SlideShare a Scribd company logo
LT: Introduction to ChainerCV
Shingo Kitagawa
What is ChainerCV?
• Deep learning computer vision library with Chainer.
• ChainerCV is developed by Preferred Networks.
• Feel free to make PRs and issues
• We are always welcome review and merge.
• Implementations
• Feature extraction
• Object detection
• Semantic segmentation
• Instance segmentation (New)
• and more..
• Github: https://github.com/chainer/chainercv
• Arxiv: https://arxiv.org/abs/1708.08169
Feature extraction
• ResNet
• Arch: He(original) and Facebook implementation is supported.
• ResNet50
• ResNet101
• ResNet152
• VGG
• VGG16
• https://chainercv.readthedocs.io/en/stable/reference/links/resnet.html
• https://chainercv.readthedocs.io/en/stable/reference/links/vgg.html
Object detection
• Faster-RCNN
• Faster-RCNN + VGG16
• Faster-RCNN + ResNet101
• (working)
• SSD
• SSD300 + VGG16
• SSD512 + VGG16
• YOLO
• YOLO v2 + Darknet19
• YOLO v3 + Darknet53
• Training is now working
Semantic segmentation
• SegNet
• PSPNet
• Training is now working
Instance segmentation
• FCIS
• FCIS + ResNet101
• Training is now working
• Mask-RCNN
• It will be implemented soon.
What is different from other CV library?
• Reproduce the score of original papers.
• Standardize API.
• Implement various useful functions.
• Prepared sample example code.
• Read a lot of WEB documentation.
• Easy to install and use.
• A lot of test codes for maintenance.
Reproduction of the original score
• Stable: Faster-RCNN, SSD, YOLO, SegNet
• No less than 0.5 point lower or even higher
• Use it for the comparison with your method!
• Experimental: FCIS, PSPNet (New)
• Implemented but score is around 1.0 point lower 
• But we are still working to reproduce original paper.
API standardization
• Models have the same utility functions.
• prepare() : Preprocess input
• predict() : Predict and return output
• use_preset() : Set parameters
• Naming conventions
• It is strictly fixed in the source code.
Useful functions
• Transforms
• crop, flip, resize, translate, pca_lighting, scale, sized_crop
• Random + crop, expand, flip, rotate, sized_crop
• bounding box, image, point
• Visualizations (matplotlib)
• vis_bbox, vis_image, vis_point
• vis_instance_segmentation, vis_semantic_segmentation
• Utils
• bbox_iou, mask_iou, nms, I/O
• Evaluations
• COCO, VOC and more.
Prepared example codes
• chainercv/examples
• Demo:
• python demo.py
• Training:
• python train.py
• Evaluation:
• python eval_voc.py
WEB documentation (sphinx)
• DOC: https://chainercv.readthedocs.io/en/stable/
Easy to install
• pip install chainercv
• Additional requirements
• ChainerMN, Matplotlib, OpenCV, SciPy
• Datasets and models will be installed automatically.
• Default: ~/.chainer/pfnet/chainercv
• Of course, you can install it manually by yourself.
• ROS integration
• Rosdistro: python-chainer-pip, python-chainercv-pip
Test codes
• Github + Travis CI
• chainercv/tests
Other Chainer family and useful pages
• Chainer is super awesome!
• Chainer family
• ChainerMN, ChainerRL, ChainerUI
• ONNX: ONNX-Chainer
• Chainer Research
• https://github.com/pfnet-research
• chainer-chemistry, sngan, picking-instruction
• Chainer community
• https://github.com/chainer-community/awesome-chainer
• https://github.com/chainer-community/chainer-info
• Forum / Slack / Twitter
If you still cannot love chainer ,
• PyTorch: kuangliu/torchcv
• Inspired from chainercv 
• Easy to use, read and write 
• https://github.com/kuangliu/torchcv
• Tensorflow: tensorflow/models
• A lot of model 
• Good to read and study, but not good to use.
• Caffe2: facebookresearch/Detectron
• Easy to use, read and write 
• Caffe2 is hard to install 
• Mxnet: apache/incubator-mxnet
• A lot of model, but no proof of scores.
• Spaghetti codes! 

More Related Content

What's hot (15)

PDF
OpenNebula Conf 2014 | Lightning talk: OpenNebula at Etnetera by Jan Horacek
NETWAYS
 
PDF
Ceph QoS: How to support QoS in distributed storage system - Taewoong Kim
Ceph Community
 
PDF
Faster, Higher, Stronger – Accelerating Fault Management to the Next Level
OPNFV
 
PDF
RGW Beyond Cloud: Live Video Storage with Ceph - Shengjing Zhu, Yiming Xie
Ceph Community
 
PDF
Deep Dive Into the CERN Cloud Infrastructure - November, 2013
Belmiro Moreira
 
PPTX
zStore
Yaakov Breuer
 
PDF
Nsq & python worker
Felinx Lee
 
PPTX
Upstream Testing Collaboration
OPNFV
 
PDF
OpenNebulaConf2018 - We use OpenNebula everywhere now - Florian Heigl and Tho...
OpenNebula Project
 
PDF
OpenNebula Conf 2014 | Bootstrapping a virtual infrastructure using OpenNebul...
NETWAYS
 
PPTX
NRD: Nagios Result Distributor
Jose Luis Martínez
 
PPTX
Opnfv & odl case study slides
Christopher Price
 
PDF
Netty - a pragmatic introduction
Raphael Stary
 
PDF
Doing QoS Before Ceph Cluster QoS is available - David Byte, Alex Lau
Ceph Community
 
PDF
FPGA Design with Python and MyHDL
Guy Eschemann
 
OpenNebula Conf 2014 | Lightning talk: OpenNebula at Etnetera by Jan Horacek
NETWAYS
 
Ceph QoS: How to support QoS in distributed storage system - Taewoong Kim
Ceph Community
 
Faster, Higher, Stronger – Accelerating Fault Management to the Next Level
OPNFV
 
RGW Beyond Cloud: Live Video Storage with Ceph - Shengjing Zhu, Yiming Xie
Ceph Community
 
Deep Dive Into the CERN Cloud Infrastructure - November, 2013
Belmiro Moreira
 
Nsq & python worker
Felinx Lee
 
Upstream Testing Collaboration
OPNFV
 
OpenNebulaConf2018 - We use OpenNebula everywhere now - Florian Heigl and Tho...
OpenNebula Project
 
OpenNebula Conf 2014 | Bootstrapping a virtual infrastructure using OpenNebul...
NETWAYS
 
NRD: Nagios Result Distributor
Jose Luis Martínez
 
Opnfv & odl case study slides
Christopher Price
 
Netty - a pragmatic introduction
Raphael Stary
 
Doing QoS Before Ceph Cluster QoS is available - David Byte, Alex Lau
Ceph Community
 
FPGA Design with Python and MyHDL
Guy Eschemann
 

Similar to [DLHacks]Introduction to ChainerCV (20)

PDF
[第45会コンピュータービジョン勉強会@関東] ChainerCV
Yusuke Niitani
 
PDF
Introduction to Chainer
Preferred Networks
 
PDF
Introduction to Chainer
Shunta Saito
 
PDF
Introduction to Chainer: A Flexible Framework for Deep Learning
Seiya Tokui
 
PDF
"The OpenCV Open Source Computer Vision Library: Latest Developments," a Pres...
Edge AI and Vision Alliance
 
PDF
Introduction to Chainer
Seiya Tokui
 
PDF
Chainer GTC 2016
Shohei Hido
 
PDF
Introduction to Chainer 11 may,2018
Preferred Networks
 
PDF
Overview of Chainer and Its Features
Seiya Tokui
 
PPTX
Opencv
Ethishkumar
 
PDF
IIBMP2019 講演資料「オープンソースで始める深層学習」
Preferred Networks
 
PDF
[5 minutes LT] Brief Introduction to Recent Image Recognition Methods and Cha...
Shunta Saito
 
PPTX
502021435-12345678Minor-Project-Ppt.pptx
shrey4922
 
PDF
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
Shunta Saito
 
PDF
Differentiable Computer Vision - an introduction to kornia
Edgar Riba
 
PPTX
01 foundations
ankit_ppt
 
PDF
Chainer ui v0.3 and imagereport
Preferred Networks
 
PDF
Implementation of Computer Vision Applications using OpenCV in C++
IRJET Journal
 
PPTX
PYTHON-OPEEEEEEEEEEEEEEN-CV (1) kgjkg.pptx
CharimaineMarquez2
 
PPTX
PYTHON-OOOOOOOOOOPPPPPPEEEEEEEEN-CV.pptx
CharimaineMarquez2
 
[第45会コンピュータービジョン勉強会@関東] ChainerCV
Yusuke Niitani
 
Introduction to Chainer
Preferred Networks
 
Introduction to Chainer
Shunta Saito
 
Introduction to Chainer: A Flexible Framework for Deep Learning
Seiya Tokui
 
"The OpenCV Open Source Computer Vision Library: Latest Developments," a Pres...
Edge AI and Vision Alliance
 
Introduction to Chainer
Seiya Tokui
 
Chainer GTC 2016
Shohei Hido
 
Introduction to Chainer 11 may,2018
Preferred Networks
 
Overview of Chainer and Its Features
Seiya Tokui
 
Opencv
Ethishkumar
 
IIBMP2019 講演資料「オープンソースで始める深層学習」
Preferred Networks
 
[5 minutes LT] Brief Introduction to Recent Image Recognition Methods and Cha...
Shunta Saito
 
502021435-12345678Minor-Project-Ppt.pptx
shrey4922
 
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
Shunta Saito
 
Differentiable Computer Vision - an introduction to kornia
Edgar Riba
 
01 foundations
ankit_ppt
 
Chainer ui v0.3 and imagereport
Preferred Networks
 
Implementation of Computer Vision Applications using OpenCV in C++
IRJET Journal
 
PYTHON-OPEEEEEEEEEEEEEEN-CV (1) kgjkg.pptx
CharimaineMarquez2
 
PYTHON-OOOOOOOOOOPPPPPPEEEEEEEEN-CV.pptx
CharimaineMarquez2
 

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
PPTX
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
PPTX
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
PPTX
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 

Recently uploaded (20)

PDF
“MPU+: A Transformative Solution for Next-Gen AI at the Edge,” a Presentation...
Edge AI and Vision Alliance
 
PDF
Plugging AI into everything: Model Context Protocol Simplified.pdf
Abati Adewale
 
PDF
Quantum AI Discoveries: Fractal Patterns Consciousness and Cyclical Universes
Saikat Basu
 
PPTX
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Poster...
Michele Kryston
 
PPTX
UserCon Belgium: Honey, VMware increased my bill
stijn40
 
DOCX
Daily Lesson Log MATATAG ICT TEchnology 8
LOIDAALMAZAN3
 
PDF
Hyderabad MuleSoft In-Person Meetup (June 21, 2025) Slides
Ravi Tamada
 
PPTX
01_Approach Cyber- DORA Incident Management.pptx
FinTech Belgium
 
PDF
The Growing Value and Application of FME & GenAI
Safe Software
 
PDF
Unlocking FME Flow’s Potential: Architecture Design for Modern Enterprises
Safe Software
 
PDF
From Chatbot to Destroyer of Endpoints - Can ChatGPT Automate EDR Bypasses (1...
Priyanka Aash
 
PDF
FME as an Orchestration Tool with Principles From Data Gravity
Safe Software
 
PDF
Database Benchmarking for Performance Masterclass: Session 2 - Data Modeling ...
ScyllaDB
 
PDF
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
PDF
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
PDF
Open Source Milvus Vector Database v 2.6
Zilliz
 
PDF
EIS-Webinar-Engineering-Retail-Infrastructure-06-16-2025.pdf
Earley Information Science
 
PPTX
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Pitch ...
Michele Kryston
 
PDF
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
PDF
Darley - FIRST Copenhagen Lightning Talk (2025-06-26) Epochalypse 2038 - Time...
treyka
 
“MPU+: A Transformative Solution for Next-Gen AI at the Edge,” a Presentation...
Edge AI and Vision Alliance
 
Plugging AI into everything: Model Context Protocol Simplified.pdf
Abati Adewale
 
Quantum AI Discoveries: Fractal Patterns Consciousness and Cyclical Universes
Saikat Basu
 
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Poster...
Michele Kryston
 
UserCon Belgium: Honey, VMware increased my bill
stijn40
 
Daily Lesson Log MATATAG ICT TEchnology 8
LOIDAALMAZAN3
 
Hyderabad MuleSoft In-Person Meetup (June 21, 2025) Slides
Ravi Tamada
 
01_Approach Cyber- DORA Incident Management.pptx
FinTech Belgium
 
The Growing Value and Application of FME & GenAI
Safe Software
 
Unlocking FME Flow’s Potential: Architecture Design for Modern Enterprises
Safe Software
 
From Chatbot to Destroyer of Endpoints - Can ChatGPT Automate EDR Bypasses (1...
Priyanka Aash
 
FME as an Orchestration Tool with Principles From Data Gravity
Safe Software
 
Database Benchmarking for Performance Masterclass: Session 2 - Data Modeling ...
ScyllaDB
 
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
Open Source Milvus Vector Database v 2.6
Zilliz
 
EIS-Webinar-Engineering-Retail-Infrastructure-06-16-2025.pdf
Earley Information Science
 
MARTSIA: A Tool for Confidential Data Exchange via Public Blockchain - Pitch ...
Michele Kryston
 
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
Darley - FIRST Copenhagen Lightning Talk (2025-06-26) Epochalypse 2038 - Time...
treyka
 

[DLHacks]Introduction to ChainerCV

  • 1. LT: Introduction to ChainerCV Shingo Kitagawa
  • 2. What is ChainerCV? • Deep learning computer vision library with Chainer. • ChainerCV is developed by Preferred Networks. • Feel free to make PRs and issues • We are always welcome review and merge. • Implementations • Feature extraction • Object detection • Semantic segmentation • Instance segmentation (New) • and more.. • Github: https://github.com/chainer/chainercv • Arxiv: https://arxiv.org/abs/1708.08169
  • 3. Feature extraction • ResNet • Arch: He(original) and Facebook implementation is supported. • ResNet50 • ResNet101 • ResNet152 • VGG • VGG16 • https://chainercv.readthedocs.io/en/stable/reference/links/resnet.html • https://chainercv.readthedocs.io/en/stable/reference/links/vgg.html
  • 4. Object detection • Faster-RCNN • Faster-RCNN + VGG16 • Faster-RCNN + ResNet101 • (working) • SSD • SSD300 + VGG16 • SSD512 + VGG16 • YOLO • YOLO v2 + Darknet19 • YOLO v3 + Darknet53 • Training is now working
  • 5. Semantic segmentation • SegNet • PSPNet • Training is now working Instance segmentation • FCIS • FCIS + ResNet101 • Training is now working • Mask-RCNN • It will be implemented soon.
  • 6. What is different from other CV library? • Reproduce the score of original papers. • Standardize API. • Implement various useful functions. • Prepared sample example code. • Read a lot of WEB documentation. • Easy to install and use. • A lot of test codes for maintenance.
  • 7. Reproduction of the original score • Stable: Faster-RCNN, SSD, YOLO, SegNet • No less than 0.5 point lower or even higher • Use it for the comparison with your method! • Experimental: FCIS, PSPNet (New) • Implemented but score is around 1.0 point lower  • But we are still working to reproduce original paper.
  • 8. API standardization • Models have the same utility functions. • prepare() : Preprocess input • predict() : Predict and return output • use_preset() : Set parameters • Naming conventions • It is strictly fixed in the source code.
  • 9. Useful functions • Transforms • crop, flip, resize, translate, pca_lighting, scale, sized_crop • Random + crop, expand, flip, rotate, sized_crop • bounding box, image, point • Visualizations (matplotlib) • vis_bbox, vis_image, vis_point • vis_instance_segmentation, vis_semantic_segmentation • Utils • bbox_iou, mask_iou, nms, I/O • Evaluations • COCO, VOC and more.
  • 10. Prepared example codes • chainercv/examples • Demo: • python demo.py • Training: • python train.py • Evaluation: • python eval_voc.py
  • 11. WEB documentation (sphinx) • DOC: https://chainercv.readthedocs.io/en/stable/
  • 12. Easy to install • pip install chainercv • Additional requirements • ChainerMN, Matplotlib, OpenCV, SciPy • Datasets and models will be installed automatically. • Default: ~/.chainer/pfnet/chainercv • Of course, you can install it manually by yourself. • ROS integration • Rosdistro: python-chainer-pip, python-chainercv-pip
  • 13. Test codes • Github + Travis CI • chainercv/tests
  • 14. Other Chainer family and useful pages • Chainer is super awesome! • Chainer family • ChainerMN, ChainerRL, ChainerUI • ONNX: ONNX-Chainer • Chainer Research • https://github.com/pfnet-research • chainer-chemistry, sngan, picking-instruction • Chainer community • https://github.com/chainer-community/awesome-chainer • https://github.com/chainer-community/chainer-info • Forum / Slack / Twitter
  • 15. If you still cannot love chainer , • PyTorch: kuangliu/torchcv • Inspired from chainercv  • Easy to use, read and write  • https://github.com/kuangliu/torchcv • Tensorflow: tensorflow/models • A lot of model  • Good to read and study, but not good to use. • Caffe2: facebookresearch/Detectron • Easy to use, read and write  • Caffe2 is hard to install  • Mxnet: apache/incubator-mxnet • A lot of model, but no proof of scores. • Spaghetti codes! 