SlideShare a Scribd company logo
Double Clamped and Cantilever Beam Theoretical Solution and
Numerical Solution by Finite Element Method
Anastasios S. Lazaridis
M. Eng. in Electrical Engineering & Computer Science
tasoslazaridis13@gmail.com
Abstract—This paper presents a static analysis of a beam
made of Aluminum. Two cases are studied, the Double Clamped
Beam and the Cantilever Beam problem. The displacement of the
beam under a load is calculated theoretically using Calculus of
Variations and numerically using Finite Element Method (FEM).
Numerical results are obtained by ANSYS and SOLIDWORKS
software. All results are compared and relative differences are
calculated.
Keywords—static analysis; calculus of variations; FEM;
ANSYS Workbench; beam displacement; SolidWorks;
I. THEORETICAL PROBLEM AND SULUTION
A. Definition of the Problem
Suppose a beam of length l having uniform cross section
under a load. Let  3
: 0,y l   , describe the shape of the
axis of the beam and  3
: 0,l   be the load per unit
length on the beam. Assuming small deflections, the potential
energy from elastic forces [2] is the functional  3
: 0,eV l  
2
2
2
0 0
2 2
l l
e
EI d y EI
V dx y dx
dx
   (1)
where E is the modulus of elasticity and I is the moment of
inertia, both are constants. The potential energy from
gravitational forces [2] is the functional  3
: 0,gV l  
0
l
gV ydx  (2)
The total potential energy is the functional  3
: 0,V l  
  2
0
, ,
2
l
EI
V V x y y y y dx
 
   
   (3)
The shape of the beam is such that V is minimum. The
Lagrangian function  3
0,f l is
  2
, ,
2
EI
f x y y y y   (4)
must satisfy the Euler-Lagrange equation [1]. The Euler-
Lagrange Equation for a functional involving second-order
derivatives is written
2
2
0
d f d f f
dx y dx y y
  
  
    (5)
along with the condition
3
0
0 ,
x l
x
f d f f
y dx y y
  


   
     
   
 
  
(6)
The above equation spawns the four boundary conditions
0
0
x
f
y 



(7)
0
x l
f
y 



(8)
0
0
x
d f f
dx y y 
  
  
   
(9)
0
x l
d f f
dx y y 
  
  
   
(10)
This produces the differential equation
 
 
 (4)
, 0,
x
y x x l
EI

  (11)
The general solution of the differential equation (11) is the
function
     3 2
+ + , 0,y x h x Ax Bx Cx D x l    (12)
where , , ,A B C D are constants and  h x is a partial solution of
the differential equation (11), where
 
 (4)
=
x
h x
EI

(13)
B. Definition of the load
In this paper constant load case is studied
   , 0,x P x l     (14)
So the total impressed force on the beam is
 
0
l
F x dx Pl  (15)
C. Moment of Inertia
The moment of inertia of an area with respect to an axis is
the sum of the products obtained by multiplying each element
of the area dA by the square of its distance from the axis [3].
For a section in the yx plane, the moment of inertia, about y
and x axis respectively, is defined to be the double integral
2
y
A
I x dxdy  (16)
2
x
A
I y dxdy  (17)
In the case of rectangular area centered at the origin of yx
plane (Fig. 1), A is the region , ,
2 2 2 2
a a b b
A
   
      
   
. So yI
and xI are calculated
3
2
12
y
A
a b
I x dxdy  (18)
3
2
12
x
A
ab
I y dxdy  (19)
Fig. 1. Rectangular area centered at the origin of yx plane.
II. BEAM CAD MODEL
The CAD model of the beam is shown in Fig. 2. The
material of the beam is Aluminum Alloy AA380.0-F die. The
dimensions of the beam are shown in figure and the material
properties are shown in Table I.
Fig. 2. The CAD model of the beam made of Aluminum and the dimensions
of the beam.
TABLE I. MATERIAL PROPERTIES OF THE ALUMINUM BEAM
Material Properties
Property Value Unit
Elastic Modulus 71000 N/mm2
Poisson’s Ratio 0.33 N/A
Shear Modulus 26500 N/mm2
Mass Density 2760 kg/m3
Tensile Strength 317 N/mm2
Yield Strength 159 N/mm2
Thermal Conductivity 109 W/(m·K)
Specific Heat 963 J/(kg·K)
III. DOUBLE CLAMPED BEAM
A. Theoretical Solution
Suppose that the beam is clamped at each end (Fig. 3). The
beam is “fixed in the wall” at each end so that at 0x  and
x l we have respectively    0 0 0y y  and     0y l y l  .
Fig. 3. The beam is clamped at each end.
Here, there are four imposed boundary conditions. All the
allowable variations in this problem require that
   0 0 0   and     0l l   so that no natural boundary
conditions (6) arise.
So the problem is subscribed by the set of equations below
   
   
   
(4)
, 0,
0 0 0
0
Pl
y x x l
EI
y y
y l y l
 
  
 
  
  
 
 


(20)
The general solution of the system of equations (20) is the
polynomial function
   
2
4 3 2
+ + , 0,
24 12 24
P Pl Pl
y x x x x x l
EI EI EI
  (21)
The values of Table II are used to plot the polynomial (21),
which describes the displacement of a double clamped beam.
TABLE II. NUMERICAL VALUES OF THE VARIABLES
Variable Values
Variable Symbol Value Unit
Elastic Modulus E 71000 N/mm2
Area Moment of Inertia I 6666.67 mm4
Length of Beam L 500 mm
Load per unit Length P 10 N/mm
x
y
0x  x l
 p x P
x
y
a
b
0 100 200 300 400 500
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
x - axis [mm]
y-axis-Displacement[mm]
D ouble Clamped Beam - D isplacement
Fig. 4. The displacement of the double clamped Aluminum beam.
B. FEM Solution
ANSYS and SOLIDWORKS software is used to make the
simulations and calculate the solution of the FEM. The same
CAD model is used for both simulations and the same mesh
too (Standard Mesh with Global Size: 1.5mm and Tolerance:
0.075mm).
1) ANSYS Solution
ANSYS solution is shown below in Fig.5. ANSYS
Structural Toolbox was used to simulate the model.
Fig. 5. The displacement of the double clamped Aluminum beam using
ANSYS.
2) SOLIDWORKS Solution
SOLIDWORKS solution is shown below in Fig.6.
SOLIDWORKS Static Simulation Toolbox was used for the
simulation.
Fig. 6. The displacement of the double clamped Aluminum beam using
SolidWorks.
IV. CANTILEVER BEAM
A. Theoretical Solution
Suppose that the beam is clamped at 0x  (Fig. 7). The
boundary conditions    0 0 0y y  are imposed. No
boundary conditions are imposed at the other end of the beam
and consequently, the natural boundary conditions (8) and (10)
must be satisfied. The assumption here is made that the
unclamped endpoint of the beam still lies on the line x l
(small deflections).
Fig. 7. Cantilever beam.
Equation (8) yields the relation
 0 0
x l
f
EI y l
y 

  



(22)
Equation (10) gives the condition
 0 0
x l
d f f
EI y l
dx y y 
  
    
  

 
(23)
In this case the problem is described by the set of equations
   
   
   
(4)
, 0,
0 0 0
0
Pl
y x x l
EI
y y
y l y l
 
  
 
  
  
 
 

 
(24)
The general solution of the system of equations (24) is the
polynomial function
   
2
4 3 2
+ , 0,
24 6 4
P Pl Pl
y x x x x x l
EI EI EI
   (25)
The values of Table II are used to plot the polynomial (25),
which describes the displacement of a cantilever beam.
x l0x 
y
 p x P
x
0 100 200 300 400 500
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
x - axis [mm]
y-axis-Displacement[mm]
Cant ilever Beam - D isplacement
Fig. 8. The displacement of the cantilever Aluminum beam.
B. FEM Solution
ANSYS and SOLIDWORKS software is used to make the
simulations and calculate the solution of the FEM. The same
CAD model is used for both simulations and the same mesh
too (Standard Mesh with Global Size: 1.5mm and Tolerance:
0.075mm).
1) ANSYS Solution
ANSYS solution is shown below in Fig.5. ANSYS
Structural Toolbox was used to simulate the model.
Fig. 9. The displacement of the cantilever Aluminum beam using ANSYS.
2) SOLIDWORKS Solution
SOLIDWORKS solution is shown below in Fig.6.
SOLIDWORKS Static Simulation Toolbox was used for the
simulation.
Fig. 10. The displacement of the cantilever Aluminum beam using
SolidWorks.
V. RESULTS
A. Double Clamped Beam
TABLE III. DOUBLE CLAMPED BEAM – DISPLACEMENT
Displacement of Double Clamped Beam [mm]
Theoretical ANSYS SolidWorks
3.438 3.489 3.489
TABLE IV. DOUBLE CLAMPED BEAM – RELATIVE PERCENT
DIFFERENCES
Relative Percent Differences
ANSYS Theoretical
SolidWorks 0% 1.462%
ANSYS - 1.462%
B. Cantilever Beam
TABLE V. CANTILEVER BEAM - DISPLACEMENT
Displacement of Cantilever Beam [mm]
Theoretical ANSYS SolidWorks
165.05281 164.88011 157.86049
TABLE VI. CANTILEVER BEAM – RELATIVE PERCENT DIFFERENCES
Relative Percent Differences
ANSYS Theoretical
SolidWorks 4.257% 4.357%
ANSYS - 0.104%
REFERENCES
[1] I. M. Gelfand and S.V. Fomin, “The Canonical Form of the Euler
equation and related topics,” in Calculus of Variations, (Translated and
Edited by Richard A. Silverman), New Jersey: Prentc Hall, 1963.
[2] Bruce van Brant, “Problems with Variable Endpoints,” in The Calculus
of Variations, New York: Springer-Verlag, 2004, pp. 140-145.
[3] Walter D. Pilkey, “Geometric Properties of Plane Areas,” in Formulas
for Stress, Strain and Structural Matrices, 2nd ed., Ney Jersey:John
Wiley & Sons, 2005, pp. 19-21.
Ad

More Related Content

What's hot (20)

Mechanism synthesis, graphical
Mechanism synthesis, graphicalMechanism synthesis, graphical
Mechanism synthesis, graphical
Mecanismos Ucr
 
Chapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
Chapter_16_Planar_Kinematics_of_Rigid_Bo.pptChapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
Chapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
AhmedSalem97103
 
Gears presentation
Gears presentationGears presentation
Gears presentation
Muhammad Shahid
 
Unit ii bevel gears
Unit ii bevel gearsUnit ii bevel gears
Unit ii bevel gears
GaneshFodase1
 
Kinematics of machines
Kinematics of machinesKinematics of machines
Kinematics of machines
Gulfaraz alam
 
Shaft couplings 2 split muff
Shaft couplings 2   split muffShaft couplings 2   split muff
Shaft couplings 2 split muff
narendra varma
 
MACHINE DESIGN QUESTION BANK ...
MACHINE DESIGN QUESTION BANK                                                 ...MACHINE DESIGN QUESTION BANK                                                 ...
MACHINE DESIGN QUESTION BANK ...
musadoto
 
Unit3 Warm and warm gear.pdf
Unit3 Warm and warm gear.pdfUnit3 Warm and warm gear.pdf
Unit3 Warm and warm gear.pdf
Gujrathi Sonam
 
10. Rolling Contact Bearing.pdf
10. Rolling Contact Bearing.pdf10. Rolling Contact Bearing.pdf
10. Rolling Contact Bearing.pdf
saiashwindran
 
Design mini-project for TY mechanical students
Design mini-project for TY mechanical studentsDesign mini-project for TY mechanical students
Design mini-project for TY mechanical students
Ravindra Shinde
 
Signal flow graph
Signal flow graphSignal flow graph
Signal flow graph
Sagar Kuntumal
 
final project
final projectfinal project
final project
vishal ravindran
 
009 relative acceleration
009 relative acceleration009 relative acceleration
009 relative acceleration
physics101
 
3 shaft stress in shafts
3 shaft   stress in shafts3 shaft   stress in shafts
3 shaft stress in shafts
Dr.R. SELVAM
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
University of Glasgow
 
6 threadmilling
6 threadmilling6 threadmilling
6 threadmilling
VJTI Production
 
MET 304 Mechanical joints riveted_joints
MET 304 Mechanical joints riveted_jointsMET 304 Mechanical joints riveted_joints
MET 304 Mechanical joints riveted_joints
hotman1991
 
The mechanics of the bow and arrow
The mechanics of the bow and arrowThe mechanics of the bow and arrow
The mechanics of the bow and arrow
Toz Koparan
 
lecture notes on Bearings
lecture notes on Bearingslecture notes on Bearings
lecture notes on Bearings
Sarath Bandara
 
Mapping Between Frames in Space
Mapping Between Frames in SpaceMapping Between Frames in Space
Mapping Between Frames in Space
Hitesh Mohapatra
 
Mechanism synthesis, graphical
Mechanism synthesis, graphicalMechanism synthesis, graphical
Mechanism synthesis, graphical
Mecanismos Ucr
 
Chapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
Chapter_16_Planar_Kinematics_of_Rigid_Bo.pptChapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
Chapter_16_Planar_Kinematics_of_Rigid_Bo.ppt
AhmedSalem97103
 
Kinematics of machines
Kinematics of machinesKinematics of machines
Kinematics of machines
Gulfaraz alam
 
Shaft couplings 2 split muff
Shaft couplings 2   split muffShaft couplings 2   split muff
Shaft couplings 2 split muff
narendra varma
 
MACHINE DESIGN QUESTION BANK ...
MACHINE DESIGN QUESTION BANK                                                 ...MACHINE DESIGN QUESTION BANK                                                 ...
MACHINE DESIGN QUESTION BANK ...
musadoto
 
Unit3 Warm and warm gear.pdf
Unit3 Warm and warm gear.pdfUnit3 Warm and warm gear.pdf
Unit3 Warm and warm gear.pdf
Gujrathi Sonam
 
10. Rolling Contact Bearing.pdf
10. Rolling Contact Bearing.pdf10. Rolling Contact Bearing.pdf
10. Rolling Contact Bearing.pdf
saiashwindran
 
Design mini-project for TY mechanical students
Design mini-project for TY mechanical studentsDesign mini-project for TY mechanical students
Design mini-project for TY mechanical students
Ravindra Shinde
 
009 relative acceleration
009 relative acceleration009 relative acceleration
009 relative acceleration
physics101
 
3 shaft stress in shafts
3 shaft   stress in shafts3 shaft   stress in shafts
3 shaft stress in shafts
Dr.R. SELVAM
 
MET 304 Mechanical joints riveted_joints
MET 304 Mechanical joints riveted_jointsMET 304 Mechanical joints riveted_joints
MET 304 Mechanical joints riveted_joints
hotman1991
 
The mechanics of the bow and arrow
The mechanics of the bow and arrowThe mechanics of the bow and arrow
The mechanics of the bow and arrow
Toz Koparan
 
lecture notes on Bearings
lecture notes on Bearingslecture notes on Bearings
lecture notes on Bearings
Sarath Bandara
 
Mapping Between Frames in Space
Mapping Between Frames in SpaceMapping Between Frames in Space
Mapping Between Frames in Space
Hitesh Mohapatra
 

Viewers also liked (20)

Luis
LuisLuis
Luis
luis delgado
 
Ingria_presentation_venture financing_IB_final
Ingria_presentation_venture financing_IB_finalIngria_presentation_venture financing_IB_final
Ingria_presentation_venture financing_IB_final
Ilya Bulgakov
 
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustryJordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
Jordan Bentley
 
4 problemas económicos
4 problemas económicos4 problemas económicos
4 problemas económicos
Daniel DEL TORO CHAVEZ
 
My Biofuels Research
My Biofuels ResearchMy Biofuels Research
My Biofuels Research
Jamie Nervil
 
Filezilla
FilezillaFilezilla
Filezilla
Alexitokitok
 
Los medios de enseñanza o materiales didácticos
Los medios de enseñanza o materiales didácticos Los medios de enseñanza o materiales didácticos
Los medios de enseñanza o materiales didácticos
Elizabeth Rojas
 
Preguntas
PreguntasPreguntas
Preguntas
Juan Camilo puentes Ceballos
 
Salud Ocupacional
Salud Ocupacional Salud Ocupacional
Salud Ocupacional
Alexitokitok
 
Presentación Derecho
Presentación DerechoPresentación Derecho
Presentación Derecho
Tecnológico de Monterrey
 
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και ΦουκοσιμαΤα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Tasos Lazaridis
 
Políticas del estado
Políticas del estadoPolíticas del estado
Políticas del estado
Daniel DEL TORO CHAVEZ
 
Como subir archivos a un servidor con filezilla
Como subir archivos a un servidor con filezillaComo subir archivos a un servidor con filezilla
Como subir archivos a un servidor con filezilla
Juan Camilo puentes Ceballos
 
MKOHL080516RESUME.2
MKOHL080516RESUME.2MKOHL080516RESUME.2
MKOHL080516RESUME.2
Michael Kohl
 
Album animales
Album animalesAlbum animales
Album animales
edimaster7
 
Instalacion de ubuntu en virtualbox
Instalacion de ubuntu en virtualboxInstalacion de ubuntu en virtualbox
Instalacion de ubuntu en virtualbox
Alexitokitok
 
EM Lab Team Pro presentation
EM Lab Team Pro presentationEM Lab Team Pro presentation
EM Lab Team Pro presentation
Tasos Lazaridis
 
Libro formas y tamaños.
Libro formas y tamaños.Libro formas y tamaños.
Libro formas y tamaños.
MARIANA ROMERO
 
Παραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Παραγωγη Ομοιομορφου Μαγνητικου ΠεδιουΠαραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Παραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Tasos Lazaridis
 
YER_Presentation_London_Scholars_Final
YER_Presentation_London_Scholars_FinalYER_Presentation_London_Scholars_Final
YER_Presentation_London_Scholars_Final
Sam Masaba
 
Ingria_presentation_venture financing_IB_final
Ingria_presentation_venture financing_IB_finalIngria_presentation_venture financing_IB_final
Ingria_presentation_venture financing_IB_final
Ilya Bulgakov
 
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustryJordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
JordanBentley_SENIORTHESIS_PatentTrendsinAppliedPhysicsIndustry
Jordan Bentley
 
My Biofuels Research
My Biofuels ResearchMy Biofuels Research
My Biofuels Research
Jamie Nervil
 
Los medios de enseñanza o materiales didácticos
Los medios de enseñanza o materiales didácticos Los medios de enseñanza o materiales didácticos
Los medios de enseñanza o materiales didácticos
Elizabeth Rojas
 
Salud Ocupacional
Salud Ocupacional Salud Ocupacional
Salud Ocupacional
Alexitokitok
 
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και ΦουκοσιμαΤα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Τα Πυρηνικα Ατυχηματα στοΤσερνομπιλ και Φουκοσιμα
Tasos Lazaridis
 
MKOHL080516RESUME.2
MKOHL080516RESUME.2MKOHL080516RESUME.2
MKOHL080516RESUME.2
Michael Kohl
 
Album animales
Album animalesAlbum animales
Album animales
edimaster7
 
Instalacion de ubuntu en virtualbox
Instalacion de ubuntu en virtualboxInstalacion de ubuntu en virtualbox
Instalacion de ubuntu en virtualbox
Alexitokitok
 
EM Lab Team Pro presentation
EM Lab Team Pro presentationEM Lab Team Pro presentation
EM Lab Team Pro presentation
Tasos Lazaridis
 
Libro formas y tamaños.
Libro formas y tamaños.Libro formas y tamaños.
Libro formas y tamaños.
MARIANA ROMERO
 
Παραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Παραγωγη Ομοιομορφου Μαγνητικου ΠεδιουΠαραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Παραγωγη Ομοιομορφου Μαγνητικου Πεδιου
Tasos Lazaridis
 
YER_Presentation_London_Scholars_Final
YER_Presentation_London_Scholars_FinalYER_Presentation_London_Scholars_Final
YER_Presentation_London_Scholars_Final
Sam Masaba
 
Ad

Similar to Double Clamped and Cantilever Beam Theoretical Solution and Numerical Solution by Finite Element Method (20)

Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
mayur1347
 
321807031-Finite-Element-Analysis-Questions-Only.pdf
321807031-Finite-Element-Analysis-Questions-Only.pdf321807031-Finite-Element-Analysis-Questions-Only.pdf
321807031-Finite-Element-Analysis-Questions-Only.pdf
suneelKUMAR259
 
3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
3rd semester Civil Engineering ( 2013-June) Question Papers
3rd  semester Civil Engineering ( 2013-June) Question Papers 3rd  semester Civil Engineering ( 2013-June) Question Papers
3rd semester Civil Engineering ( 2013-June) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
2013-June 3rd Semester Civil Engineering Question Papers
2013-June 3rd Semester Civil Engineering Question Papers2013-June 3rd Semester Civil Engineering Question Papers
2013-June 3rd Semester Civil Engineering Question Papers
B G S Institute of Technolgy
 
Me2353 FINITE ELEMENT ANALYSIS
Me2353 FINITE ELEMENT ANALYSISMe2353 FINITE ELEMENT ANALYSIS
Me2353 FINITE ELEMENT ANALYSIS
BIBIN CHIDAMBARANATHAN
 
Solid mechanics 1 BDA 10903
Solid mechanics 1 BDA 10903Solid mechanics 1 BDA 10903
Solid mechanics 1 BDA 10903
Parthibanraj Selvaraj
 
Finite element analysis qb
Finite element analysis qbFinite element analysis qb
Finite element analysis qb
Prasanth Kumar RAGUPATHY
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
final report_as submitted
final report_as submittedfinal report_as submitted
final report_as submitted
HASSAN ALESSA
 
4th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
4th Semester Mechanical  Engineering (Dec-2015; Jan-2016) Question Papers4th Semester Mechanical  Engineering (Dec-2015; Jan-2016) Question Papers
4th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET Journal
 
Strength of materials (Objective Questions)
Strength of materials (Objective Questions)Strength of materials (Objective Questions)
Strength of materials (Objective Questions)
AarushiPublications
 
Flexural Analysis of Deep Aluminum Beam.
Flexural Analysis of Deep Aluminum Beam.Flexural Analysis of Deep Aluminum Beam.
Flexural Analysis of Deep Aluminum Beam.
Journal of Soft Computing in Civil Engineering
 
3rd Semester Civil Engineering Question Papers June/july 2018
3rd Semester Civil Engineering Question Papers June/july 2018 3rd Semester Civil Engineering Question Papers June/july 2018
3rd Semester Civil Engineering Question Papers June/july 2018
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126
LeteciaBaucan
 
deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126
LeteciaBaucan
 
Mechanics of Materials
Mechanics of MaterialsMechanics of Materials
Mechanics of Materials
AjEcuacion
 
Solid Mechanics Assignment Help
Solid Mechanics Assignment HelpSolid Mechanics Assignment Help
Solid Mechanics Assignment Help
Solidwork Assignment Help
 
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkdUnit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
2021me0240
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
mayur1347
 
321807031-Finite-Element-Analysis-Questions-Only.pdf
321807031-Finite-Element-Analysis-Questions-Only.pdf321807031-Finite-Element-Analysis-Questions-Only.pdf
321807031-Finite-Element-Analysis-Questions-Only.pdf
suneelKUMAR259
 
2013-June 3rd Semester Civil Engineering Question Papers
2013-June 3rd Semester Civil Engineering Question Papers2013-June 3rd Semester Civil Engineering Question Papers
2013-June 3rd Semester Civil Engineering Question Papers
B G S Institute of Technolgy
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
final report_as submitted
final report_as submittedfinal report_as submitted
final report_as submitted
HASSAN ALESSA
 
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET Journal
 
Strength of materials (Objective Questions)
Strength of materials (Objective Questions)Strength of materials (Objective Questions)
Strength of materials (Objective Questions)
AarushiPublications
 
deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126
LeteciaBaucan
 
deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126deflections-lecture-2024.pdfmechanics126
deflections-lecture-2024.pdfmechanics126
LeteciaBaucan
 
Mechanics of Materials
Mechanics of MaterialsMechanics of Materials
Mechanics of Materials
AjEcuacion
 
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkdUnit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
2021me0240
 
Ad

More from Tasos Lazaridis (10)

Technical Report
Technical ReportTechnical Report
Technical Report
Tasos Lazaridis
 
Certificate_C-SQCD7LA7GW
Certificate_C-SQCD7LA7GWCertificate_C-SQCD7LA7GW
Certificate_C-SQCD7LA7GW
Tasos Lazaridis
 
Recommendation Letter - Elpedison
Recommendation Letter - ElpedisonRecommendation Letter - Elpedison
Recommendation Letter - Elpedison
Tasos Lazaridis
 
Σφημμυ9_αυτοματος bartender
Σφημμυ9_αυτοματος bartenderΣφημμυ9_αυτοματος bartender
Σφημμυ9_αυτοματος bartender
Tasos Lazaridis
 
3D Printing - Presentation
3D Printing - Presentation3D Printing - Presentation
3D Printing - Presentation
Tasos Lazaridis
 
Introduction to SOLIDWORKS SimulationXpress
Introduction to SOLIDWORKS SimulationXpressIntroduction to SOLIDWORKS SimulationXpress
Introduction to SOLIDWORKS SimulationXpress
Tasos Lazaridis
 
6 Ασκήσεις Αριθμητικής Ανάλυσης
6 Ασκήσεις Αριθμητικής Ανάλυσης6 Ασκήσεις Αριθμητικής Ανάλυσης
6 Ασκήσεις Αριθμητικής Ανάλυσης
Tasos Lazaridis
 
6 Ασκησεις Λογισμου Μεταβολων
6 Ασκησεις Λογισμου Μεταβολων6 Ασκησεις Λογισμου Μεταβολων
6 Ασκησεις Λογισμου Μεταβολων
Tasos Lazaridis
 
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 KrakowIEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
Tasos Lazaridis
 
Certificate_C-SQCD7LA7GW
Certificate_C-SQCD7LA7GWCertificate_C-SQCD7LA7GW
Certificate_C-SQCD7LA7GW
Tasos Lazaridis
 
Recommendation Letter - Elpedison
Recommendation Letter - ElpedisonRecommendation Letter - Elpedison
Recommendation Letter - Elpedison
Tasos Lazaridis
 
Σφημμυ9_αυτοματος bartender
Σφημμυ9_αυτοματος bartenderΣφημμυ9_αυτοματος bartender
Σφημμυ9_αυτοματος bartender
Tasos Lazaridis
 
3D Printing - Presentation
3D Printing - Presentation3D Printing - Presentation
3D Printing - Presentation
Tasos Lazaridis
 
Introduction to SOLIDWORKS SimulationXpress
Introduction to SOLIDWORKS SimulationXpressIntroduction to SOLIDWORKS SimulationXpress
Introduction to SOLIDWORKS SimulationXpress
Tasos Lazaridis
 
6 Ασκήσεις Αριθμητικής Ανάλυσης
6 Ασκήσεις Αριθμητικής Ανάλυσης6 Ασκήσεις Αριθμητικής Ανάλυσης
6 Ασκήσεις Αριθμητικής Ανάλυσης
Tasos Lazaridis
 
6 Ασκησεις Λογισμου Μεταβολων
6 Ασκησεις Λογισμου Μεταβολων6 Ασκησεις Λογισμου Μεταβολων
6 Ασκησεις Λογισμου Μεταβολων
Tasos Lazaridis
 
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 KrakowIEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
IEEE Region 8 Student and Young Professional (SYP) Congress 2014 Krakow
Tasos Lazaridis
 

Double Clamped and Cantilever Beam Theoretical Solution and Numerical Solution by Finite Element Method

  • 1. Double Clamped and Cantilever Beam Theoretical Solution and Numerical Solution by Finite Element Method Anastasios S. Lazaridis M. Eng. in Electrical Engineering & Computer Science [email protected] Abstract—This paper presents a static analysis of a beam made of Aluminum. Two cases are studied, the Double Clamped Beam and the Cantilever Beam problem. The displacement of the beam under a load is calculated theoretically using Calculus of Variations and numerically using Finite Element Method (FEM). Numerical results are obtained by ANSYS and SOLIDWORKS software. All results are compared and relative differences are calculated. Keywords—static analysis; calculus of variations; FEM; ANSYS Workbench; beam displacement; SolidWorks; I. THEORETICAL PROBLEM AND SULUTION A. Definition of the Problem Suppose a beam of length l having uniform cross section under a load. Let  3 : 0,y l   , describe the shape of the axis of the beam and  3 : 0,l   be the load per unit length on the beam. Assuming small deflections, the potential energy from elastic forces [2] is the functional  3 : 0,eV l   2 2 2 0 0 2 2 l l e EI d y EI V dx y dx dx    (1) where E is the modulus of elasticity and I is the moment of inertia, both are constants. The potential energy from gravitational forces [2] is the functional  3 : 0,gV l   0 l gV ydx  (2) The total potential energy is the functional  3 : 0,V l     2 0 , , 2 l EI V V x y y y y dx          (3) The shape of the beam is such that V is minimum. The Lagrangian function  3 0,f l is   2 , , 2 EI f x y y y y   (4) must satisfy the Euler-Lagrange equation [1]. The Euler- Lagrange Equation for a functional involving second-order derivatives is written 2 2 0 d f d f f dx y dx y y           (5) along with the condition 3 0 0 , x l x f d f f y dx y y                         (6) The above equation spawns the four boundary conditions 0 0 x f y     (7) 0 x l f y     (8) 0 0 x d f f dx y y            (9) 0 x l d f f dx y y            (10) This produces the differential equation      (4) , 0, x y x x l EI    (11) The general solution of the differential equation (11) is the function      3 2 + + , 0,y x h x Ax Bx Cx D x l    (12) where , , ,A B C D are constants and  h x is a partial solution of the differential equation (11), where    (4) = x h x EI  (13) B. Definition of the load In this paper constant load case is studied    , 0,x P x l     (14) So the total impressed force on the beam is   0 l F x dx Pl  (15)
  • 2. C. Moment of Inertia The moment of inertia of an area with respect to an axis is the sum of the products obtained by multiplying each element of the area dA by the square of its distance from the axis [3]. For a section in the yx plane, the moment of inertia, about y and x axis respectively, is defined to be the double integral 2 y A I x dxdy  (16) 2 x A I y dxdy  (17) In the case of rectangular area centered at the origin of yx plane (Fig. 1), A is the region , , 2 2 2 2 a a b b A                . So yI and xI are calculated 3 2 12 y A a b I x dxdy  (18) 3 2 12 x A ab I y dxdy  (19) Fig. 1. Rectangular area centered at the origin of yx plane. II. BEAM CAD MODEL The CAD model of the beam is shown in Fig. 2. The material of the beam is Aluminum Alloy AA380.0-F die. The dimensions of the beam are shown in figure and the material properties are shown in Table I. Fig. 2. The CAD model of the beam made of Aluminum and the dimensions of the beam. TABLE I. MATERIAL PROPERTIES OF THE ALUMINUM BEAM Material Properties Property Value Unit Elastic Modulus 71000 N/mm2 Poisson’s Ratio 0.33 N/A Shear Modulus 26500 N/mm2 Mass Density 2760 kg/m3 Tensile Strength 317 N/mm2 Yield Strength 159 N/mm2 Thermal Conductivity 109 W/(m·K) Specific Heat 963 J/(kg·K) III. DOUBLE CLAMPED BEAM A. Theoretical Solution Suppose that the beam is clamped at each end (Fig. 3). The beam is “fixed in the wall” at each end so that at 0x  and x l we have respectively    0 0 0y y  and     0y l y l  . Fig. 3. The beam is clamped at each end. Here, there are four imposed boundary conditions. All the allowable variations in this problem require that    0 0 0   and     0l l   so that no natural boundary conditions (6) arise. So the problem is subscribed by the set of equations below             (4) , 0, 0 0 0 0 Pl y x x l EI y y y l y l                    (20) The general solution of the system of equations (20) is the polynomial function     2 4 3 2 + + , 0, 24 12 24 P Pl Pl y x x x x x l EI EI EI   (21) The values of Table II are used to plot the polynomial (21), which describes the displacement of a double clamped beam. TABLE II. NUMERICAL VALUES OF THE VARIABLES Variable Values Variable Symbol Value Unit Elastic Modulus E 71000 N/mm2 Area Moment of Inertia I 6666.67 mm4 Length of Beam L 500 mm Load per unit Length P 10 N/mm x y 0x  x l  p x P x y a b
  • 3. 0 100 200 300 400 500 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 x - axis [mm] y-axis-Displacement[mm] D ouble Clamped Beam - D isplacement Fig. 4. The displacement of the double clamped Aluminum beam. B. FEM Solution ANSYS and SOLIDWORKS software is used to make the simulations and calculate the solution of the FEM. The same CAD model is used for both simulations and the same mesh too (Standard Mesh with Global Size: 1.5mm and Tolerance: 0.075mm). 1) ANSYS Solution ANSYS solution is shown below in Fig.5. ANSYS Structural Toolbox was used to simulate the model. Fig. 5. The displacement of the double clamped Aluminum beam using ANSYS. 2) SOLIDWORKS Solution SOLIDWORKS solution is shown below in Fig.6. SOLIDWORKS Static Simulation Toolbox was used for the simulation. Fig. 6. The displacement of the double clamped Aluminum beam using SolidWorks. IV. CANTILEVER BEAM A. Theoretical Solution Suppose that the beam is clamped at 0x  (Fig. 7). The boundary conditions    0 0 0y y  are imposed. No boundary conditions are imposed at the other end of the beam and consequently, the natural boundary conditions (8) and (10) must be satisfied. The assumption here is made that the unclamped endpoint of the beam still lies on the line x l (small deflections). Fig. 7. Cantilever beam. Equation (8) yields the relation  0 0 x l f EI y l y         (22) Equation (10) gives the condition  0 0 x l d f f EI y l dx y y                (23) In this case the problem is described by the set of equations             (4) , 0, 0 0 0 0 Pl y x x l EI y y y l y l                     (24) The general solution of the system of equations (24) is the polynomial function     2 4 3 2 + , 0, 24 6 4 P Pl Pl y x x x x x l EI EI EI    (25) The values of Table II are used to plot the polynomial (25), which describes the displacement of a cantilever beam. x l0x  y  p x P x
  • 4. 0 100 200 300 400 500 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 x - axis [mm] y-axis-Displacement[mm] Cant ilever Beam - D isplacement Fig. 8. The displacement of the cantilever Aluminum beam. B. FEM Solution ANSYS and SOLIDWORKS software is used to make the simulations and calculate the solution of the FEM. The same CAD model is used for both simulations and the same mesh too (Standard Mesh with Global Size: 1.5mm and Tolerance: 0.075mm). 1) ANSYS Solution ANSYS solution is shown below in Fig.5. ANSYS Structural Toolbox was used to simulate the model. Fig. 9. The displacement of the cantilever Aluminum beam using ANSYS. 2) SOLIDWORKS Solution SOLIDWORKS solution is shown below in Fig.6. SOLIDWORKS Static Simulation Toolbox was used for the simulation. Fig. 10. The displacement of the cantilever Aluminum beam using SolidWorks. V. RESULTS A. Double Clamped Beam TABLE III. DOUBLE CLAMPED BEAM – DISPLACEMENT Displacement of Double Clamped Beam [mm] Theoretical ANSYS SolidWorks 3.438 3.489 3.489 TABLE IV. DOUBLE CLAMPED BEAM – RELATIVE PERCENT DIFFERENCES Relative Percent Differences ANSYS Theoretical SolidWorks 0% 1.462% ANSYS - 1.462% B. Cantilever Beam TABLE V. CANTILEVER BEAM - DISPLACEMENT Displacement of Cantilever Beam [mm] Theoretical ANSYS SolidWorks 165.05281 164.88011 157.86049 TABLE VI. CANTILEVER BEAM – RELATIVE PERCENT DIFFERENCES Relative Percent Differences ANSYS Theoretical SolidWorks 4.257% 4.357% ANSYS - 0.104% REFERENCES [1] I. M. Gelfand and S.V. Fomin, “The Canonical Form of the Euler equation and related topics,” in Calculus of Variations, (Translated and Edited by Richard A. Silverman), New Jersey: Prentc Hall, 1963. [2] Bruce van Brant, “Problems with Variable Endpoints,” in The Calculus of Variations, New York: Springer-Verlag, 2004, pp. 140-145. [3] Walter D. Pilkey, “Geometric Properties of Plane Areas,” in Formulas for Stress, Strain and Structural Matrices, 2nd ed., Ney Jersey:John Wiley & Sons, 2005, pp. 19-21.