SlideShare a Scribd company logo
MINISTRY OF SCIENTIFIC EDUCATION AND HIGHER RESEARCHES
NORTHERN TECHNICAL UNIVERSITY
ENGINEERING TECHNICAL COLLEGE / MOSUL
DEPARTMENT OF COMPUTER TECHNOLOGY
1
ENGINEERING ANALYSIS LECTURE
DEPARTMENT OF COMPUTER
TECHNOLOGY –THIRD CLASS
2018 -2019
ARJUWAN MOHAMMED ABDULJAWAD
ALJAWADI
LECTURER
2
- ENGINEERING ANALYSIS
One of important transforms used in linear- system analysis. It is
named in honor of the great French mathematician, Pierre Simon De
Laplace (1749-1827).
3
- Purpose of Laplace Transform
• To convert from one type of operation to another
operations of different types in more simple form.
• A well-known technique for solving differential
equations.
4
- THE TIME DOMAIN SIGNAL IS CONTINUOUS , EXTENDS
TO:
1. POSITIVE AND NEGATIVE INFINITY.
2. PERIODIC OR APERIODIC SIGNAL
5
- Laplace Transform Definition:
The Laplace transform F(s) of a time function F (t) is given by the
integral:
6
This definition is called the bilateral, or two-sided, Laplace transform—hence, the
subscript b. Notice that the bilateral Laplace transform integral becomes the Fourier
transform integral if is replaced by (𝑗𝑤 ) . The Laplace transform variable is
complex 𝑠 = 𝛼 + 𝑗𝑤, we can rewrite (1) as:
𝐹 𝑠 =
−∞
∞
𝑓(𝑡)𝑒−(𝜎+𝑗𝜔)𝑡
𝑑𝑡
=
−∞
∞
𝑓(𝑡)𝑒−𝜎𝑡
𝑒−𝑗𝑤
𝑑𝑡
7
𝑓 𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0 Thus the first integral in above equation
is zero.
The resulting transform, called the unilateral, or single-sided Laplace
transform, is given by:
8
THE LAPLACE-TRANSFORM VARIABLE S IS COMPLEX, AND WE
DENOTE ITS REAL PART AS ∝ AND ITS IMAGINARY PART AS
𝑗𝑤 THAT IS: 𝑠 = ∝ +𝑗𝑤
The S-plane
9
Some Elementary Functions F(t) and their Laplace Transform
F(t) F(s)
U(t) 1
s
t 1/s2
tn n!/ sn+1
e−at
1
s + a
eat
1
s − a
sin wt w/s2+w2
cos at s/s2+a2
sin hat w/s2- w2
cos hat s/s2- w2
10
- Laplace Transform of some important functions
1. Laplace Transform of a unit –step function 𝑓(𝑡) = 1.
11
2. Laplace Transform of 𝑓(𝑡) = 𝑒𝑎𝑡
12
3. Laplace Transform of 𝑓(𝑡) = 𝑡𝑛
Where n= (1,2,3,4,…………………………….)
f s = 0
∞
e−st tn .dt
udv = uv − v . du
U=tn , du = (𝑛 𝑡𝑛−1) , dv= e−st , v=-
e−st
s
f s = − e−st.tn/s |- 0
∞
𝑛
𝑒−𝑠𝑡
𝑠
.tn-1.dt
13
The first term limits will be form (0 to ∞) by substituting it yields zero while the second
term by substitution we get:
f s = 0
∞ −ne−st
s
n tn-1.dt
u=ntn-1 , du=n(n-1)tn-2 , dv=
e−st
s
, v= - e−st/s2
f s = ne−st
tn-1 /s2 | - 0
∞
−n(n − 1)tn-2/s2 .e−st
. dt
f s = 0
∞
n(n − 1)e−st tn-2 /s2 .dt
Then after n times integration we have :
f s =
0
∞
n!
sn
tn−ne−st. dt
f s =
0
∞
n!
sn
e−st. dt
=
n!
sn+1 e−st
| =
n!
sn+1
NOTE: IN THIS SAME METHOD YOU CAN FIND LAPLACE TRANSFORM OF COS 𝑤𝑡
14
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] =
0
∞
𝑠𝑖𝑛𝑤𝑡𝑒−𝑠𝑡
. 𝑑𝑡
𝑒𝑗𝑤𝑡
= 𝑐𝑜𝑠 𝑤𝑡 + 𝑗𝑠𝑖𝑛 𝑤𝑡
𝑠𝑖𝑛 𝑤𝑡 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 (𝐼𝑚) 𝑜𝑓 𝑒𝑗𝑤𝑡
𝑠𝑖𝑛 𝑤𝑡 = 𝐼𝑚 (𝑒𝑗𝑤𝑡
)
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 𝐼𝑚
0
∞
𝑒𝑗𝑤𝑡𝑒−𝑠𝑡. 𝑑𝑡
= 𝐼𝑚
0
∞
𝑒−(𝑠−𝑗𝑤). 𝑑𝑡
= 𝐼𝑚 [−
𝑒− 𝑠−𝑗𝑤 𝑡
(𝑠 − 𝑗𝑤)
] = 𝐼𝑚 [0 − (−
𝑒0
𝑠 − 𝑗𝑤)
)
= 𝐼𝑚
1
𝑠 − 𝑗𝑤
= 𝐼𝑚 [
1
𝑎 − 𝑗𝑤
∗
𝑠 + 𝑗𝑤
𝑠 + 𝑗𝑤
]
= 𝐼𝑚 (𝑠 + 𝑗𝑤) / (𝑠2 + 𝑤2) = 𝑤 / (𝑠2 + 𝑤2)
4. Laplace Transform of f t = 𝑠𝑖𝑛 𝑤𝑡
5. LAPLACE TRANSFORM OF F T = 𝐶𝑜𝑠ℎ(𝑎𝑡)
15
𝐶𝑜𝑠ℎ(𝑎𝑡) =
𝑒𝑎𝑡
+ 𝑒−𝑎𝑡
2
ℒ cosh 𝑎𝑡 =
1
2
1
𝑠 − 𝑎
+
1
𝑠 + 𝑎
=
1
2
∗ [
𝑠 + 𝑎 + 𝑠 − 𝑎
(𝑠 − 𝑎)(𝑠 + 𝑎)
]
=
1
2
∗ [
2𝑠
𝑠2 + 𝑎𝑠 − 𝑎𝑠 − 𝑎2
]
=
1
2
[
2𝑠
𝑠2 − 𝑎2
]
=
𝑠
𝑠2 − 𝑎2
16
- Laplace Transform Properties:
1. Multiplication by Constant:
ℒ 𝑘. 𝐹 𝑡 = 0
∞
𝑘. 𝐹 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
= k. 0
∞
𝐹(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡
=𝑘. 𝐹(𝑠)
Example:
ℒ3. 𝑒2𝑡
= 3.
1
𝑠 − 2
=
3
𝑠 − 2
17
2. Linearity:
If 𝐹 𝑡 = 𝐹1 𝑡 + 𝐹2 𝑡
ℒ 𝐹 𝑡 = 0
∞
𝐹(𝑡)𝑒−𝑠𝑡
.dt
= 0
∞
𝐹1 𝑡 + 𝐹2 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
= 0
∞
𝐹1 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 + 0
∞
𝐹2 𝑡 𝑒−𝑠𝑡. 𝑑𝑡
= ℒ 𝐹1 𝑡 + ℒ[𝐹2 𝑡 ] = 𝐹1 𝑠 + 𝐹2(𝑠)
If 𝐹 𝑡 = 𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡
Where a1 and a2 are constants
Then ℒ[𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 ]
= 𝑎1ℒ 𝐹1 𝑡 + 𝑎2ℒ 𝐹2 𝑡
18
Examples:
1. ℒ[2𝑠𝑖𝑛3𝑡 + 𝑐𝑜𝑠3𝑡]
= 2 ℒ 𝑠𝑖𝑛3𝑡 + ℒ[𝑐𝑜𝑠3𝑡]
= 2.
3
𝑠2+9
+
𝑠
𝑠2+9
=
𝑠+6
𝑠2+9
2. ℒ[ 4 𝑒5𝑡
+ 6𝑡3
− 3𝑠𝑖𝑛4𝑡 + 2𝑐𝑜𝑠2𝑡]
=
4
𝑠 − 5
+
6.3!
𝑠4
−
12
𝑠2 + 16
+
2𝑠
𝑠2 + 4
=
4
𝑠 − 5
+
36
𝑠4 −
12
𝑠2 + 16
+
2𝑠
𝑠2 + 4
- Home Work:
- ℒ[3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6]
- ℒ[3𝑡10
− 8𝑒−3𝑡
+ 5𝑐𝑜𝑠3𝑡 + 4𝑠𝑖𝑛2𝑡]
- ℒ[3𝑐𝑜𝑠5𝑡 − 4𝑠𝑖𝑛ℎ5𝑡]
19
3. Multiplication by exponential:
𝑓1 𝑡 = 𝑓 𝑡 𝑒−𝑎𝑡
ℒ 𝑓 𝑡 𝑒−𝑎𝑡
=
0
∞
𝑓 𝑡 𝑒−𝑎𝑡
𝑒−𝑠𝑡
0
∞
𝑓 𝑡 𝑒− 𝑠+𝑎 𝑡
. 𝑑𝑡 Then 𝑓(𝑠 + 𝑎)
The transform ℒ 𝑓 𝑡 𝑒−𝑎𝑡
is thus the same as ℒ 𝑓 𝑡
with everywhere in the result replaced by (𝑠 + 𝑎).
20
- Example:
ℒ 𝑒−𝑎𝑡
𝑠𝑖𝑛𝑤𝑡 =
𝑤
(𝑠+𝑎)2+ 𝑤2
ℒ 𝑡2
𝑒−4𝑡
=
2
(𝑠 + 4)3
- Example:
1. ℒ 𝑡2𝑒3𝑡 =
2
(𝑠−3)2
2. ℒ 𝑒−2𝑡
𝑠𝑖𝑛4𝑡 =
4
(𝑠+2)2+16
=
4
𝑠2+2𝑠+20
3. ℒ 𝑒−4𝑡
𝑐𝑜𝑠ℎ5𝑡 =
(𝑠−4)
(𝑠−4)2−25
=
(𝑠−4)
𝑠2−4𝑠+16−25
=
𝑠−4
𝑠2−4𝑠−9
- Home Work:
Find ℒ 𝑒−2𝑡
(3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6𝑡
- Home Work:
Find ℒ 𝑒−4𝑡
𝑐𝑜𝑠ℎ5𝑡 using cosh =
1
2
( 𝑒𝑎𝑡
+ 𝑒−𝑎𝑡
)
21
4. Multiplication by t (frequency derivative)
If ℒ 𝑓(𝑡) = 𝑓(𝑠)
Then ℒ 𝑡. 𝑓 𝑡 = −
𝑑
𝑑𝑠
𝑓(𝑠)
In general it can be
ℒ 𝑡𝑛
𝑓 𝑡 = (−1)𝑛
𝑑𝑛
𝑑𝑠𝑛
𝑓(𝑠)
- Example:
ℒ 𝑡. 𝑠𝑖𝑛2𝑡
ℒ 𝑠𝑖𝑛2𝑡 =
2
𝑠2 + 4
ℒ 𝑡 𝑠𝑖𝑛2𝑡 = −
𝑑
𝑑𝑠
.
2
𝑠2 + 4
=
𝑠2+4 ∗0−2∗2𝑠
(𝑠2+4)2 =
4𝑠
(𝑠2+4)2
22
- Example:
ℒ 𝑡 3𝑠𝑖𝑛2𝑡 − 2𝑐𝑜𝑠2𝑡
= 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡𝑐𝑜𝑠𝑡
ℒ2𝑠𝑖𝑛2𝑡 =
6
𝑠2 + 4
ℒ𝑐𝑜𝑠2𝑡 =
2𝑠
𝑠2 + 4
= 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡 𝑐𝑜𝑠2𝑡
ℒ 3𝑡 𝑠𝑖𝑛2𝑡 =
𝑠2
+ 4 ∗ 0 − 6 ∗ 2𝑠
(𝑠2 + 4)2
=
−12𝑠
(𝑠2 + 4)2
ℒ 2𝑡 𝑐𝑜𝑠2𝑡 =
𝑠2 + 4 ∗ 2 − 2𝑠 ∗ 2𝑠
(𝑠2 + 4)2 =
2𝑠2 + 8 − 4𝑠2
(𝑠2 + 4)2
=
−12𝑠
(𝑠2+4)2 −
8−2𝑠2
𝑠2+4 2 =
−2𝑠2−12𝑠+8
(𝑠2+4)2
23
5.Time Derivative:
ℒ
𝑑𝑓 𝑡
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓(0)
Where 𝑓(0) is the initial value of 𝑓(𝑡) ,evaluated as the one - side limit of 𝑓(𝑡) as 𝑡 → 0 from
positive valued.
ℒ 𝑓 𝑡 ′
=
0
∞
𝑓 𝑡 ′
𝑒−𝑠𝑡
. 𝑑𝑡
Using 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑢 = 𝑒−𝑠𝑡 , 𝑑𝑢 = −𝑠𝑒−𝑠𝑡, 𝑑𝑣 = 𝑓 𝑡 ′ , 𝑣 = 𝑓(𝑡)
= 𝑒−𝑠𝑡
𝑓 𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 − ∞ − 0
∞
𝑓(𝑡)(−𝑠𝑒−𝑠𝑡
). 𝑑𝑡
= 0 − 𝑓 0 + 𝑠𝑓(𝑠)
Then ℒ
𝑑2𝑓 𝑡
𝑑𝑡2 = 𝑠2
𝑓 𝑠 − 𝑠𝑓 0 − 𝑓(0)′
and in general:
ℒ
𝑑𝑛
𝑓 𝑡
𝑑𝑡𝑛 = 𝑠𝑛
𝑓 𝑠 −
𝑖=1
𝑛
𝑓(0)(𝑖−1)
𝑠𝑛−𝑖
24
- Example:
𝑓 𝑡 = 𝑡 , 𝐹𝑖𝑛𝑑 ℒ 1 𝑢𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
Since ℒ 1 =
1
𝑠
, 𝑓 0 = 0
ℒ
𝑑𝑓 𝑡
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓 0
ℒ
𝑑𝑓 1
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓 0
ℒ 1 = 𝑠 ∗
1
𝑠2 − 0 =
1
𝑠
25
- Example: Use Laplace transform in solving for the current in an electric circuit. Consider the RL-circuit in the
following figure, where 𝑉 is constant. The loop equation for this circuit is given by:
𝐿.
𝑑𝑖(𝑡)
𝑑𝑡
+ 𝑅𝑖 𝑡 = 𝑉𝑢 𝑡 𝑓𝑜𝑟 𝑡 > 0
26
Since the switch is closed at 𝑡 = 0 . The Laplace transform of this equation yields:
𝐿 𝑠𝐼 𝑠 − 𝑖 0 + 𝑅𝐼 𝑠 =
𝑉
𝑠
The initial current is zero 0 = 0 , 𝑖(𝑡) is zero for negative time since the switch is open for 𝑡 < 0 and the
current in an inductance cannot change instantaneously.
𝐼 𝑠 =
𝑉
𝑠 𝐿𝑠 + 𝑅
=
𝑉
𝐿
𝑠 𝑠 +
𝑅
𝐿
𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝐿
Solve with partial fraction:
𝐼 𝑠 =
𝑉
𝐿
𝑠 𝑠 +
𝑅
𝐿
=
𝑎
𝑠
+
𝑏
𝑠 +
𝑅
𝐿
=
𝑎𝑠 + 𝑎
𝑅
𝐿
+ 𝑏𝑠
𝑠 𝑠 + 𝑅
𝐿
27
=
𝑎 + 𝑏 𝑠 + 𝑎 𝑅
𝐿
𝑠(𝑠 + 𝑅
𝐿)
𝑎 + 𝑏 = 0 → 𝑎 = −𝑏
𝑎
𝑅
𝐿
=
𝑉
𝐿
→ 𝑎 =
𝑉
𝑅
𝐼 𝑠 =
𝑉
𝑅
𝑠
−
𝑉
𝑅
𝑠 + 𝑅
𝐿
𝐴 = 𝑠 .
𝑉
𝑅
𝑠.(𝑠+𝑅
𝐿 )
𝑤ℎ𝑒𝑛 𝑠 = 0 𝐴 =
𝑉
𝑅
𝐵 = 𝑠 + 𝑅
𝐿 .
𝑉
𝐿
𝑠. 𝑠+𝑅
𝐿
𝑤ℎ𝑒𝑛 𝑠 =
−𝑅
𝐿
𝐵 =
𝑉
𝐿
− 𝑅
𝐿
=
− 𝑉
𝑅
ℒ𝐼(𝑠)−1
= 𝑖 𝑡 =
𝑉
𝑅
−
𝑉
𝑅
𝑒− 𝑅
𝐿𝑡
𝑖 𝑡 =
𝑉
𝑅
1 − 𝑒−( 𝑅
𝐿)𝑡
𝑡 > 0
The initial condition 𝑖 0 = 0 is satisfied by 𝑖 𝑡 also substitution of 𝑖 𝑡 into the
differential equation satisfies that equation.
28
- Example:
Solve the following differential equation:
𝑦′′
− 4𝑦′
+ 5𝑦 = 𝑥 𝑡 𝑦 0 = 0 , 𝑦 0 ′
𝑠2
𝑦 𝑠 − 𝑠𝑦 0 − 𝑦′
0 − 4 𝑠𝑦 𝑠 − 𝑦 0 + 5𝑦 𝑠 = 𝑥 𝑠
𝑠2𝑦 𝑠 − 4𝑠𝑦 𝑠 + 5𝑦 𝑠 = 𝑥 𝑠
𝑦 𝑠 𝑠2 − 4𝑠 + 5 = 𝑥 𝑠
𝑦(𝑠)
𝑥(𝑠)
=
1
𝑠2 − 4𝑠 + 5
- Home Work :
1. 𝑦′′
− 3𝑦′
+ 2𝑦 = 𝑢 𝑡
2. 𝑦′′
+ 4𝑦′
+ 20𝑦 = 𝑢(𝑡)
29
6. Real Shifting:
𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑓 𝑡 − 𝑡0 𝑡 > 𝑡0
1. 𝑡 < 𝑡0
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 =
0
∞
𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 𝑒−𝑠𝑡. 𝑑𝑡
=
0
∞
𝑓(𝑡 − 𝑡0) 𝑒−𝑠𝑡
. 𝑑𝑡
We make the change of variable 𝑡 − 𝑡0 = 𝜏 , hence
𝑡 = (𝜏 + 𝑡0), 𝑑𝑡 = 𝑑𝜏 and
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 =
0
∞
𝑓 𝜏 𝑒−𝑠(𝜏+𝑡0). 𝑑𝜏
= 𝑒−𝑡0𝑠
0
∞
𝑓 𝜏 𝑒−𝑠𝜏
. 𝑑𝜏
= 𝑒−𝑡0𝑠
. 𝑓(𝑠)
30
Since 𝜏 is the variable of integration and can be replaced with , the integral on the right side is
𝑓(𝑠) , hence the Laplace transform of the shifted time function is given by:
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑒−𝑡0𝑠𝑓(𝑠)
𝑡0 ≥ 0 And ℒ 𝑓 𝑡 = 𝑓(𝑠). This relationship called the real translation, properly applies for a
function of the type in the figure:
It is necessary that the function to be zero in time less than 𝑡0 , the amount of the shift.
31
- Example: Find the Laplace transform of a delayed exponential function:
𝑓 𝑡 = 5𝑒−0.3 𝑡−2 𝑢(𝑡 − 2)
𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 , ℒ𝑓 𝑡 = 𝑒−2𝑠
𝑓 𝑠 =
5𝑒−2𝑠
𝑠 + 0.3
32
7. Time Integral:
𝑔 𝑡 =
0
𝑡
𝑓 𝜏 . 𝑑𝜏
ℒ𝑔 𝑡 = ℒ[
0
𝑡
𝑓 𝜏 . 𝑑𝜏]
∴
0
∞
[
0
𝑡
𝑓 𝜏 . 𝑑𝜏]𝑒−𝑠𝑡
. 𝑑𝑡
𝑢 =
0
𝑡
𝑓 𝜏 . 𝑑𝜏 𝑑𝑣 = 𝑒−𝑠𝑡
𝑑𝑢 = 𝑓 𝑡 . 𝑑𝑡 𝑣 =
𝑒−𝑠𝑡
−𝑠
𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑒−𝑠𝑡
−𝑠
.
0
𝑡
𝑓 𝜏 . 𝑑𝜏 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ −
0
∞
𝑒−𝑠𝑡
−𝑠
𝑓 𝑡 . 𝑑𝑡
=
1
𝑠
0 − 0 +
1
𝑠 0
∞
𝑓(𝑡)𝑒−𝑠𝑡
. 𝑑𝑡
33
∴ ℒ[
0
𝑡
𝑓 𝜏 . 𝑑𝜏] =
1
𝑠 0
∞
𝑓 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
∴
𝑓(𝑠)
𝑠
- Example:
Find the Laplace transform for 𝑓 𝑡 = 0
∞
𝑠𝑖𝑛𝑡. 𝑑𝑡
By integration the sine the result will be cosine and have the Laplace
𝑠
𝑠2+1
By using the Laplace transform properties, the result will be ℒ
1
𝑠2+1
Then the Laplace transform for integration the sine is
1
𝑠2+1
𝑠
Which leads the result to
𝑠
𝑠2+1
34
8.Initial Value Theorem
The initial value 𝑓(0) of the function 𝑓(𝑡) whose L.T is 𝑓(𝑠) is:
𝑓 0 = lim
𝑡→0
𝑓(𝑡) = lim
𝑠→∞
𝑠𝑓(𝑠)
- Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡, prove the initial – value theorem:
ℒ3𝑒−2𝑡 =
3
𝑠2 + 2
𝑓 0 = lim
𝑡→0
3𝑒−2𝑡 = lim
𝑠→∞
𝑠
3
𝑠2 + 2
3 = 3
According to Lobital rule in limits that states when there is
∞
∞
then the limit is taking the
derivative of the function of both the nominators and denominators which is in this case
3
1
35
9. Final value theorem:
The final value of the function 𝑓(𝑡) whose L.T is𝑓 ∞ =
lim
𝑡→∞
𝑓(𝑡) = lim
𝑠→0
𝑠𝑓(𝑠)
- Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡
, prove the final –
value theorem:
𝑓 ∞ = lim
𝑡→∞
3𝑒−2𝑡 = lim
𝑠→0
𝑠
3
𝑠2 + 2
0 = 0
THANK YOU
36
Ad

More Related Content

Similar to Engineering Analysis -Third Class.ppsx (12)

TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
Wasswaderrick3
 
Advance heat transfer 2
Advance heat transfer 2Advance heat transfer 2
Advance heat transfer 2
JudeOliverMaquiran1
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
IJERA Editor
 
Neet class 11 12 basic mathematics notes
Neet class 11 12 basic mathematics notesNeet class 11 12 basic mathematics notes
Neet class 11 12 basic mathematics notes
ChhaviSamriya
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
foxtrot jp R
 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
REYEMMANUELILUMBA
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Santhanam Krishnan
 
Derivadas
DerivadasDerivadas
Derivadas
crysmari mujica
 
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
TRANSIENT  RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...TRANSIENT  RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
Wasswaderrick3
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
NumanUsama
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
 
Hawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdHawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrd
foxtrot jp R
 
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
Wasswaderrick3
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
IJERA Editor
 
Neet class 11 12 basic mathematics notes
Neet class 11 12 basic mathematics notesNeet class 11 12 basic mathematics notes
Neet class 11 12 basic mathematics notes
ChhaviSamriya
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
foxtrot jp R
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Santhanam Krishnan
 
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
TRANSIENT  RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...TRANSIENT  RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
Wasswaderrick3
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
 
Hawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdHawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrd
foxtrot jp R
 

More from HebaEng (20)

lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdflectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
HebaEng
 
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
lectااتتتتاارررررررررررررررررررررررررررر1.pdflectااتتتتاارررررررررررررررررررررررررررر1.pdf
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
HebaEng
 
M2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdfM2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdf
HebaEng
 
M3M_250327ggggt_224420_250411_183353.pdf
M3M_250327ggggt_224420_250411_183353.pdfM3M_250327ggggt_224420_250411_183353.pdf
M3M_250327ggggt_224420_250411_183353.pdf
HebaEng
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
HebaEng
 
Estimate the value of the following limits.pptx
Estimate the value of the following limits.pptxEstimate the value of the following limits.pptx
Estimate the value of the following limits.pptx
HebaEng
 
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdflecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
HebaEng
 
LECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptxLECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptx
HebaEng
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
HebaEng
 
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdflect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
HebaEng
 
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptxsensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
HebaEng
 
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdfHomework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
HebaEng
 
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging huggPIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
HebaEng
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
HebaEng
 
math6.pdf
math6.pdfmath6.pdf
math6.pdf
HebaEng
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
digital10.pdf
digital10.pdfdigital10.pdf
digital10.pdf
HebaEng
 
PIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdfPIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdf
HebaEng
 
Instruction 3.pptx
Instruction 3.pptxInstruction 3.pptx
Instruction 3.pptx
HebaEng
 
IO and MAX 2.pptx
IO and MAX 2.pptxIO and MAX 2.pptx
IO and MAX 2.pptx
HebaEng
 
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdflectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
HebaEng
 
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
lectااتتتتاارررررررررررررررررررررررررررر1.pdflectااتتتتاارررررررررررررررررررررررررررر1.pdf
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
HebaEng
 
M2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdfM2M_250327_22434hjjik7_250411_183538.pdf
M2M_250327_22434hjjik7_250411_183538.pdf
HebaEng
 
M3M_250327ggggt_224420_250411_183353.pdf
M3M_250327ggggt_224420_250411_183353.pdfM3M_250327ggggt_224420_250411_183353.pdf
M3M_250327ggggt_224420_250411_183353.pdf
HebaEng
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
HebaEng
 
Estimate the value of the following limits.pptx
Estimate the value of the following limits.pptxEstimate the value of the following limits.pptx
Estimate the value of the following limits.pptx
HebaEng
 
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdflecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
HebaEng
 
LECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptxLECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptx
HebaEng
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
HebaEng
 
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdflect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
HebaEng
 
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptxsensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
HebaEng
 
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdfHomework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
HebaEng
 
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging huggPIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
HebaEng
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
HebaEng
 
math6.pdf
math6.pdfmath6.pdf
math6.pdf
HebaEng
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
digital10.pdf
digital10.pdfdigital10.pdf
digital10.pdf
HebaEng
 
PIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdfPIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdf
HebaEng
 
Instruction 3.pptx
Instruction 3.pptxInstruction 3.pptx
Instruction 3.pptx
HebaEng
 
IO and MAX 2.pptx
IO and MAX 2.pptxIO and MAX 2.pptx
IO and MAX 2.pptx
HebaEng
 
Ad

Recently uploaded (20)

To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
How to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POSHow to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POS
Celine George
 
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Library Association of Ireland
 
SPRING FESTIVITIES - UK AND USA -
SPRING FESTIVITIES - UK AND USA            -SPRING FESTIVITIES - UK AND USA            -
SPRING FESTIVITIES - UK AND USA -
Colégio Santa Teresinha
 
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
larencebapu132
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 
Political History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptxPolitical History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public SchoolsK12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
dogden2
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...
Sandeep Swamy
 
Odoo Inventory Rules and Routes v17 - Odoo Slides
Odoo Inventory Rules and Routes v17 - Odoo SlidesOdoo Inventory Rules and Routes v17 - Odoo Slides
Odoo Inventory Rules and Routes v17 - Odoo Slides
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
Operations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdfOperations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdf
Arab Academy for Science, Technology and Maritime Transport
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
How to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POSHow to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POS
Celine George
 
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Niamh Lucey, Mary Dunne. Health Sciences Libraries Group (LAI). Lighting the ...
Library Association of Ireland
 
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
World war-1(Causes & impacts at a glance) PPT by Simanchala Sarab(BABed,sem-4...
larencebapu132
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public SchoolsK12 Tableau Tuesday  - Algebra Equity and Access in Atlanta Public Schools
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schools
dogden2
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...
Sandeep Swamy
 
Odoo Inventory Rules and Routes v17 - Odoo Slides
Odoo Inventory Rules and Routes v17 - Odoo SlidesOdoo Inventory Rules and Routes v17 - Odoo Slides
Odoo Inventory Rules and Routes v17 - Odoo Slides
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Ad

Engineering Analysis -Third Class.ppsx

  • 1. MINISTRY OF SCIENTIFIC EDUCATION AND HIGHER RESEARCHES NORTHERN TECHNICAL UNIVERSITY ENGINEERING TECHNICAL COLLEGE / MOSUL DEPARTMENT OF COMPUTER TECHNOLOGY 1 ENGINEERING ANALYSIS LECTURE DEPARTMENT OF COMPUTER TECHNOLOGY –THIRD CLASS 2018 -2019 ARJUWAN MOHAMMED ABDULJAWAD ALJAWADI LECTURER
  • 2. 2 - ENGINEERING ANALYSIS One of important transforms used in linear- system analysis. It is named in honor of the great French mathematician, Pierre Simon De Laplace (1749-1827).
  • 3. 3 - Purpose of Laplace Transform • To convert from one type of operation to another operations of different types in more simple form. • A well-known technique for solving differential equations.
  • 4. 4
  • 5. - THE TIME DOMAIN SIGNAL IS CONTINUOUS , EXTENDS TO: 1. POSITIVE AND NEGATIVE INFINITY. 2. PERIODIC OR APERIODIC SIGNAL 5 - Laplace Transform Definition: The Laplace transform F(s) of a time function F (t) is given by the integral:
  • 6. 6 This definition is called the bilateral, or two-sided, Laplace transform—hence, the subscript b. Notice that the bilateral Laplace transform integral becomes the Fourier transform integral if is replaced by (𝑗𝑤 ) . The Laplace transform variable is complex 𝑠 = 𝛼 + 𝑗𝑤, we can rewrite (1) as: 𝐹 𝑠 = −∞ ∞ 𝑓(𝑡)𝑒−(𝜎+𝑗𝜔)𝑡 𝑑𝑡 = −∞ ∞ 𝑓(𝑡)𝑒−𝜎𝑡 𝑒−𝑗𝑤 𝑑𝑡
  • 7. 7 𝑓 𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0 Thus the first integral in above equation is zero. The resulting transform, called the unilateral, or single-sided Laplace transform, is given by:
  • 8. 8 THE LAPLACE-TRANSFORM VARIABLE S IS COMPLEX, AND WE DENOTE ITS REAL PART AS ∝ AND ITS IMAGINARY PART AS 𝑗𝑤 THAT IS: 𝑠 = ∝ +𝑗𝑤 The S-plane
  • 9. 9 Some Elementary Functions F(t) and their Laplace Transform F(t) F(s) U(t) 1 s t 1/s2 tn n!/ sn+1 e−at 1 s + a eat 1 s − a sin wt w/s2+w2 cos at s/s2+a2 sin hat w/s2- w2 cos hat s/s2- w2
  • 10. 10 - Laplace Transform of some important functions 1. Laplace Transform of a unit –step function 𝑓(𝑡) = 1.
  • 11. 11 2. Laplace Transform of 𝑓(𝑡) = 𝑒𝑎𝑡
  • 12. 12 3. Laplace Transform of 𝑓(𝑡) = 𝑡𝑛 Where n= (1,2,3,4,…………………………….) f s = 0 ∞ e−st tn .dt udv = uv − v . du U=tn , du = (𝑛 𝑡𝑛−1) , dv= e−st , v=- e−st s f s = − e−st.tn/s |- 0 ∞ 𝑛 𝑒−𝑠𝑡 𝑠 .tn-1.dt
  • 13. 13 The first term limits will be form (0 to ∞) by substituting it yields zero while the second term by substitution we get: f s = 0 ∞ −ne−st s n tn-1.dt u=ntn-1 , du=n(n-1)tn-2 , dv= e−st s , v= - e−st/s2 f s = ne−st tn-1 /s2 | - 0 ∞ −n(n − 1)tn-2/s2 .e−st . dt f s = 0 ∞ n(n − 1)e−st tn-2 /s2 .dt Then after n times integration we have : f s = 0 ∞ n! sn tn−ne−st. dt f s = 0 ∞ n! sn e−st. dt = n! sn+1 e−st | = n! sn+1
  • 14. NOTE: IN THIS SAME METHOD YOU CAN FIND LAPLACE TRANSFORM OF COS 𝑤𝑡 14 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 0 ∞ 𝑠𝑖𝑛𝑤𝑡𝑒−𝑠𝑡 . 𝑑𝑡 𝑒𝑗𝑤𝑡 = 𝑐𝑜𝑠 𝑤𝑡 + 𝑗𝑠𝑖𝑛 𝑤𝑡 𝑠𝑖𝑛 𝑤𝑡 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 (𝐼𝑚) 𝑜𝑓 𝑒𝑗𝑤𝑡 𝑠𝑖𝑛 𝑤𝑡 = 𝐼𝑚 (𝑒𝑗𝑤𝑡 ) 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 𝐼𝑚 0 ∞ 𝑒𝑗𝑤𝑡𝑒−𝑠𝑡. 𝑑𝑡 = 𝐼𝑚 0 ∞ 𝑒−(𝑠−𝑗𝑤). 𝑑𝑡 = 𝐼𝑚 [− 𝑒− 𝑠−𝑗𝑤 𝑡 (𝑠 − 𝑗𝑤) ] = 𝐼𝑚 [0 − (− 𝑒0 𝑠 − 𝑗𝑤) ) = 𝐼𝑚 1 𝑠 − 𝑗𝑤 = 𝐼𝑚 [ 1 𝑎 − 𝑗𝑤 ∗ 𝑠 + 𝑗𝑤 𝑠 + 𝑗𝑤 ] = 𝐼𝑚 (𝑠 + 𝑗𝑤) / (𝑠2 + 𝑤2) = 𝑤 / (𝑠2 + 𝑤2) 4. Laplace Transform of f t = 𝑠𝑖𝑛 𝑤𝑡
  • 15. 5. LAPLACE TRANSFORM OF F T = 𝐶𝑜𝑠ℎ(𝑎𝑡) 15 𝐶𝑜𝑠ℎ(𝑎𝑡) = 𝑒𝑎𝑡 + 𝑒−𝑎𝑡 2 ℒ cosh 𝑎𝑡 = 1 2 1 𝑠 − 𝑎 + 1 𝑠 + 𝑎 = 1 2 ∗ [ 𝑠 + 𝑎 + 𝑠 − 𝑎 (𝑠 − 𝑎)(𝑠 + 𝑎) ] = 1 2 ∗ [ 2𝑠 𝑠2 + 𝑎𝑠 − 𝑎𝑠 − 𝑎2 ] = 1 2 [ 2𝑠 𝑠2 − 𝑎2 ] = 𝑠 𝑠2 − 𝑎2
  • 16. 16 - Laplace Transform Properties: 1. Multiplication by Constant: ℒ 𝑘. 𝐹 𝑡 = 0 ∞ 𝑘. 𝐹 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 = k. 0 ∞ 𝐹(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡 =𝑘. 𝐹(𝑠) Example: ℒ3. 𝑒2𝑡 = 3. 1 𝑠 − 2 = 3 𝑠 − 2
  • 17. 17 2. Linearity: If 𝐹 𝑡 = 𝐹1 𝑡 + 𝐹2 𝑡 ℒ 𝐹 𝑡 = 0 ∞ 𝐹(𝑡)𝑒−𝑠𝑡 .dt = 0 ∞ 𝐹1 𝑡 + 𝐹2 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 = 0 ∞ 𝐹1 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 + 0 ∞ 𝐹2 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 = ℒ 𝐹1 𝑡 + ℒ[𝐹2 𝑡 ] = 𝐹1 𝑠 + 𝐹2(𝑠) If 𝐹 𝑡 = 𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 Where a1 and a2 are constants Then ℒ[𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 ] = 𝑎1ℒ 𝐹1 𝑡 + 𝑎2ℒ 𝐹2 𝑡
  • 18. 18 Examples: 1. ℒ[2𝑠𝑖𝑛3𝑡 + 𝑐𝑜𝑠3𝑡] = 2 ℒ 𝑠𝑖𝑛3𝑡 + ℒ[𝑐𝑜𝑠3𝑡] = 2. 3 𝑠2+9 + 𝑠 𝑠2+9 = 𝑠+6 𝑠2+9 2. ℒ[ 4 𝑒5𝑡 + 6𝑡3 − 3𝑠𝑖𝑛4𝑡 + 2𝑐𝑜𝑠2𝑡] = 4 𝑠 − 5 + 6.3! 𝑠4 − 12 𝑠2 + 16 + 2𝑠 𝑠2 + 4 = 4 𝑠 − 5 + 36 𝑠4 − 12 𝑠2 + 16 + 2𝑠 𝑠2 + 4 - Home Work: - ℒ[3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6] - ℒ[3𝑡10 − 8𝑒−3𝑡 + 5𝑐𝑜𝑠3𝑡 + 4𝑠𝑖𝑛2𝑡] - ℒ[3𝑐𝑜𝑠5𝑡 − 4𝑠𝑖𝑛ℎ5𝑡]
  • 19. 19 3. Multiplication by exponential: 𝑓1 𝑡 = 𝑓 𝑡 𝑒−𝑎𝑡 ℒ 𝑓 𝑡 𝑒−𝑎𝑡 = 0 ∞ 𝑓 𝑡 𝑒−𝑎𝑡 𝑒−𝑠𝑡 0 ∞ 𝑓 𝑡 𝑒− 𝑠+𝑎 𝑡 . 𝑑𝑡 Then 𝑓(𝑠 + 𝑎) The transform ℒ 𝑓 𝑡 𝑒−𝑎𝑡 is thus the same as ℒ 𝑓 𝑡 with everywhere in the result replaced by (𝑠 + 𝑎).
  • 20. 20 - Example: ℒ 𝑒−𝑎𝑡 𝑠𝑖𝑛𝑤𝑡 = 𝑤 (𝑠+𝑎)2+ 𝑤2 ℒ 𝑡2 𝑒−4𝑡 = 2 (𝑠 + 4)3 - Example: 1. ℒ 𝑡2𝑒3𝑡 = 2 (𝑠−3)2 2. ℒ 𝑒−2𝑡 𝑠𝑖𝑛4𝑡 = 4 (𝑠+2)2+16 = 4 𝑠2+2𝑠+20 3. ℒ 𝑒−4𝑡 𝑐𝑜𝑠ℎ5𝑡 = (𝑠−4) (𝑠−4)2−25 = (𝑠−4) 𝑠2−4𝑠+16−25 = 𝑠−4 𝑠2−4𝑠−9 - Home Work: Find ℒ 𝑒−2𝑡 (3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6𝑡 - Home Work: Find ℒ 𝑒−4𝑡 𝑐𝑜𝑠ℎ5𝑡 using cosh = 1 2 ( 𝑒𝑎𝑡 + 𝑒−𝑎𝑡 )
  • 21. 21 4. Multiplication by t (frequency derivative) If ℒ 𝑓(𝑡) = 𝑓(𝑠) Then ℒ 𝑡. 𝑓 𝑡 = − 𝑑 𝑑𝑠 𝑓(𝑠) In general it can be ℒ 𝑡𝑛 𝑓 𝑡 = (−1)𝑛 𝑑𝑛 𝑑𝑠𝑛 𝑓(𝑠) - Example: ℒ 𝑡. 𝑠𝑖𝑛2𝑡 ℒ 𝑠𝑖𝑛2𝑡 = 2 𝑠2 + 4 ℒ 𝑡 𝑠𝑖𝑛2𝑡 = − 𝑑 𝑑𝑠 . 2 𝑠2 + 4 = 𝑠2+4 ∗0−2∗2𝑠 (𝑠2+4)2 = 4𝑠 (𝑠2+4)2
  • 22. 22 - Example: ℒ 𝑡 3𝑠𝑖𝑛2𝑡 − 2𝑐𝑜𝑠2𝑡 = 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡𝑐𝑜𝑠𝑡 ℒ2𝑠𝑖𝑛2𝑡 = 6 𝑠2 + 4 ℒ𝑐𝑜𝑠2𝑡 = 2𝑠 𝑠2 + 4 = 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡 𝑐𝑜𝑠2𝑡 ℒ 3𝑡 𝑠𝑖𝑛2𝑡 = 𝑠2 + 4 ∗ 0 − 6 ∗ 2𝑠 (𝑠2 + 4)2 = −12𝑠 (𝑠2 + 4)2 ℒ 2𝑡 𝑐𝑜𝑠2𝑡 = 𝑠2 + 4 ∗ 2 − 2𝑠 ∗ 2𝑠 (𝑠2 + 4)2 = 2𝑠2 + 8 − 4𝑠2 (𝑠2 + 4)2 = −12𝑠 (𝑠2+4)2 − 8−2𝑠2 𝑠2+4 2 = −2𝑠2−12𝑠+8 (𝑠2+4)2
  • 23. 23 5.Time Derivative: ℒ 𝑑𝑓 𝑡 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓(0) Where 𝑓(0) is the initial value of 𝑓(𝑡) ,evaluated as the one - side limit of 𝑓(𝑡) as 𝑡 → 0 from positive valued. ℒ 𝑓 𝑡 ′ = 0 ∞ 𝑓 𝑡 ′ 𝑒−𝑠𝑡 . 𝑑𝑡 Using 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢 𝑢 = 𝑒−𝑠𝑡 , 𝑑𝑢 = −𝑠𝑒−𝑠𝑡, 𝑑𝑣 = 𝑓 𝑡 ′ , 𝑣 = 𝑓(𝑡) = 𝑒−𝑠𝑡 𝑓 𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 − ∞ − 0 ∞ 𝑓(𝑡)(−𝑠𝑒−𝑠𝑡 ). 𝑑𝑡 = 0 − 𝑓 0 + 𝑠𝑓(𝑠) Then ℒ 𝑑2𝑓 𝑡 𝑑𝑡2 = 𝑠2 𝑓 𝑠 − 𝑠𝑓 0 − 𝑓(0)′ and in general: ℒ 𝑑𝑛 𝑓 𝑡 𝑑𝑡𝑛 = 𝑠𝑛 𝑓 𝑠 − 𝑖=1 𝑛 𝑓(0)(𝑖−1) 𝑠𝑛−𝑖
  • 24. 24 - Example: 𝑓 𝑡 = 𝑡 , 𝐹𝑖𝑛𝑑 ℒ 1 𝑢𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 Since ℒ 1 = 1 𝑠 , 𝑓 0 = 0 ℒ 𝑑𝑓 𝑡 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓 0 ℒ 𝑑𝑓 1 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓 0 ℒ 1 = 𝑠 ∗ 1 𝑠2 − 0 = 1 𝑠
  • 25. 25 - Example: Use Laplace transform in solving for the current in an electric circuit. Consider the RL-circuit in the following figure, where 𝑉 is constant. The loop equation for this circuit is given by: 𝐿. 𝑑𝑖(𝑡) 𝑑𝑡 + 𝑅𝑖 𝑡 = 𝑉𝑢 𝑡 𝑓𝑜𝑟 𝑡 > 0
  • 26. 26 Since the switch is closed at 𝑡 = 0 . The Laplace transform of this equation yields: 𝐿 𝑠𝐼 𝑠 − 𝑖 0 + 𝑅𝐼 𝑠 = 𝑉 𝑠 The initial current is zero 0 = 0 , 𝑖(𝑡) is zero for negative time since the switch is open for 𝑡 < 0 and the current in an inductance cannot change instantaneously. 𝐼 𝑠 = 𝑉 𝑠 𝐿𝑠 + 𝑅 = 𝑉 𝐿 𝑠 𝑠 + 𝑅 𝐿 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝐿 Solve with partial fraction: 𝐼 𝑠 = 𝑉 𝐿 𝑠 𝑠 + 𝑅 𝐿 = 𝑎 𝑠 + 𝑏 𝑠 + 𝑅 𝐿 = 𝑎𝑠 + 𝑎 𝑅 𝐿 + 𝑏𝑠 𝑠 𝑠 + 𝑅 𝐿
  • 27. 27 = 𝑎 + 𝑏 𝑠 + 𝑎 𝑅 𝐿 𝑠(𝑠 + 𝑅 𝐿) 𝑎 + 𝑏 = 0 → 𝑎 = −𝑏 𝑎 𝑅 𝐿 = 𝑉 𝐿 → 𝑎 = 𝑉 𝑅 𝐼 𝑠 = 𝑉 𝑅 𝑠 − 𝑉 𝑅 𝑠 + 𝑅 𝐿 𝐴 = 𝑠 . 𝑉 𝑅 𝑠.(𝑠+𝑅 𝐿 ) 𝑤ℎ𝑒𝑛 𝑠 = 0 𝐴 = 𝑉 𝑅 𝐵 = 𝑠 + 𝑅 𝐿 . 𝑉 𝐿 𝑠. 𝑠+𝑅 𝐿 𝑤ℎ𝑒𝑛 𝑠 = −𝑅 𝐿 𝐵 = 𝑉 𝐿 − 𝑅 𝐿 = − 𝑉 𝑅 ℒ𝐼(𝑠)−1 = 𝑖 𝑡 = 𝑉 𝑅 − 𝑉 𝑅 𝑒− 𝑅 𝐿𝑡 𝑖 𝑡 = 𝑉 𝑅 1 − 𝑒−( 𝑅 𝐿)𝑡 𝑡 > 0 The initial condition 𝑖 0 = 0 is satisfied by 𝑖 𝑡 also substitution of 𝑖 𝑡 into the differential equation satisfies that equation.
  • 28. 28 - Example: Solve the following differential equation: 𝑦′′ − 4𝑦′ + 5𝑦 = 𝑥 𝑡 𝑦 0 = 0 , 𝑦 0 ′ 𝑠2 𝑦 𝑠 − 𝑠𝑦 0 − 𝑦′ 0 − 4 𝑠𝑦 𝑠 − 𝑦 0 + 5𝑦 𝑠 = 𝑥 𝑠 𝑠2𝑦 𝑠 − 4𝑠𝑦 𝑠 + 5𝑦 𝑠 = 𝑥 𝑠 𝑦 𝑠 𝑠2 − 4𝑠 + 5 = 𝑥 𝑠 𝑦(𝑠) 𝑥(𝑠) = 1 𝑠2 − 4𝑠 + 5 - Home Work : 1. 𝑦′′ − 3𝑦′ + 2𝑦 = 𝑢 𝑡 2. 𝑦′′ + 4𝑦′ + 20𝑦 = 𝑢(𝑡)
  • 29. 29 6. Real Shifting: 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑓 𝑡 − 𝑡0 𝑡 > 𝑡0 1. 𝑡 < 𝑡0 ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 0 ∞ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 𝑒−𝑠𝑡. 𝑑𝑡 = 0 ∞ 𝑓(𝑡 − 𝑡0) 𝑒−𝑠𝑡 . 𝑑𝑡 We make the change of variable 𝑡 − 𝑡0 = 𝜏 , hence 𝑡 = (𝜏 + 𝑡0), 𝑑𝑡 = 𝑑𝜏 and ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 0 ∞ 𝑓 𝜏 𝑒−𝑠(𝜏+𝑡0). 𝑑𝜏 = 𝑒−𝑡0𝑠 0 ∞ 𝑓 𝜏 𝑒−𝑠𝜏 . 𝑑𝜏 = 𝑒−𝑡0𝑠 . 𝑓(𝑠)
  • 30. 30 Since 𝜏 is the variable of integration and can be replaced with , the integral on the right side is 𝑓(𝑠) , hence the Laplace transform of the shifted time function is given by: ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑒−𝑡0𝑠𝑓(𝑠) 𝑡0 ≥ 0 And ℒ 𝑓 𝑡 = 𝑓(𝑠). This relationship called the real translation, properly applies for a function of the type in the figure: It is necessary that the function to be zero in time less than 𝑡0 , the amount of the shift.
  • 31. 31 - Example: Find the Laplace transform of a delayed exponential function: 𝑓 𝑡 = 5𝑒−0.3 𝑡−2 𝑢(𝑡 − 2) 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 , ℒ𝑓 𝑡 = 𝑒−2𝑠 𝑓 𝑠 = 5𝑒−2𝑠 𝑠 + 0.3
  • 32. 32 7. Time Integral: 𝑔 𝑡 = 0 𝑡 𝑓 𝜏 . 𝑑𝜏 ℒ𝑔 𝑡 = ℒ[ 0 𝑡 𝑓 𝜏 . 𝑑𝜏] ∴ 0 ∞ [ 0 𝑡 𝑓 𝜏 . 𝑑𝜏]𝑒−𝑠𝑡 . 𝑑𝑡 𝑢 = 0 𝑡 𝑓 𝜏 . 𝑑𝜏 𝑑𝑣 = 𝑒−𝑠𝑡 𝑑𝑢 = 𝑓 𝑡 . 𝑑𝑡 𝑣 = 𝑒−𝑠𝑡 −𝑠 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢 𝑒−𝑠𝑡 −𝑠 . 0 𝑡 𝑓 𝜏 . 𝑑𝜏 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ − 0 ∞ 𝑒−𝑠𝑡 −𝑠 𝑓 𝑡 . 𝑑𝑡 = 1 𝑠 0 − 0 + 1 𝑠 0 ∞ 𝑓(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡
  • 33. 33 ∴ ℒ[ 0 𝑡 𝑓 𝜏 . 𝑑𝜏] = 1 𝑠 0 ∞ 𝑓 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 ∴ 𝑓(𝑠) 𝑠 - Example: Find the Laplace transform for 𝑓 𝑡 = 0 ∞ 𝑠𝑖𝑛𝑡. 𝑑𝑡 By integration the sine the result will be cosine and have the Laplace 𝑠 𝑠2+1 By using the Laplace transform properties, the result will be ℒ 1 𝑠2+1 Then the Laplace transform for integration the sine is 1 𝑠2+1 𝑠 Which leads the result to 𝑠 𝑠2+1
  • 34. 34 8.Initial Value Theorem The initial value 𝑓(0) of the function 𝑓(𝑡) whose L.T is 𝑓(𝑠) is: 𝑓 0 = lim 𝑡→0 𝑓(𝑡) = lim 𝑠→∞ 𝑠𝑓(𝑠) - Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡, prove the initial – value theorem: ℒ3𝑒−2𝑡 = 3 𝑠2 + 2 𝑓 0 = lim 𝑡→0 3𝑒−2𝑡 = lim 𝑠→∞ 𝑠 3 𝑠2 + 2 3 = 3 According to Lobital rule in limits that states when there is ∞ ∞ then the limit is taking the derivative of the function of both the nominators and denominators which is in this case 3 1
  • 35. 35 9. Final value theorem: The final value of the function 𝑓(𝑡) whose L.T is𝑓 ∞ = lim 𝑡→∞ 𝑓(𝑡) = lim 𝑠→0 𝑠𝑓(𝑠) - Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡 , prove the final – value theorem: 𝑓 ∞ = lim 𝑡→∞ 3𝑒−2𝑡 = lim 𝑠→0 𝑠 3 𝑠2 + 2 0 = 0