SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
“VIP: Towards Universal Visual Reward and
Representation via Value-Implicit Pre-Training”
Presenter: Takahiro Maeda D2
(Toyota Technological Institute)
http://deeplearning.jp/
目次
1. 書誌情報
2. 概要
3. 研究背景
4. 提案手法
5. 実験結果
6. 考察・所感
2
1. 書誌情報
ICLR 2023, Spotlight, Project Page, arXiv 2022年10月
※特に明示が無い場合は,紹介論文,動画から引用
3
2. 概要
4
Value Implicit Pre-training
• 画像ゴールを達成するdense rewardの基盤モデル
• Ego4D動画から自己教師学習
• Few-shot offline RLを実現(~20 samples)
画像ゴール
(棚を開ける)
VIP R3M
3. 研究背景 (1/2)
5
• 言語指示によるロボットコントロールの台頭
RT-1[Brohan+ 2022]
大規模指示文付きロボット
データ
SayCan [Ahn+ 2022]
LLMの使用
3. 研究背景 (2/2)
6
• 言語指示が難しい(面倒な)場合がある
– 各物体の収納指示は面倒
– 収納後の画像で指示したい
• しかし,実ロボットによるデータ収集は行いたくない
– コスト低減
– Ego4Dによって収集データ,タスクの幅を広げる
– Metaの戦略? Googleと対照的
大量の言語指示
が必要
所定の位置
大量の物体
4. 提案手法
7
• 概要
– タスクの連続性を持った画像特徴量𝜙(𝑜)を学習
– Ego4D動画の各フレームに対してContrastive Learningで表現学習
– 推論(後続のfew-shot offline RL)の報酬をゴール特徴量𝜙(𝑔)への距離で定義
4. 提案手法
8
• 主観視点動画で学習できる理論的な背景
– KL-regularized offline RL objective
• 人のaction 𝑎𝐻は本質的にわからない
• Fenchel dualityによって,𝑎𝐻がない形へ変形
𝑎 :行動
𝑜 :観測画像
𝑜′
:次観測
𝑔 :ゴール画像
𝑟 :報酬
𝑑 :分布
割引報酬
行動,観測ペアの分布間KL誤差
Temporal differenceの期待値
初期位置の価値期待値
4. 提案手法
9
• 主観視点動画で学習できる理論的な背景(続き)
– 最適な価値関数=正しく学習された画像特徴量の負の二乗誤差とすると
初期位置とゴールの特徴量を近づけ
る
隣接観測の特徴量を遠ざ
ける
4. 提案手法
10
• 導出された式は直観に反するような?
– 隣接観測の特徴量を遠ざける?
– 類似手法とも異なる
• Time Contrastive Network右図
• 結果はかなり良い
– 遠ざけることで報酬が
単調減少になる証明あり
4. 提案手法
11
• 得られた特徴量𝜙(𝑜)をfew-shot offline RLへ適用
– サンプル数 ~20!
– Reward Weighted Regression(RWR)を使用
– 特徴量𝜙(𝑜)を,policyの入力,ゴール条件付け報酬として使用
– 通常のoffline RLでは,大量のサンプルとdense rewardの設計が必要
• 提案手法で解決
5. 実験結果
12
• 実環境でのfew-shot offline RL
13
• EpicKitchenでのfew-shot offline RL
VIP R3M
画像ゴール
14
• 復帰するような動作も得られるらしい
– BCと違い,offline RLを行っているから
余談
15
• CLIPによって,言語+画像で報酬を定義できるextendも登場
6. 考察・所感
16
• 所感
– ゴールを画像として与えることが合理的な場合もあるはず
– 最近のImage Editingとの組み合わせも考えられる
– クックパッドなどの中間画像がある場合では,料理を材料作れるかも?
• Future work
– 現状,価値関数がsymmetric=環境が可逆なことを仮定してしまっている
– VIPのfine-tuning
– ナビゲーションや各種予測にも使える可能性あり
追記
17
• Ego4D全体で学習している?またはsubsetで学習?
– VIPの元となったR3Mでは,subsetをとることは明示的に書いていない
– Canonial clipsをそのまま用いているらしい
• https://github.com/facebookresearch/r3m/issues/13
Ad

More Related Content

Similar to 【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training (20)

SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
Takanori Suzuki
 
「最強」のチームを「造る」技術基盤 ディレクターズ・カット
「最強」のチームを「造る」技術基盤 ディレクターズ・カット「最強」のチームを「造る」技術基盤 ディレクターズ・カット
「最強」のチームを「造る」技術基盤 ディレクターズ・カット
Rakuten Group, Inc.
 
【デブサミ2010】アジリティを向上させる開発ツールの進化
【デブサミ2010】アジリティを向上させる開発ツールの進化【デブサミ2010】アジリティを向上させる開発ツールの進化
【デブサミ2010】アジリティを向上させる開発ツールの進化
智治 長沢
 
テスト駆動開発の進化
テスト駆動開発の進化テスト駆動開発の進化
テスト駆動開発の進化
Yukei Wachi
 
テストエンジニア版RPG風スキルマップ JaSST'17東北
テストエンジニア版RPG風スキルマップ JaSST'17東北テストエンジニア版RPG風スキルマップ JaSST'17東北
テストエンジニア版RPG風スキルマップ JaSST'17東北
Noriyuki Nemoto
 
Sigpx 2.5
Sigpx 2.5Sigpx 2.5
Sigpx 2.5
Hiroaki Mikami
 
データプロダクト開発を成功に導くには
データプロダクト開発を成功に導くにはデータプロダクト開発を成功に導くには
データプロダクト開発を成功に導くには
Recruit Lifestyle Co., Ltd.
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Rie Moriguchi
 
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
小川 雄太郎
 
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
慎一 古賀
 
発見から納品へ
発見から納品へ発見から納品へ
発見から納品へ
You&I
 
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
Toshiki Sakai
 
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
Satoshi Fujimoto
 
CV勉強会CVPR2019読み会: Video Action Transformer Network
CV勉強会CVPR2019読み会: Video Action Transformer NetworkCV勉強会CVPR2019読み会: Video Action Transformer Network
CV勉強会CVPR2019読み会: Video Action Transformer Network
Toshiki Sakai
 
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
Yuichiro Saito
 
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
Toshiki Sakai
 
C#メタプログラミング概略 in 2021
C#メタプログラミング概略 in 2021C#メタプログラミング概略 in 2021
C#メタプログラミング概略 in 2021
Atsushi Nakamura
 
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
Takumi Ohkuma
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
Deep Learning JP
 
SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
SQiP2012 - 質問表の活用によるプロジェクトの早期リスク検出
Takanori Suzuki
 
「最強」のチームを「造る」技術基盤 ディレクターズ・カット
「最強」のチームを「造る」技術基盤 ディレクターズ・カット「最強」のチームを「造る」技術基盤 ディレクターズ・カット
「最強」のチームを「造る」技術基盤 ディレクターズ・カット
Rakuten Group, Inc.
 
【デブサミ2010】アジリティを向上させる開発ツールの進化
【デブサミ2010】アジリティを向上させる開発ツールの進化【デブサミ2010】アジリティを向上させる開発ツールの進化
【デブサミ2010】アジリティを向上させる開発ツールの進化
智治 長沢
 
テスト駆動開発の進化
テスト駆動開発の進化テスト駆動開発の進化
テスト駆動開発の進化
Yukei Wachi
 
テストエンジニア版RPG風スキルマップ JaSST'17東北
テストエンジニア版RPG風スキルマップ JaSST'17東北テストエンジニア版RPG風スキルマップ JaSST'17東北
テストエンジニア版RPG風スキルマップ JaSST'17東北
Noriyuki Nemoto
 
データプロダクト開発を成功に導くには
データプロダクト開発を成功に導くにはデータプロダクト開発を成功に導くには
データプロダクト開発を成功に導くには
Recruit Lifestyle Co., Ltd.
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Microsoft MVP/Regional Director x Microsoft Japan Digital Days #MSDD2021
Rie Moriguchi
 
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
機械学習・ディープラーニング、ITの実装スキル学ぶ方法(と私の場合)
小川 雄太郎
 
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
運用管理者のための「開発者からみたDevOps」 - Visual Studio 2015 新機能から考える開発者の取り組み
慎一 古賀
 
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
論文紹介:Ambient Sound Provides Supervision for Visual Learning(CV勉強会ECCV2016読み会)
Toshiki Sakai
 
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
熊本 HoloLens Meetup vol.0 「HoloLensアプリ開発コンテストビジネス部門で特別賞もらってきた」
Satoshi Fujimoto
 
CV勉強会CVPR2019読み会: Video Action Transformer Network
CV勉強会CVPR2019読み会: Video Action Transformer NetworkCV勉強会CVPR2019読み会: Video Action Transformer Network
CV勉強会CVPR2019読み会: Video Action Transformer Network
Toshiki Sakai
 
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
コミュニケーションスキルを重視したソフトウェア技術者教育手法の研究
Yuichiro Saito
 
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
CNN-RNN: A Unified Framework for Multi-label Image Classification@CV勉強会35回CVP...
Toshiki Sakai
 
C#メタプログラミング概略 in 2021
C#メタプログラミング概略 in 2021C#メタプログラミング概略 in 2021
C#メタプログラミング概略 in 2021
Atsushi Nakamura
 
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
Takumi Ohkuma
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
Ad

【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training

Editor's Notes

  • #2: という論文を紹介します.
  • #4: まず,書誌情報です.