The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
This document summarizes a research paper on modeling long-range dependencies in sequence data using structured state space models and deep learning. The proposed S4 model (1) derives recurrent and convolutional representations of state space models, (2) improves long-term memory using HiPPO matrices, and (3) efficiently computes state space model convolution kernels. Experiments show S4 outperforms existing methods on various long-range dependency tasks, achieves fast and memory-efficient computation comparable to efficient Transformers, and performs competitively as a general sequence model.
The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
This document summarizes a research paper on modeling long-range dependencies in sequence data using structured state space models and deep learning. The proposed S4 model (1) derives recurrent and convolutional representations of state space models, (2) improves long-term memory using HiPPO matrices, and (3) efficiently computes state space model convolution kernels. Experiments show S4 outperforms existing methods on various long-range dependency tasks, achieves fast and memory-efficient computation comparable to efficient Transformers, and performs competitively as a general sequence model.
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...Deep Learning JP
The document proposes modifications to self-attention in Transformers to improve faithful signal propagation without shortcuts like skip connections or layer normalization. Specifically, it introduces a normalization-free network that uses dynamic isometry to ensure unitary transformations, a ReZero technique to implement skip connections without adding shortcuts, and modifications to attention and normalization techniques to address issues like rank collapse in Transformers. The methods are evaluated on tasks like CIFAR-10 classification and language modeling, demonstrating improved performance over standard Transformer architectures.
5. 関連研究
• Attentionの計算コスト削減
– 線形化や低ランク行列の積、スパース化による近似
(Child et al., 2019; Wang et al., 2020; Kitaev et al., 2020; Zhai et al., 2021; Roy et al., 2021;
Schlag et al., 2021; Tu et al., 2022)
– 計算量と表現力はトレードオフ
(Mehta et al., 2022; Dao et al., 2022c)
• Attentionの演算子としての冗長性
– Attention機構が言語処理に利用しているのは、
二次的な能力のほんの一部とする証拠が増えている
(Olsson et al., 2022; Dao et al., 2022c)
5