A recent study Sastry and Xiao (2001) proposed a highly reliable cluster optimization algorithm which employed extended compact genetic algorithm (ECGA) along with Nelder-Mead simplex search. This study utilizes an efficiency enhancement technique for the ECGA based cluster optimizer to reduce the population size and the number of function evaluation requirements, yet retaining the high reliability of predicting the lowest energy structure. Seeding of initial population with lowest energy structures of smaller cluster has been employed as the efficiency enhancement technique. Empirical results indicate that the population size and total number of function evaluations scale up with the cluster size are reduced from O(n4.2) and O(n8.2) to O(n0.83) and O(n2.45) respectively.