SlideShare a Scribd company logo
Introducing Flink
on Mesos
Eron Wright – eron.wright@emc.com
DELL EMC
@eronwright
2 of 15
What is Apache Mesos?
• A popular cluster manager (similar to YARN)
• MakesavailableCPU, memory, & diskresources
• Uniquecapabilitiesforstorageservices
• Emerging asa foundationfordata-centric,convergedinfrastructure
• Provides a programming model for using cluster resources
• A Mesosprogram is calleda “framework”
• Packaged into an open-source distribution called DCOS
• Prescribesbestpracticesrelatedto Mesosframeworks, relatedservices,etc.
3 of 15
Why Flink on Mesos?
• Flink works best on a cluster manager
– Easy to scale each job independently
– Externalize scheduling logic (fairness, quota, …)
– Good job isolation
• Flink can benefit from unique Mesos capabilities
– Disk resources
– Dynamic resource management
– Unique management features (e.g. inverse offers for controlled downscaling & maintenance)
Demo
Flink Master Process
6 of 15
Introduction
Flink Master Process
• The Flink Master Process is:
– The “Application Master” for a single Flink cluster
– A Mesos framework!
• Hosts numerous components:
– Job Manager
– Resource Manager (acts as Mesos scheduler)
– Artifact Server (HTTP server for Mesos fetcher)
• Responsible for TM scaling and recovery
– Handles JobManager scale change requests
– Stores task state in ZooKeeper
host1host2
Master
JM
RM
HTTPD
TM TM
Mesos
7 of 15
How it Works
Flink Master Process
• Offer handling:
– Uses Netflix Fenzo as an optimizer
– Gathers offers until all tasks launched
• Recovery:
– Stores intentional state in ZooKeeper
– Master uses leader election
– Mesos allows some time for recovery before killing
tasks
• Monitoring:
– Detects task failure; launches replacement
automatically.
host1host2
Master
TM TM
4. Launch
Mesos
2. Resource Offers
1. Register
5. Fetch (HTTP)
6. Status update
3. Optimize
8 of 15
Configuration
Flink Master Process (Con’t)
• Framework Info
– mesos.resourcemanager.framework.secret
– mesos.resourcemanager.framework.principal
– mesos.resourcemanager.framework.role
• Mesos Master Info
– mesos.master: (IP address or ZK lookup info)
– mesos.failover-timeout
Note: no port configuration is necessary; Mesos
automatically assigns ports.
Dispatcher
10 of 15
Introduction
Dispatcher
• A highly-available service for launching Flink
clusters.
• A Mesos framework!
• Accessed via REST by the CLI
• DCOS compatibility:
– HTTP-based
– Accessible via the Admin Router
– (future) JWT authentication
• Aligned with FLIP-6
host1
1D
1C
1B
1A
host2
2D
2C
2B
2A
host3
3D
3C
3B
3A
host4
4D
4C
4B
4A
Dispatcher
Master
TM TM
TMTM
Master
CLI
TM
Mesos
11 of 15
Framework Hierarchy
Dispatcher (Con’t)
• Nesting of frameworks is a common Mesos
pattern. Here, Marathon launches the
dispatcher, which launches the Flink Master
Process, etc.
• Architecturally, it avoids a dependency on the
Marathon API. For example, Aurora could be
used here in place of Marathon.
Dispatcher
Master
Maratho
n
TM
(Task)
(Task)
(Task)
12 of 15
Launching a Session
Dispatcher (Con’t)
• Use: mesos-session.sh
• CLI uploads files to dispatcher via HTTP
– Flink Configuration
– Supplemental files (--ship)
– Keytabs
– Certificates
• Dispatcher adds additional elements:
– Configuration
› ZooKeeper Namespace
– Flink JAR
– …
host1
1D
1C
1B
1A
host2
2D
2C
2B
2A
host3
3D
3C
3B
3A
host4
4D
4C
4B
4A
Dispatcher
Master
TM TM
CLI
HTTP(S)
TM
HTTP(S)
Mesos
13 of 15
Dispatcher Deployment Modes
Dispatcher (Con’t)
• Dispatcher is usable in two ways
• Remote Mode:
– Recommended for detached execution
• Local Mode:
– Recommended for simple, interactive sessions
(e.g. flink shell)
3C
3B
3A
4C
4B
4A
Dispatcher
Master
Master
CLI
HTTP(S)
3C
3B
3A
4C
4B
4A
Master
CLI +
Dispatcher
Local Mode Remote Mode
Summary
15 of 15
Future Directions
• Dynamic Scaling
– Add/remove Task Managers in response to scale changes over a job’s lifetime
– Support Mesos maintenance procedures (e.g. inverse offers)
• Dispatcher Evolution (FLIP-6)
– Generalize to support all deployment scenarios, unified CLI
– Provide a centralized Web UI (incl. job history)
– Authentication Support (e.g. OAuth 2.0)
• Docker Image Support
– Tracking the “Mesos unified containerizer”
• Mesos Disk Support
– Allocate multiple disks for Task Manager temp space
– Scale up the I/O
16 of 15
Project Status
• Targeted for: Flink 1.2
• Contributors:
– Eron Wright (Dell EMC)
– Maximilian Michels (data Artisans)
• Design Doc:
– Mesos Integration on Google Docs
• JIRAs:
– FLINK-1984 – Integrate Flink with Apache Mesos
• Code:
– https://github.com/EronWright/flink/tree/feature-FLINK-1984-T2
Eron Wright - Introducing Flink on Mesos
Ad

More Related Content

What's hot (20)

From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
confluent
 
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
HostedbyConfluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
A Journey through the JDKs (Java 9 to Java 11)
A Journey through the JDKs (Java 9 to Java 11)A Journey through the JDKs (Java 9 to Java 11)
A Journey through the JDKs (Java 9 to Java 11)
Markus Günther
 
Streaming and Messaging
Streaming and MessagingStreaming and Messaging
Streaming and Messaging
Xin Wang
 
Containerizing Distributed Pipes
Containerizing Distributed PipesContainerizing Distributed Pipes
Containerizing Distributed Pipes
inside-BigData.com
 
Flume and HBase
Flume and HBase Flume and HBase
Flume and HBase
Alexander Alten
 
Robust Operations of Kafka Streams
Robust Operations of Kafka StreamsRobust Operations of Kafka Streams
Robust Operations of Kafka Streams
confluent
 
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
HostedbyConfluent
 
PaaSTA: Autoscaling at Yelp
PaaSTA: Autoscaling at YelpPaaSTA: Autoscaling at Yelp
PaaSTA: Autoscaling at Yelp
Nathan Handler
 
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Docker, Inc.
 
Espresso Database Replication with Kafka, Tom Quiggle
Espresso Database Replication with Kafka, Tom QuiggleEspresso Database Replication with Kafka, Tom Quiggle
Espresso Database Replication with Kafka, Tom Quiggle
confluent
 
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
confluent
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
Joe Stein
 
Managing multiple event types in a single topic with Schema Registry | Bill B...
Managing multiple event types in a single topic with Schema Registry | Bill B...Managing multiple event types in a single topic with Schema Registry | Bill B...
Managing multiple event types in a single topic with Schema Registry | Bill B...
HostedbyConfluent
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database System
confluent
 
Introduction to Akka-Streams
Introduction to Akka-StreamsIntroduction to Akka-Streams
Introduction to Akka-Streams
dmantula
 
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQLKafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
confluent
 
Apache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - VerisignApache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - Verisign
Michael Noll
 
Federated mesos clusters for global data center designs
Federated mesos clusters for global data center designsFederated mesos clusters for global data center designs
Federated mesos clusters for global data center designs
Krishna-Kumar
 
From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
From Newbie to Highly Available, a Successful Kafka Adoption Tale (Jonathan S...
confluent
 
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
The Log of All Logs: Raft-based Consensus Inside Kafka | Guozhang Wang, Confl...
HostedbyConfluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
A Journey through the JDKs (Java 9 to Java 11)
A Journey through the JDKs (Java 9 to Java 11)A Journey through the JDKs (Java 9 to Java 11)
A Journey through the JDKs (Java 9 to Java 11)
Markus Günther
 
Streaming and Messaging
Streaming and MessagingStreaming and Messaging
Streaming and Messaging
Xin Wang
 
Containerizing Distributed Pipes
Containerizing Distributed PipesContainerizing Distributed Pipes
Containerizing Distributed Pipes
inside-BigData.com
 
Robust Operations of Kafka Streams
Robust Operations of Kafka StreamsRobust Operations of Kafka Streams
Robust Operations of Kafka Streams
confluent
 
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
Securing the Message Bus with Kafka Streams | Paul Otto and Ryan Salcido, Raf...
HostedbyConfluent
 
PaaSTA: Autoscaling at Yelp
PaaSTA: Autoscaling at YelpPaaSTA: Autoscaling at Yelp
PaaSTA: Autoscaling at Yelp
Nathan Handler
 
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Orchestrating Docker with Terraform and Consul by Mitchell Hashimoto
Docker, Inc.
 
Espresso Database Replication with Kafka, Tom Quiggle
Espresso Database Replication with Kafka, Tom QuiggleEspresso Database Replication with Kafka, Tom Quiggle
Espresso Database Replication with Kafka, Tom Quiggle
confluent
 
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
Cross the streams thanks to Kafka and Flink (Christophe Philemotte, Digazu) K...
confluent
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
Joe Stein
 
Managing multiple event types in a single topic with Schema Registry | Bill B...
Managing multiple event types in a single topic with Schema Registry | Bill B...Managing multiple event types in a single topic with Schema Registry | Bill B...
Managing multiple event types in a single topic with Schema Registry | Bill B...
HostedbyConfluent
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database System
confluent
 
Introduction to Akka-Streams
Introduction to Akka-StreamsIntroduction to Akka-Streams
Introduction to Akka-Streams
dmantula
 
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQLKafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
Kafka Summit SF 2017 - Kafka Stream Processing for Everyone with KSQL
confluent
 
Apache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - VerisignApache Kafka 0.8 basic training - Verisign
Apache Kafka 0.8 basic training - Verisign
Michael Noll
 
Federated mesos clusters for global data center designs
Federated mesos clusters for global data center designsFederated mesos clusters for global data center designs
Federated mesos clusters for global data center designs
Krishna-Kumar
 

Viewers also liked (20)

Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink- Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink-
Flink Forward
 
Stephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large StateStephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large State
Flink Forward
 
Automatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia KalavriAutomatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia Kalavri
Flink Forward
 
Ted Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink DriftTed Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink Drift
Flink Forward
 
Julian Hyde - Streaming SQL
Julian Hyde - Streaming SQLJulian Hyde - Streaming SQL
Julian Hyde - Streaming SQL
Flink Forward
 
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with FlinkSanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Flink Forward
 
Aljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache FlinkAljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Flink Forward
 
Jamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache FlinkJamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache Flink
Flink Forward
 
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Flink Forward
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
Flink Forward
 
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Flink Forward
 
Flink Case Study: OKKAM
Flink Case Study: OKKAMFlink Case Study: OKKAM
Flink Case Study: OKKAM
Flink Forward
 
Dongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of FlinkDongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
Gábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Gábor Horváth - Code Generation in Serializers and Comparators of Apache FlinkGábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Gábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Flink Forward
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Gyula Fóra - RBEA- Scalable Real-Time Analytics at King
Gyula Fóra - RBEA- Scalable Real-Time Analytics at KingGyula Fóra - RBEA- Scalable Real-Time Analytics at King
Gyula Fóra - RBEA- Scalable Real-Time Analytics at King
Flink Forward
 
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Flink Forward
 
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Flink Forward
 
Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink- Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink-
Flink Forward
 
Stephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large StateStephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large State
Flink Forward
 
Automatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia KalavriAutomatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia Kalavri
Flink Forward
 
Ted Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink DriftTed Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink Drift
Flink Forward
 
Julian Hyde - Streaming SQL
Julian Hyde - Streaming SQLJulian Hyde - Streaming SQL
Julian Hyde - Streaming SQL
Flink Forward
 
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with FlinkSanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Flink Forward
 
Aljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache FlinkAljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Flink Forward
 
Jamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache FlinkJamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache Flink
Flink Forward
 
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Flink Forward
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
Flink Forward
 
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Flink Forward
 
Flink Case Study: OKKAM
Flink Case Study: OKKAMFlink Case Study: OKKAM
Flink Case Study: OKKAM
Flink Forward
 
Dongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of FlinkDongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
Gábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Gábor Horváth - Code Generation in Serializers and Comparators of Apache FlinkGábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Gábor Horváth - Code Generation in Serializers and Comparators of Apache Flink
Flink Forward
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Gyula Fóra - RBEA- Scalable Real-Time Analytics at King
Gyula Fóra - RBEA- Scalable Real-Time Analytics at KingGyula Fóra - RBEA- Scalable Real-Time Analytics at King
Gyula Fóra - RBEA- Scalable Real-Time Analytics at King
Flink Forward
 
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Matthias Kricke_Martin Grimmer_Michael Schmeißer - Building a real time Tweet...
Flink Forward
 
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Flink Forward
 
Ad

Similar to Eron Wright - Introducing Flink on Mesos (20)

Containerization - The DevOps Revolution
Containerization - The DevOps RevolutionContainerization - The DevOps Revolution
Containerization - The DevOps Revolution
Yulian Slobodyan
 
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Joe Stein
 
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating SystemOSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
NETWAYS
 
Modern Elastic Datacenter Architecture
Modern Elastic Datacenter ArchitectureModern Elastic Datacenter Architecture
Modern Elastic Datacenter Architecture
Weston Bassler
 
Musings on Mesos: Docker, Kubernetes, and Beyond.
Musings on Mesos: Docker, Kubernetes, and Beyond.Musings on Mesos: Docker, Kubernetes, and Beyond.
Musings on Mesos: Docker, Kubernetes, and Beyond.
Timothy St. Clair
 
Running Spark on Mesos
Running Spark on MesosRunning Spark on Mesos
Running Spark on Mesos
Peker Mert Öksüz
 
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OSPutting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Lightbend
 
TechBeats #2
TechBeats #2TechBeats #2
TechBeats #2
applausepoland
 
Introduction to mesos
Introduction to mesosIntroduction to mesos
Introduction to mesos
Omid Vahdaty
 
Orbit GSM UMTS LTE parser platform - ETL tool
Orbit GSM UMTS LTE parser platform - ETL toolOrbit GSM UMTS LTE parser platform - ETL tool
Orbit GSM UMTS LTE parser platform - ETL tool
Ahmet Ozturk
 
DockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and ContainerizationDockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and Containerization
Docker, Inc.
 
Real Time Operating System
Real Time Operating SystemReal Time Operating System
Real Time Operating System
Sharad Pandey
 
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg SchadOSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
NETWAYS
 
DC/OS: The definitive platform for modern apps
DC/OS: The definitive platform for modern appsDC/OS: The definitive platform for modern apps
DC/OS: The definitive platform for modern apps
Datio Big Data
 
Containerized Data Persistence on Mesos
Containerized Data Persistence on MesosContainerized Data Persistence on Mesos
Containerized Data Persistence on Mesos
Joe Stein
 
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOSDEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
Julia Mateo
 
Apache Mesos Overview and Integration
Apache Mesos Overview and IntegrationApache Mesos Overview and Integration
Apache Mesos Overview and Integration
Alex Baretto
 
Modern apps with dcos
Modern apps with dcosModern apps with dcos
Modern apps with dcos
Sam Chen
 
DCOS Presentation
DCOS PresentationDCOS Presentation
DCOS Presentation
Jan Repnak
 
minimesos. Apache Mesos made easy
minimesos. Apache Mesos made easyminimesos. Apache Mesos made easy
minimesos. Apache Mesos made easy
Viktor Sadovnikov
 
Containerization - The DevOps Revolution
Containerization - The DevOps RevolutionContainerization - The DevOps Revolution
Containerization - The DevOps Revolution
Yulian Slobodyan
 
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Joe Stein
 
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating SystemOSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
NETWAYS
 
Modern Elastic Datacenter Architecture
Modern Elastic Datacenter ArchitectureModern Elastic Datacenter Architecture
Modern Elastic Datacenter Architecture
Weston Bassler
 
Musings on Mesos: Docker, Kubernetes, and Beyond.
Musings on Mesos: Docker, Kubernetes, and Beyond.Musings on Mesos: Docker, Kubernetes, and Beyond.
Musings on Mesos: Docker, Kubernetes, and Beyond.
Timothy St. Clair
 
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OSPutting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Lightbend
 
Introduction to mesos
Introduction to mesosIntroduction to mesos
Introduction to mesos
Omid Vahdaty
 
Orbit GSM UMTS LTE parser platform - ETL tool
Orbit GSM UMTS LTE parser platform - ETL toolOrbit GSM UMTS LTE parser platform - ETL tool
Orbit GSM UMTS LTE parser platform - ETL tool
Ahmet Ozturk
 
DockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and ContainerizationDockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and Containerization
Docker, Inc.
 
Real Time Operating System
Real Time Operating SystemReal Time Operating System
Real Time Operating System
Sharad Pandey
 
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg SchadOSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
OSDC 2016 - Mesos and the Architecture of the New Datacenter by Jörg Schad
NETWAYS
 
DC/OS: The definitive platform for modern apps
DC/OS: The definitive platform for modern appsDC/OS: The definitive platform for modern apps
DC/OS: The definitive platform for modern apps
Datio Big Data
 
Containerized Data Persistence on Mesos
Containerized Data Persistence on MesosContainerized Data Persistence on Mesos
Containerized Data Persistence on Mesos
Joe Stein
 
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOSDEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
DEPLOYING A DOCKERIZED DISTRIBUTED APPLICATION IN MESOS
Julia Mateo
 
Apache Mesos Overview and Integration
Apache Mesos Overview and IntegrationApache Mesos Overview and Integration
Apache Mesos Overview and Integration
Alex Baretto
 
Modern apps with dcos
Modern apps with dcosModern apps with dcos
Modern apps with dcos
Sam Chen
 
DCOS Presentation
DCOS PresentationDCOS Presentation
DCOS Presentation
Jan Repnak
 
minimesos. Apache Mesos made easy
minimesos. Apache Mesos made easyminimesos. Apache Mesos made easy
minimesos. Apache Mesos made easy
Viktor Sadovnikov
 
Ad

More from Flink Forward (20)

Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 

Recently uploaded (20)

Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 

Eron Wright - Introducing Flink on Mesos

  • 1. Introducing Flink on Mesos Eron Wright – [email protected] DELL EMC @eronwright
  • 2. 2 of 15 What is Apache Mesos? • A popular cluster manager (similar to YARN) • MakesavailableCPU, memory, & diskresources • Uniquecapabilitiesforstorageservices • Emerging asa foundationfordata-centric,convergedinfrastructure • Provides a programming model for using cluster resources • A Mesosprogram is calleda “framework” • Packaged into an open-source distribution called DCOS • Prescribesbestpracticesrelatedto Mesosframeworks, relatedservices,etc.
  • 3. 3 of 15 Why Flink on Mesos? • Flink works best on a cluster manager – Easy to scale each job independently – Externalize scheduling logic (fairness, quota, …) – Good job isolation • Flink can benefit from unique Mesos capabilities – Disk resources – Dynamic resource management – Unique management features (e.g. inverse offers for controlled downscaling & maintenance)
  • 6. 6 of 15 Introduction Flink Master Process • The Flink Master Process is: – The “Application Master” for a single Flink cluster – A Mesos framework! • Hosts numerous components: – Job Manager – Resource Manager (acts as Mesos scheduler) – Artifact Server (HTTP server for Mesos fetcher) • Responsible for TM scaling and recovery – Handles JobManager scale change requests – Stores task state in ZooKeeper host1host2 Master JM RM HTTPD TM TM Mesos
  • 7. 7 of 15 How it Works Flink Master Process • Offer handling: – Uses Netflix Fenzo as an optimizer – Gathers offers until all tasks launched • Recovery: – Stores intentional state in ZooKeeper – Master uses leader election – Mesos allows some time for recovery before killing tasks • Monitoring: – Detects task failure; launches replacement automatically. host1host2 Master TM TM 4. Launch Mesos 2. Resource Offers 1. Register 5. Fetch (HTTP) 6. Status update 3. Optimize
  • 8. 8 of 15 Configuration Flink Master Process (Con’t) • Framework Info – mesos.resourcemanager.framework.secret – mesos.resourcemanager.framework.principal – mesos.resourcemanager.framework.role • Mesos Master Info – mesos.master: (IP address or ZK lookup info) – mesos.failover-timeout Note: no port configuration is necessary; Mesos automatically assigns ports.
  • 10. 10 of 15 Introduction Dispatcher • A highly-available service for launching Flink clusters. • A Mesos framework! • Accessed via REST by the CLI • DCOS compatibility: – HTTP-based – Accessible via the Admin Router – (future) JWT authentication • Aligned with FLIP-6 host1 1D 1C 1B 1A host2 2D 2C 2B 2A host3 3D 3C 3B 3A host4 4D 4C 4B 4A Dispatcher Master TM TM TMTM Master CLI TM Mesos
  • 11. 11 of 15 Framework Hierarchy Dispatcher (Con’t) • Nesting of frameworks is a common Mesos pattern. Here, Marathon launches the dispatcher, which launches the Flink Master Process, etc. • Architecturally, it avoids a dependency on the Marathon API. For example, Aurora could be used here in place of Marathon. Dispatcher Master Maratho n TM (Task) (Task) (Task)
  • 12. 12 of 15 Launching a Session Dispatcher (Con’t) • Use: mesos-session.sh • CLI uploads files to dispatcher via HTTP – Flink Configuration – Supplemental files (--ship) – Keytabs – Certificates • Dispatcher adds additional elements: – Configuration › ZooKeeper Namespace – Flink JAR – … host1 1D 1C 1B 1A host2 2D 2C 2B 2A host3 3D 3C 3B 3A host4 4D 4C 4B 4A Dispatcher Master TM TM CLI HTTP(S) TM HTTP(S) Mesos
  • 13. 13 of 15 Dispatcher Deployment Modes Dispatcher (Con’t) • Dispatcher is usable in two ways • Remote Mode: – Recommended for detached execution • Local Mode: – Recommended for simple, interactive sessions (e.g. flink shell) 3C 3B 3A 4C 4B 4A Dispatcher Master Master CLI HTTP(S) 3C 3B 3A 4C 4B 4A Master CLI + Dispatcher Local Mode Remote Mode
  • 15. 15 of 15 Future Directions • Dynamic Scaling – Add/remove Task Managers in response to scale changes over a job’s lifetime – Support Mesos maintenance procedures (e.g. inverse offers) • Dispatcher Evolution (FLIP-6) – Generalize to support all deployment scenarios, unified CLI – Provide a centralized Web UI (incl. job history) – Authentication Support (e.g. OAuth 2.0) • Docker Image Support – Tracking the “Mesos unified containerizer” • Mesos Disk Support – Allocate multiple disks for Task Manager temp space – Scale up the I/O
  • 16. 16 of 15 Project Status • Targeted for: Flink 1.2 • Contributors: – Eron Wright (Dell EMC) – Maximilian Michels (data Artisans) • Design Doc: – Mesos Integration on Google Docs • JIRAs: – FLINK-1984 – Integrate Flink with Apache Mesos • Code: – https://github.com/EronWright/flink/tree/feature-FLINK-1984-T2