SlideShare a Scribd company logo
Efficient and portable data
processing with Apache Beam and
HBase
Eugene Kirpichov, Google
History of Beam
Philosophy of the Beam programming model
Agenda
1
2
Apache Beam project3
Beam and HBase4
The Evolution of Apache Beam
MapReduce
BigTable DremelColossus
FlumeMegastoreSpanner
PubSub
Millwheel
Apache
Beam
Google Cloud
Dataflow
(2008) FlumeJava
High-level API
(2016) Apache Beam
Open ecosystem,
Community-driven
Vendor-independent
(2004) MapReduce
SELECT + GROUPBY
(2013) Millwheel
Deterministic
Streaming
(2014) Dataflow
Batch/streaming agnostic,
Infinite out-of-order data,
Portable
Beam model: Unbounded, temporal, out-of-order data
Unified No concept of "batch" / "streaming" at all
Time Event time (when it happened, not when we saw it)
Windowing Aggregation within time windows
Keys Windows scoped to a key (e.g. user sessions)
Triggers When is a window "complete enough"
What to do when late data arrives
What are you computing? Transforms
Where in event time? Windowing
When in processing time?
How do refinements relate?
Triggers
What Where When How
What - transforms
Element-Wise Aggregating Composite
Pipeline p = Pipeline.create(options);
p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))
.apply(FlatMapElements.via(
word → Arrays.asList(word.split("[^a-zA-Z']+"))))
.apply(Filter.byPredicate(word → !word.isEmpty()))
.apply(Count.perElement())
.apply(MapElements.via(
count → count.getKey() + ": " + count.getValue())
.apply(TextIO.Write.to("gs://.../..."));
p.run();
Where - windowing
What Where When How
● Windowing divides data into event-time-based finite chunks.
● Required when doing aggregations over unbounded data.
What Where When How
When - triggers
Control when a
window emits results
of aggregation
Often relative to the
watermark (promise
about lateness of a
source)
ProcessingTime
Event Time
Watermark
PCollection<KV<String, Integer>> output = input
.apply(Window.into(Sessions.withGapDuration(Minutes(1)))
.trigger(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))
.accumulatingAndRetracting())
.apply(Sum.integersPerKey());
What Where When How
How do refinements relate?
1.Classic Batch 2. Batch with Fixed
Windows
3. Streaming 4. Streaming with
Speculative + Late Data
Customizing What Where When How
What Where When How
Apache Beam Project3
What is Apache Beam?
1. The Beam Model: What / Where / When / How
2. SDKs for writing Beam pipelines -- Java, Python
3. Runners for Existing Distributed Processing
Backends
○ Apache Apex
○ Apache Flink
○ Apache Spark
○ Google Cloud Dataflow
○ (WIP) Gearpump and others
○ Local (in-process) runner for testing
The Apache Beam Vision
1. End users: who want to write
pipelines in a language that’s
familiar.
2. SDK writers: who want to make
Beam concepts available in new
languages.
3. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines
Beam Model: Fn Runners
Apache
Flink
Apache
Spark
Beam Model: Pipeline Construction
Other
LanguagesBeam Java
Beam
Python
Execution Execution
Cloud
Dataflow
Execution
Apache Beam ecosystem
End-user's pipeline
Libraries: transforms, sources/sinks etc.
Language-specific SDK
Beam model (ParDo, GBK, Windowing…)
Runner
Execution environment
Java ...Python
02/01/2016
Enter Apache
Incubator
Early 2016
Internal API redesign
and relative chaos
Mid 2016
Stabilization of New
APIs
Late 2016
Multiple runners
02/25/2016
1st commit to
ASF repository
05/2017
Beam 2.0
First Stable Release
Early 2017
Polish and stability
Apache Beam Community
178 contributors
24 committers from 8 orgs (none >50%)
>3300 PRs, >8600 commits, 27 releases
>20 IO (storage system) connectors
5 runners
Beam and HBase4
Beam IO connector ecosystem
Many uses of Beam = importing data from one place to another
Files Text, Avro, XML, TFRecord (pluggable FS - local, HDFS, GCS)
Hadoop ecosystem HBase, HadoopInputFormat, Hive (HCatalog)
Streaming systems Kafka, Kinesis, MQTT, JMS, (WIP) AMQP
Google Cloud Pubsub, BigQuery, Datastore, Bigtable, Spanner
Other JDBC, Cassandra, Elasticsearch, MongoDB, GridFS
HBaseIO
PCollection<Result> data = p.apply(
HBaseIO.read()
.withConfiguration(conf)
.withTableId(table)
… withScan, withFilter …)
PCollection<KV<byte[], Iterable<Mutation>>> mutations = …;
mutations.apply(
HBaseIO.write()
.withConfiguration(conf))
.withTableId(table)
IO Connectors = just Beam transforms
Made of Beam primitives
ParDo, GroupByKey, …
Write = often a simple ParDo
Read = a couple of ParDo,
“Source API” for power users
⇒ straightforward to develop, clean API, very flexible,
batch/streaming agnostic
Beam Write with HBase
A bundle is a group of elements processed and committed together.
APIs (ParDo/DoFn):
setup() -> Creates Connection
startBundle() -> Gets BufferedMutator
processElement() -> Applies Mutation(s)
finishBundle() -> BufferedMutator flush
tearDown() -> Connection close
Mutations must be idempotent, e.g. Put or Delete.
Increment and Append should not be used.
Transaction
Beam Source API
(similar to Hadoop InputFormat, but cleaner / more general)
Estimate size
Split into sub-sources (of ~given size)
Read
Iterate
Get progress
Dynamic split
Note: Separate API for unbounded sources + (WIP) a new unified API
HBase on Beam Source API
HBaseSource Scan
Estimate RegionSizeCalculator
Split RegionLocation
Read
Iterate ResultScanner
Get progress Key interpolation
Dynamic split* RangeTracker
Region Server 1
Region Server 2
* Dynamic Split for HBaseIO PR in progress
Google Cloud Platform 26
Digression: StragglersWorkers
Time
Beam approach: Dynamic splitting*
Workers
Time
Now Avg completion time
*Currently implemented only by Dataflow
Autoscaling
Learn More!
Apache Beam
https://beam.apache.org
The World Beyond Batch 101 & 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
No Shard Left Behind
Straggler Free Data Processing in Cloud Dataflow
Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org
Follow @ApacheBeam on Twitter
Thank you
Ad

More Related Content

What's hot (20)

HBaseCon 2015: HBase Operations in a Flurry
HBaseCon 2015: HBase Operations in a FlurryHBaseCon 2015: HBase Operations in a Flurry
HBaseCon 2015: HBase Operations in a Flurry
HBaseCon
 
Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010
Cloudera, Inc.
 
hbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Netease
HBaseCon
 
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsightHBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon
 
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBaseHBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
Cloudera, Inc.
 
HBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring BudgetHBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
Cloudera, Inc.
 
Drill architecture 20120913
Drill architecture 20120913Drill architecture 20120913
Drill architecture 20120913
jasonfrantz
 
HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini
Cloudera, Inc.
 
HBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbmsHBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbms
Michael Stack
 
HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at XiaomiHBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon
 
Presto at Twitter
Presto at TwitterPresto at Twitter
Presto at Twitter
Bill Graham
 
Apache Spark on Apache HBase: Current and Future
Apache Spark on Apache HBase: Current and Future Apache Spark on Apache HBase: Current and Future
Apache Spark on Apache HBase: Current and Future
HBaseCon
 
Keynote: The Future of Apache HBase
Keynote: The Future of Apache HBaseKeynote: The Future of Apache HBase
Keynote: The Future of Apache HBase
HBaseCon
 
Rich Data Graphs for MapReduce
Rich Data Graphs for MapReduceRich Data Graphs for MapReduce
Rich Data Graphs for MapReduce
Scott Cinnamond
 
January 2011 HUG: Kafka Presentation
January 2011 HUG: Kafka PresentationJanuary 2011 HUG: Kafka Presentation
January 2011 HUG: Kafka Presentation
Yahoo Developer Network
 
Building a Scalable Web Crawler with Hadoop
Building a Scalable Web Crawler with HadoopBuilding a Scalable Web Crawler with Hadoop
Building a Scalable Web Crawler with Hadoop
Hadoop User Group
 
HBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ FlipboardHBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ Flipboard
Matthew Blair
 
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big DataHBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
Cloudera, Inc.
 
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
Cloudera, Inc.
 
Foss evolution cos-boudnik
Foss evolution cos-boudnikFoss evolution cos-boudnik
Foss evolution cos-boudnik
Data Con LA
 
HBaseCon 2015: HBase Operations in a Flurry
HBaseCon 2015: HBase Operations in a FlurryHBaseCon 2015: HBase Operations in a Flurry
HBaseCon 2015: HBase Operations in a Flurry
HBaseCon
 
Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010Facebook - Jonthan Gray - Hadoop World 2010
Facebook - Jonthan Gray - Hadoop World 2010
Cloudera, Inc.
 
hbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Neteasehbaseconasia2017: Apache HBase at Netease
hbaseconasia2017: Apache HBase at Netease
HBaseCon
 
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsightHBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon
 
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBaseHBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
HBaseCon 2013: Project Valta - A Resource Management Layer over Apache HBase
Cloudera, Inc.
 
HBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring BudgetHBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
HBaseCon 2012 | Building a Large Search Platform on a Shoestring Budget
Cloudera, Inc.
 
Drill architecture 20120913
Drill architecture 20120913Drill architecture 20120913
Drill architecture 20120913
jasonfrantz
 
HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini HBaseCon 2012 | HBase, the Use Case in eBay Cassini
HBaseCon 2012 | HBase, the Use Case in eBay Cassini
Cloudera, Inc.
 
HBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbmsHBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbms
Michael Stack
 
HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at XiaomiHBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon
 
Presto at Twitter
Presto at TwitterPresto at Twitter
Presto at Twitter
Bill Graham
 
Apache Spark on Apache HBase: Current and Future
Apache Spark on Apache HBase: Current and Future Apache Spark on Apache HBase: Current and Future
Apache Spark on Apache HBase: Current and Future
HBaseCon
 
Keynote: The Future of Apache HBase
Keynote: The Future of Apache HBaseKeynote: The Future of Apache HBase
Keynote: The Future of Apache HBase
HBaseCon
 
Rich Data Graphs for MapReduce
Rich Data Graphs for MapReduceRich Data Graphs for MapReduce
Rich Data Graphs for MapReduce
Scott Cinnamond
 
Building a Scalable Web Crawler with Hadoop
Building a Scalable Web Crawler with HadoopBuilding a Scalable Web Crawler with Hadoop
Building a Scalable Web Crawler with Hadoop
Hadoop User Group
 
HBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ FlipboardHBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ Flipboard
Matthew Blair
 
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big DataHBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
HBaseCon 2012 | You’ve got HBase! How AOL Mail Handles Big Data
Cloudera, Inc.
 
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
Cloudera, Inc.
 
Foss evolution cos-boudnik
Foss evolution cos-boudnikFoss evolution cos-boudnik
Foss evolution cos-boudnik
Data Con LA
 

Similar to HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase (20)

Unified, Efficient, and Portable Data Processing with Apache Beam
Unified, Efficient, and Portable Data Processing with Apache BeamUnified, Efficient, and Portable Data Processing with Apache Beam
Unified, Efficient, and Portable Data Processing with Apache Beam
DataWorks Summit/Hadoop Summit
 
Portable Streaming Pipelines with Apache Beam
Portable Streaming Pipelines with Apache BeamPortable Streaming Pipelines with Apache Beam
Portable Streaming Pipelines with Apache Beam
confluent
 
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
Building Scalable Data Pipelines - 2016 DataPalooza SeattleBuilding Scalable Data Pipelines - 2016 DataPalooza Seattle
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
Evan Chan
 
Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...
DataWorks Summit
 
Introduction to Apache Beam
Introduction to Apache BeamIntroduction to Apache Beam
Introduction to Apache Beam
Jean-Baptiste Onofré
 
Realizing the Promise of Portable Data Processing with Apache Beam
Realizing the Promise of Portable Data Processing with Apache BeamRealizing the Promise of Portable Data Processing with Apache Beam
Realizing the Promise of Portable Data Processing with Apache Beam
DataWorks Summit
 
Realizing the promise of portability with Apache Beam
Realizing the promise of portability with Apache BeamRealizing the promise of portability with Apache Beam
Realizing the promise of portability with Apache Beam
J On The Beach
 
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Provectus
 
Realizing the promise of portable data processing with Apache Beam
Realizing the promise of portable data processing with Apache BeamRealizing the promise of portable data processing with Apache Beam
Realizing the promise of portable data processing with Apache Beam
DataWorks Summit
 
Present and future of unified, portable and efficient data processing with Ap...
Present and future of unified, portable and efficient data processing with Ap...Present and future of unified, portable and efficient data processing with Ap...
Present and future of unified, portable and efficient data processing with Ap...
DataWorks Summit
 
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Thomas Weise
 
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Malo Denielou
 
The other Apache Technologies your Big Data solution needs
The other Apache Technologies your Big Data solution needsThe other Apache Technologies your Big Data solution needs
The other Apache Technologies your Big Data solution needs
gagravarr
 
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Data Con LA
 
Hadoop basics
Hadoop basicsHadoop basics
Hadoop basics
Antonio Silveira
 
CouchDB
CouchDBCouchDB
CouchDB
Jacob Diamond
 
The other Apache technologies your big data solution needs!
The other Apache technologies your big data solution needs!The other Apache technologies your big data solution needs!
The other Apache technologies your big data solution needs!
gagravarr
 
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Yahoo Developer Network
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Dan Halperin
 
Technology Stack Discussion
Technology Stack DiscussionTechnology Stack Discussion
Technology Stack Discussion
Zaiyang Li
 
Unified, Efficient, and Portable Data Processing with Apache Beam
Unified, Efficient, and Portable Data Processing with Apache BeamUnified, Efficient, and Portable Data Processing with Apache Beam
Unified, Efficient, and Portable Data Processing with Apache Beam
DataWorks Summit/Hadoop Summit
 
Portable Streaming Pipelines with Apache Beam
Portable Streaming Pipelines with Apache BeamPortable Streaming Pipelines with Apache Beam
Portable Streaming Pipelines with Apache Beam
confluent
 
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
Building Scalable Data Pipelines - 2016 DataPalooza SeattleBuilding Scalable Data Pipelines - 2016 DataPalooza Seattle
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
Evan Chan
 
Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...
DataWorks Summit
 
Realizing the Promise of Portable Data Processing with Apache Beam
Realizing the Promise of Portable Data Processing with Apache BeamRealizing the Promise of Portable Data Processing with Apache Beam
Realizing the Promise of Portable Data Processing with Apache Beam
DataWorks Summit
 
Realizing the promise of portability with Apache Beam
Realizing the promise of portability with Apache BeamRealizing the promise of portability with Apache Beam
Realizing the promise of portability with Apache Beam
J On The Beach
 
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Data Summer Conf 2018, “Building unified Batch and Stream processing pipeline...
Provectus
 
Realizing the promise of portable data processing with Apache Beam
Realizing the promise of portable data processing with Apache BeamRealizing the promise of portable data processing with Apache Beam
Realizing the promise of portable data processing with Apache Beam
DataWorks Summit
 
Present and future of unified, portable and efficient data processing with Ap...
Present and future of unified, portable and efficient data processing with Ap...Present and future of unified, portable and efficient data processing with Ap...
Present and future of unified, portable and efficient data processing with Ap...
DataWorks Summit
 
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Thomas Weise
 
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Malo Denielou
 
The other Apache Technologies your Big Data solution needs
The other Apache Technologies your Big Data solution needsThe other Apache Technologies your Big Data solution needs
The other Apache Technologies your Big Data solution needs
gagravarr
 
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Big Data Day LA 2016/ Big Data Track - Fluentd and Embulk: Collect More Data,...
Data Con LA
 
The other Apache technologies your big data solution needs!
The other Apache technologies your big data solution needs!The other Apache technologies your big data solution needs!
The other Apache technologies your big data solution needs!
gagravarr
 
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Honu - A Large Scale Streaming Data Collection and Processing Pipeline__Hadoo...
Yahoo Developer Network
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Dan Halperin
 
Technology Stack Discussion
Technology Stack DiscussionTechnology Stack Discussion
Technology Stack Discussion
Zaiyang Li
 
Ad

More from HBaseCon (20)

hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
HBaseCon
 
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
HBaseCon
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
HBaseCon
 
hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践
HBaseCon
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
HBaseCon
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
HBaseCon
 
hbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecture
HBaseCon
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
HBaseCon
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
HBaseCon
 
hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0
HBaseCon
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
HBaseCon
 
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
HBaseCon
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
HBaseCon
 
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environmentHBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon
 
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon
 
HBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at XiaomiHBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at Xiaomi
HBaseCon
 
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ SalesforceHBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon
 
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
HBaseCon
 
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huaweihbaseconasia2017: HBase Disaster Recovery Solution at Huawei
hbaseconasia2017: HBase Disaster Recovery Solution at Huawei
HBaseCon
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
HBaseCon
 
hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践hbaseconasia2017: HBase在Hulu的使用和实践
hbaseconasia2017: HBase在Hulu的使用和实践
HBaseCon
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
HBaseCon
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
HBaseCon
 
hbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecturehbaseconasia2017: Large scale data near-line loading method and architecture
hbaseconasia2017: Large scale data near-line loading method and architecture
HBaseCon
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
HBaseCon
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
HBaseCon
 
hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0hbaseconasia2017: hbase-2.0.0
hbaseconasia2017: hbase-2.0.0
HBaseCon
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
HBaseCon
 
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in PinterestHBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon2017 Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
HBaseCon
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
HBaseCon
 
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environmentHBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon
 
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon
 
HBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at XiaomiHBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at Xiaomi
HBaseCon
 
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ SalesforceHBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon
 
Ad

Recently uploaded (20)

IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 

HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase

  • 1. Efficient and portable data processing with Apache Beam and HBase Eugene Kirpichov, Google
  • 2. History of Beam Philosophy of the Beam programming model Agenda 1 2 Apache Beam project3 Beam and HBase4
  • 3. The Evolution of Apache Beam MapReduce BigTable DremelColossus FlumeMegastoreSpanner PubSub Millwheel Apache Beam Google Cloud Dataflow
  • 4. (2008) FlumeJava High-level API (2016) Apache Beam Open ecosystem, Community-driven Vendor-independent (2004) MapReduce SELECT + GROUPBY (2013) Millwheel Deterministic Streaming (2014) Dataflow Batch/streaming agnostic, Infinite out-of-order data, Portable
  • 5. Beam model: Unbounded, temporal, out-of-order data Unified No concept of "batch" / "streaming" at all Time Event time (when it happened, not when we saw it) Windowing Aggregation within time windows Keys Windows scoped to a key (e.g. user sessions) Triggers When is a window "complete enough" What to do when late data arrives
  • 6. What are you computing? Transforms Where in event time? Windowing When in processing time? How do refinements relate? Triggers
  • 7. What Where When How What - transforms Element-Wise Aggregating Composite
  • 8. Pipeline p = Pipeline.create(options); p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*")) .apply(FlatMapElements.via( word → Arrays.asList(word.split("[^a-zA-Z']+")))) .apply(Filter.byPredicate(word → !word.isEmpty())) .apply(Count.perElement()) .apply(MapElements.via( count → count.getKey() + ": " + count.getValue()) .apply(TextIO.Write.to("gs://.../...")); p.run();
  • 9. Where - windowing What Where When How ● Windowing divides data into event-time-based finite chunks. ● Required when doing aggregations over unbounded data.
  • 10. What Where When How When - triggers Control when a window emits results of aggregation Often relative to the watermark (promise about lateness of a source) ProcessingTime Event Time Watermark
  • 11. PCollection<KV<String, Integer>> output = input .apply(Window.into(Sessions.withGapDuration(Minutes(1))) .trigger(AtWatermark() .withEarlyFirings(AtPeriod(Minutes(1))) .withLateFirings(AtCount(1))) .accumulatingAndRetracting()) .apply(Sum.integersPerKey()); What Where When How How do refinements relate?
  • 12. 1.Classic Batch 2. Batch with Fixed Windows 3. Streaming 4. Streaming with Speculative + Late Data Customizing What Where When How What Where When How
  • 14. What is Apache Beam? 1. The Beam Model: What / Where / When / How 2. SDKs for writing Beam pipelines -- Java, Python 3. Runners for Existing Distributed Processing Backends ○ Apache Apex ○ Apache Flink ○ Apache Spark ○ Google Cloud Dataflow ○ (WIP) Gearpump and others ○ Local (in-process) runner for testing
  • 15. The Apache Beam Vision 1. End users: who want to write pipelines in a language that’s familiar. 2. SDK writers: who want to make Beam concepts available in new languages. 3. Runner writers: who have a distributed processing environment and want to support Beam pipelines Beam Model: Fn Runners Apache Flink Apache Spark Beam Model: Pipeline Construction Other LanguagesBeam Java Beam Python Execution Execution Cloud Dataflow Execution
  • 16. Apache Beam ecosystem End-user's pipeline Libraries: transforms, sources/sinks etc. Language-specific SDK Beam model (ParDo, GBK, Windowing…) Runner Execution environment Java ...Python
  • 17. 02/01/2016 Enter Apache Incubator Early 2016 Internal API redesign and relative chaos Mid 2016 Stabilization of New APIs Late 2016 Multiple runners 02/25/2016 1st commit to ASF repository 05/2017 Beam 2.0 First Stable Release Early 2017 Polish and stability
  • 18. Apache Beam Community 178 contributors 24 committers from 8 orgs (none >50%) >3300 PRs, >8600 commits, 27 releases >20 IO (storage system) connectors 5 runners
  • 20. Beam IO connector ecosystem Many uses of Beam = importing data from one place to another Files Text, Avro, XML, TFRecord (pluggable FS - local, HDFS, GCS) Hadoop ecosystem HBase, HadoopInputFormat, Hive (HCatalog) Streaming systems Kafka, Kinesis, MQTT, JMS, (WIP) AMQP Google Cloud Pubsub, BigQuery, Datastore, Bigtable, Spanner Other JDBC, Cassandra, Elasticsearch, MongoDB, GridFS
  • 21. HBaseIO PCollection<Result> data = p.apply( HBaseIO.read() .withConfiguration(conf) .withTableId(table) … withScan, withFilter …) PCollection<KV<byte[], Iterable<Mutation>>> mutations = …; mutations.apply( HBaseIO.write() .withConfiguration(conf)) .withTableId(table)
  • 22. IO Connectors = just Beam transforms Made of Beam primitives ParDo, GroupByKey, … Write = often a simple ParDo Read = a couple of ParDo, “Source API” for power users ⇒ straightforward to develop, clean API, very flexible, batch/streaming agnostic
  • 23. Beam Write with HBase A bundle is a group of elements processed and committed together. APIs (ParDo/DoFn): setup() -> Creates Connection startBundle() -> Gets BufferedMutator processElement() -> Applies Mutation(s) finishBundle() -> BufferedMutator flush tearDown() -> Connection close Mutations must be idempotent, e.g. Put or Delete. Increment and Append should not be used. Transaction
  • 24. Beam Source API (similar to Hadoop InputFormat, but cleaner / more general) Estimate size Split into sub-sources (of ~given size) Read Iterate Get progress Dynamic split Note: Separate API for unbounded sources + (WIP) a new unified API
  • 25. HBase on Beam Source API HBaseSource Scan Estimate RegionSizeCalculator Split RegionLocation Read Iterate ResultScanner Get progress Key interpolation Dynamic split* RangeTracker Region Server 1 Region Server 2 * Dynamic Split for HBaseIO PR in progress
  • 26. Google Cloud Platform 26 Digression: StragglersWorkers Time
  • 27. Beam approach: Dynamic splitting* Workers Time Now Avg completion time *Currently implemented only by Dataflow
  • 29. Learn More! Apache Beam https://beam.apache.org The World Beyond Batch 101 & 102 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102 No Shard Left Behind Straggler Free Data Processing in Cloud Dataflow Join the mailing lists! [email protected] [email protected] Follow @ApacheBeam on Twitter