi-agent reinforcement learning. It discusses three papers that propose methods for agents to infer the intentions of other agents by applying concepts from theory of mind:
1. The papers propose that in multi-agent reinforcement learning, being able to understand the intentions of other agents could help with cooperation and increase success rates.
2. The methods aim to estimate the intentions of other agents by modeling their beliefs and private information, using ideas from theory of mind in cognitive science. This involves inferring information about other agents that is not directly observable.
3. Bayesian inference is often used to reason about the beliefs, goals and private information of other agents based
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
【DL輪読会】Mastering Diverse Domains through World ModelsDeep Learning JP
The document summarizes Mastering Diverse Domains through World Models, which introduces Dreamer V3. Dreamer V3 improves on previous Dreamer models through the use of symlog prediction networks and actor critics trained with temporal difference learning. It achieves better performance than ablation models in the Atari domain.
AAAI2023「Are Transformers Effective for Time Series Forecasting?」と、HuggingFace「Yes, Transformers are Effective for Time Series Forecasting (+ Autoformer)」の紹介です。
【DL輪読会】Mastering Diverse Domains through World ModelsDeep Learning JP
The document summarizes Mastering Diverse Domains through World Models, which introduces Dreamer V3. Dreamer V3 improves on previous Dreamer models through the use of symlog prediction networks and actor critics trained with temporal difference learning. It achieves better performance than ablation models in the Atari domain.
AAAI2023「Are Transformers Effective for Time Series Forecasting?」と、HuggingFace「Yes, Transformers are Effective for Time Series Forecasting (+ Autoformer)」の紹介です。
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...Deep Learning JP
The document proposes modifications to self-attention in Transformers to improve faithful signal propagation without shortcuts like skip connections or layer normalization. Specifically, it introduces a normalization-free network that uses dynamic isometry to ensure unitary transformations, a ReZero technique to implement skip connections without adding shortcuts, and modifications to attention and normalization techniques to address issues like rank collapse in Transformers. The methods are evaluated on tasks like CIFAR-10 classification and language modeling, demonstrating improved performance over standard Transformer architectures.
20. 6.1 Offline and supervised reinforcement learning
I. Distribution shift in offline RL.
A. Constrain the policy action space.
B. Incorporate value pessimism
C. Incorporate pessimism into learned dynamics models.
II. Learning wide behavior distibution
A. Learning a task-agnostic set of skill, eigher with likelihood-based approaches.
B. maximizing mutual information
III. Return conditioning/’supervised RL’
A. similar to DT. DT benefit from the use of long contexts for behavior modeling as long-term
credit assignment.
❏ Offline RLの分布シフト問題に取り組む研究がたくさんある!
❏ 強化学習をSupervised Learningとして扱う研究
21. 6.2 Credit assignment(貢献度の分配)
❏ 報酬を最も重要なStepで与える必要があり、その分配を求める研究
❏ 実験通じて、Transformerが良さそうことが分かった
1. Self-Attentional Credit Assignment for Transfer in Reinforcement
Learning
2. Hindsight Credit Assignment
3. Counterfactual credit assignment in model-free reinforcement
learning
22. 6.3 Conditional language generation
6.4 Attention and transformer models
❏ 条件付き言語生成、TransformerとAttentionなどの関連研究がたくさんある
24. Offline RL, Sequence modeling, goal condition by reward.
❏ アイデアが面白くて、関連研究がいっぱいでる予想
❏ 適切な報酬が知らないと困るので、解決できそうなアイデアを考えたい
Future work
- Stochastic Decision Transformer
- conditioning on return distributions to model stochastic settings instead of deterministic returns
- Model-based Decision Transformer.
- Transformer models can also be used to model the state evolution of trajectory
- For Real-world application
- Augmenting RL.
Decision Transformer
- Offline RL設定でGPT アーキテクチャを用いた。
- 適切なRewardを設定して、それを得られるActionを出力する。
- Model freeの手法(CQL)と比較し、うまくいってる。