This thesis aims to formulate a simple measurement to evaluate and compare the predictive distributions of out-of-sample forecasts between autoregressive (AR) and vector autoregressive (VAR) models. The author conducts simulation studies to estimate AR and VAR models using Bayesian inference. A measurement is developed that uses out-of-sample forecasts and predictive distributions to evaluate the full forecast error probability distribution at different horizons. The measurement is found to accurately evaluate single forecasts and calibrate forecast models.