SlideShare a Scribd company logo
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Out-of-Distribution 論⽂速報 in ICLR2020
Hirono Okamoto, Matsuo Lab
ICLR2020に投稿された論⽂が公開された
n 分布外検知に関係する論⽂をいくつか眺めてみた(だけので想像で話しているかもしれません)
n リンク: https://openreview.net/group?id=ICLR.cc/2020/Conference
n タイトル⼀覧:
n Out-of-Distribution Image Detection Using the Normalized Compression Distance
n Deep Generative Classifier for Out-of-distribution Sample Detection
n Learning Out-of-distribution Detection without Out-of-distribution Data
n Improving Dirichlet Prior Network for Out-of-Distribution Example Detection
n Zero-Shot Out-of-Distribution Detection with Feature Correlations
n How the Softmax Activation Hinders the Detection of Adversarial and Out-of-Distribution Examples in
Neural Networks
n Out-of-Distribution Detection Using Layerwise Uncertainty in Deep Neural Networks
n 所感: 今年めちゃくちゃOOD検知多い気がする(︖)・紹介するのは⼀部
そもそも分布外(Out-of-Distribution)検知とは?
n あるカテゴリ以外のカテゴリを検知するという問題
が多い
n 異常検知とは異なる(含めることができるが)
n 似た問題設定
n Open set recognition:
n In-distributionの分類 + OOD検知
n Generalized zero-shot learning:
n In-distributionの分類 + OODの分類
⼈が想像する異常検知
背景: OOD検知の基本的な2つの問題設定
n 1: 教師なし異常検知(訓練分布のラベルが与えられない)
n 2: 教師あり異常検知(訓練分布のラベルが与えられる)
訓練データ テストデータ
正常 異常
訓練データ テストデータ
正常 異常⽝ ⿃
今回は2の論⽂に着⽬する
とくに今回⽐較された⼿法達
n A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
(ICLR 2017)
n ソフトマックスの出⼒の最⼤値をOODの指標として使う
n アイデア: OODは予測分類が曖昧になるはず
n ex) 3クラスのとき,[0.9, 0.05, 0.05]→正常, [0.3, 0.3, 0.4]→異常
n A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
(NIPS 2018)
n 訓練分布から離れたところのサンプルを検出できるように,ソフトマックス層の⼀層前の出⼒の分布
を正規分布であることを仮定し,そこからどれだけ離れているかという⽅法でOOD検知を⾏う
n Predictive Uncertainty Estimation via Prior Networks (NIPS 2018)
n (a): 正常データを正しく予測できるとき(confident)
n (b): 正常データだが,どのラベルに属しているか
わからないとき(known-unknown)
n (c): 異常データ(unknown-unknown)
Out-of-Distribution Image Detection Using the Normalized
Compression Distance
n モチベーション: OODデータを全く使わず,モデルをretrainすることなくOOD検知したい
n 既存研究: A Simple Unified Framework for Detecting OOD Samples and Adversarial Attacks
n 最後から⼆番⽬の層において,マハラノビス距離を使ってOODを検知する
n さらに,CNNの特徴マップのglobal average poolingを組み合わせる
n しかし,組み合わせ⽅が,ロジスティック回帰であるため,turning⽤のOODが必要になってしまう
n やったこと: 系列の類似度を測る⼿法(normalized compression distance)の導⼊
n 複数の指標からOODであることを判定することができる
n 実験: OODを全く訓練時・テスト時に使ってないにもかかわらず強い
Lee 2018について解説したスライド: https://www.slideshare.net/ssuser9eb780/nips-2018-139360134
Deep Generative Classifier for Out-of-Distribution Sample Detection
n やったこと: クラス条件付きガウス分布を学習することによって,信頼度スコアを算出する
n 既存研究: (Lee, 2018)とほぼ同じだが,これはガウス分布になるように改めて訓練している
n 結果: そこまで良くない
⽩点: OOD
⾊点: 正常データ
左: softmax classifier
右: generative classifier
中⼼に近づける項
metric learningでいうcenter loss
クロスエントロピー項
Learning Out-of-distribution Detection without Out-of-distribution Data
n モチベーション: ハイパラチューニングをあるOODデータセットでした場合,他のOODデー
タセットに汎化しない問題を解決したい → そもそもin-distributionのデータしか使わない
n やったこと: 賢い
n OODかIDのドメインを仮定した確率分布をモデルにうまく組み込んだ
n 実験: 強い.まいった
OOD判定
Improving Dirichlet Prior Network for Out-of-Distribution Example Detection
n 関連研究: Estimating Predictive Uncertainty via Prior Networks
n in-distributionだがあいまいなデータ と OOD を分類する⽅法を提案した
n モチベーション: 関連研究のロス関数が若⼲雑なので,うまいことしたい
n やったこと: ディリクレ分布のとんがり具合をコントロールする正則化項を追加した
n 結果: 良さげではあるが...?
prior networks スライド参考:
https://www.slideshare.net/DeepLearningJP2016/dlestimating-predictive-uncertainty-via-prior-networks
Zero-Shot Out-of-Distribution Detection with Feature Correlations
n モチベーション: モデルのretrainなし・OODにアクセスなしで,OOD検知をしたい
n やったこと:
n グラム⾏列使ってクラス条件付き異常を検知する
n L番⽬の層のチャネルの相関を⾒ている
n 結果: 良い
良い関連⼿法のまとめ
How the Softmax Activation Hinders the Detection of Adversarial
and Out-of-Distribution Examples in Neural Networks
n 所感: この現象は誰もが感じていたのではないだろうか
Out-of-Distribution Detection Using Layerwise Uncertainty in Deep Neural Networks
n モチベーション: in-distributionだがあいまいなデータ と OOD をちゃんと分類したい
n やったこと: 各層の不確かさをとって,それらを組み合わせてOODを判定した
n 結果: 良さげ
Ad

More Related Content

What's hot (20)

SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019
Yusuke Uchida
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
Masanao Ochi
 
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
ぱんいち すみもと
 
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
Takuma Yagi
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
tmtm otm
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019
Yusuke Uchida
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
Masanao Ochi
 
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
ぱんいち すみもと
 
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
Takuma Yagi
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
tmtm otm
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 

Similar to [DL輪読会]ICLR2020の分布外検知速報 (20)

[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation
Deep Learning JP
 
ICLR2020の異常検知論文の紹介 (2019/11/23)
ICLR2020の異常検知論文の紹介 (2019/11/23)ICLR2020の異常検知論文の紹介 (2019/11/23)
ICLR2020の異常検知論文の紹介 (2019/11/23)
ぱんいち すみもと
 
Muramatsu Bachelor Thesis
Muramatsu Bachelor ThesisMuramatsu Bachelor Thesis
Muramatsu Bachelor Thesis
pflab
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 
パンハウスゼミ 異常検知論文紹介 20191005
パンハウスゼミ 異常検知論文紹介  20191005パンハウスゼミ 異常検知論文紹介  20191005
パンハウスゼミ 異常検知論文紹介 20191005
ぱんいち すみもと
 
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
Deep Learning JP
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoaki
tomoaki0705
 
DeepLearningDay2016Summer
DeepLearningDay2016SummerDeepLearningDay2016Summer
DeepLearningDay2016Summer
Takayoshi Yamashita
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
IEEE ITSS Nagoya Chapter
IEEE ITSS Nagoya ChapterIEEE ITSS Nagoya Chapter
IEEE ITSS Nagoya Chapter
Takayoshi Yamashita
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
Deep Learning JP
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
Taiga Nomi
 
DLLab 異常検知ナイト 資料 20180214
DLLab 異常検知ナイト 資料 20180214DLLab 異常検知ナイト 資料 20180214
DLLab 異常検知ナイト 資料 20180214
Kosuke Nakago
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
nlab_utokyo
 
自然言語処理における深層学習を用いた予測の不確実性 - Predictive Uncertainty in NLP -
自然言語処理における深層学習を用いた予測の不確実性  - Predictive Uncertainty in NLP -自然言語処理における深層学習を用いた予測の不確実性  - Predictive Uncertainty in NLP -
自然言語処理における深層学習を用いた予測の不確実性 - Predictive Uncertainty in NLP -
tmtm otm
 
Anomaly detection survey
Anomaly detection surveyAnomaly detection survey
Anomaly detection survey
ぱんいち すみもと
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Daiki Shimada
 
[DL Hacks]AVID: Adversarial Visual Irregularity Detection
[DL Hacks]AVID: Adversarial Visual Irregularity Detection[DL Hacks]AVID: Adversarial Visual Irregularity Detection
[DL Hacks]AVID: Adversarial Visual Irregularity Detection
Deep Learning JP
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
Shingo Horiuchi
 
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly DetectionDeep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
ぱんいち すみもと
 
[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation
Deep Learning JP
 
ICLR2020の異常検知論文の紹介 (2019/11/23)
ICLR2020の異常検知論文の紹介 (2019/11/23)ICLR2020の異常検知論文の紹介 (2019/11/23)
ICLR2020の異常検知論文の紹介 (2019/11/23)
ぱんいち すみもと
 
Muramatsu Bachelor Thesis
Muramatsu Bachelor ThesisMuramatsu Bachelor Thesis
Muramatsu Bachelor Thesis
pflab
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 
パンハウスゼミ 異常検知論文紹介 20191005
パンハウスゼミ 異常検知論文紹介  20191005パンハウスゼミ 異常検知論文紹介  20191005
パンハウスゼミ 異常検知論文紹介 20191005
ぱんいち すみもと
 
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
Deep Learning JP
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoaki
tomoaki0705
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
Deep Learning JP
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
Taiga Nomi
 
DLLab 異常検知ナイト 資料 20180214
DLLab 異常検知ナイト 資料 20180214DLLab 異常検知ナイト 資料 20180214
DLLab 異常検知ナイト 資料 20180214
Kosuke Nakago
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
nlab_utokyo
 
自然言語処理における深層学習を用いた予測の不確実性 - Predictive Uncertainty in NLP -
自然言語処理における深層学習を用いた予測の不確実性  - Predictive Uncertainty in NLP -自然言語処理における深層学習を用いた予測の不確実性  - Predictive Uncertainty in NLP -
自然言語処理における深層学習を用いた予測の不確実性 - Predictive Uncertainty in NLP -
tmtm otm
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Daiki Shimada
 
[DL Hacks]AVID: Adversarial Visual Irregularity Detection
[DL Hacks]AVID: Adversarial Visual Irregularity Detection[DL Hacks]AVID: Adversarial Visual Irregularity Detection
[DL Hacks]AVID: Adversarial Visual Irregularity Detection
Deep Learning JP
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
Shingo Horiuchi
 
Ad

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
Ad

[DL輪読会]ICLR2020の分布外検知速報

  • 1. 1 DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ Out-of-Distribution 論⽂速報 in ICLR2020 Hirono Okamoto, Matsuo Lab
  • 2. ICLR2020に投稿された論⽂が公開された n 分布外検知に関係する論⽂をいくつか眺めてみた(だけので想像で話しているかもしれません) n リンク: https://openreview.net/group?id=ICLR.cc/2020/Conference n タイトル⼀覧: n Out-of-Distribution Image Detection Using the Normalized Compression Distance n Deep Generative Classifier for Out-of-distribution Sample Detection n Learning Out-of-distribution Detection without Out-of-distribution Data n Improving Dirichlet Prior Network for Out-of-Distribution Example Detection n Zero-Shot Out-of-Distribution Detection with Feature Correlations n How the Softmax Activation Hinders the Detection of Adversarial and Out-of-Distribution Examples in Neural Networks n Out-of-Distribution Detection Using Layerwise Uncertainty in Deep Neural Networks n 所感: 今年めちゃくちゃOOD検知多い気がする(︖)・紹介するのは⼀部
  • 3. そもそも分布外(Out-of-Distribution)検知とは? n あるカテゴリ以外のカテゴリを検知するという問題 が多い n 異常検知とは異なる(含めることができるが) n 似た問題設定 n Open set recognition: n In-distributionの分類 + OOD検知 n Generalized zero-shot learning: n In-distributionの分類 + OODの分類 ⼈が想像する異常検知
  • 4. 背景: OOD検知の基本的な2つの問題設定 n 1: 教師なし異常検知(訓練分布のラベルが与えられない) n 2: 教師あり異常検知(訓練分布のラベルが与えられる) 訓練データ テストデータ 正常 異常 訓練データ テストデータ 正常 異常⽝ ⿃ 今回は2の論⽂に着⽬する
  • 5. とくに今回⽐較された⼿法達 n A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks (ICLR 2017) n ソフトマックスの出⼒の最⼤値をOODの指標として使う n アイデア: OODは予測分類が曖昧になるはず n ex) 3クラスのとき,[0.9, 0.05, 0.05]→正常, [0.3, 0.3, 0.4]→異常 n A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks (NIPS 2018) n 訓練分布から離れたところのサンプルを検出できるように,ソフトマックス層の⼀層前の出⼒の分布 を正規分布であることを仮定し,そこからどれだけ離れているかという⽅法でOOD検知を⾏う n Predictive Uncertainty Estimation via Prior Networks (NIPS 2018) n (a): 正常データを正しく予測できるとき(confident) n (b): 正常データだが,どのラベルに属しているか わからないとき(known-unknown) n (c): 異常データ(unknown-unknown)
  • 6. Out-of-Distribution Image Detection Using the Normalized Compression Distance n モチベーション: OODデータを全く使わず,モデルをretrainすることなくOOD検知したい n 既存研究: A Simple Unified Framework for Detecting OOD Samples and Adversarial Attacks n 最後から⼆番⽬の層において,マハラノビス距離を使ってOODを検知する n さらに,CNNの特徴マップのglobal average poolingを組み合わせる n しかし,組み合わせ⽅が,ロジスティック回帰であるため,turning⽤のOODが必要になってしまう n やったこと: 系列の類似度を測る⼿法(normalized compression distance)の導⼊ n 複数の指標からOODであることを判定することができる n 実験: OODを全く訓練時・テスト時に使ってないにもかかわらず強い Lee 2018について解説したスライド: https://www.slideshare.net/ssuser9eb780/nips-2018-139360134
  • 7. Deep Generative Classifier for Out-of-Distribution Sample Detection n やったこと: クラス条件付きガウス分布を学習することによって,信頼度スコアを算出する n 既存研究: (Lee, 2018)とほぼ同じだが,これはガウス分布になるように改めて訓練している n 結果: そこまで良くない ⽩点: OOD ⾊点: 正常データ 左: softmax classifier 右: generative classifier 中⼼に近づける項 metric learningでいうcenter loss クロスエントロピー項
  • 8. Learning Out-of-distribution Detection without Out-of-distribution Data n モチベーション: ハイパラチューニングをあるOODデータセットでした場合,他のOODデー タセットに汎化しない問題を解決したい → そもそもin-distributionのデータしか使わない n やったこと: 賢い n OODかIDのドメインを仮定した確率分布をモデルにうまく組み込んだ n 実験: 強い.まいった OOD判定
  • 9. Improving Dirichlet Prior Network for Out-of-Distribution Example Detection n 関連研究: Estimating Predictive Uncertainty via Prior Networks n in-distributionだがあいまいなデータ と OOD を分類する⽅法を提案した n モチベーション: 関連研究のロス関数が若⼲雑なので,うまいことしたい n やったこと: ディリクレ分布のとんがり具合をコントロールする正則化項を追加した n 結果: 良さげではあるが...? prior networks スライド参考: https://www.slideshare.net/DeepLearningJP2016/dlestimating-predictive-uncertainty-via-prior-networks
  • 10. Zero-Shot Out-of-Distribution Detection with Feature Correlations n モチベーション: モデルのretrainなし・OODにアクセスなしで,OOD検知をしたい n やったこと: n グラム⾏列使ってクラス条件付き異常を検知する n L番⽬の層のチャネルの相関を⾒ている n 結果: 良い 良い関連⼿法のまとめ
  • 11. How the Softmax Activation Hinders the Detection of Adversarial and Out-of-Distribution Examples in Neural Networks n 所感: この現象は誰もが感じていたのではないだろうか
  • 12. Out-of-Distribution Detection Using Layerwise Uncertainty in Deep Neural Networks n モチベーション: in-distributionだがあいまいなデータ と OOD をちゃんと分類したい n やったこと: 各層の不確かさをとって,それらを組み合わせてOODを判定した n 結果: 良さげ