SlideShare a Scribd company logo
Data & Eventing Mesh
The next frontier of modernization
Pavan Keshavamurthy
Kafka Summit APAC 2021
Whoami?
● Founder
- OpenDevX → www.opendevx.io
- Platformatory → www.platformatory.io
● Technologist, Programmer
- Distributed Systems
- Modernization
● OSS Contributor
● Hobby Genomics
● Classical music
● Amateur Astronomy
● ..and a lot of other things
Layers & Silos
Big Data (Warehouse, Lake, Mart)
Transactional DB Transactional DB Transactional DB
{API Management}
no|new-sql
<Service/> <Service/> <Service/> <Service/>
<Service/> <Service/> <Service/> <Service/>
ETL / Data
Engg
Analytics & BI Advanced
Analytics (ML)
Data
Governance
…... …... …...
no|new-sql no|new-sql no|new-sql
ESB | MoM | BPM
The Reality.
That Middleware... That Warehouse... That Lake...
Some things about that didn’t scale very well in practice.
Layers & Silos
Big Data (Warehouse, Lake, Mart)
Transactional DB Transactional DB Transactional DB
no|new-sql
ETL / Data
Engg
Analytics & BI Advanced
Analytics (ML)
Data
Governance
…... …... …...
no|new-sql no|new-sql no|new-sql
The biggest impediment = Hyperspecialization Silos
“A database is a giant global
variable that pervades your
code. How, exactly, is that a
good thing?”
“We pride ourselves on
creating the biggest monolith
of them all, the big data
platform”
https://twitter.com/allenholub/status/140379691815
3531393
https://martinfowler.com/articles/data-monolith-to-mesh.html
- Decompose data (just like
services) by product ←→
domain & context bounds
- Evolve a Reactive Core
(Event Sourcing & CQRS)
Break the Monolith: Let the data (& events) flow
- Mesh Topology over
layered architecture
Real-Time Event
Store
Data Flow &
Observability
ProductC
atalog
Data
Security &
Governance
Service Mesh
Observability
(OpenTracing)
Product
Catalog
Security &
Governance
Data & Event Mesh Control Plane
API Mgmt & Service Mesh Control Plane
Traffic &
Routing
Bounded
Context
Bounded
Context
Bounded
Context
The Data Product
{{Data}}
Bulk /Raw Data Sets
(REST / File Transfer)
Querying, Aggregation
(OData, GraphQL..)
Real Time Events
(AsyncAPI, CloudEvents, *RPC
Polyglot Pipeline Composition
(Beam, DAG…)
X X X
X X X
Developer
BI / Analyst
X X X
X X
… {as a service}
Stakeholder Use-cases
Closing Thoughts
- Culture eats strategy for breakfast
- Small, distributed & self contained → resilient in
the long haul
- Not about tooling alone. People & process
transformation crucial
- Data Ops is the new DevOps - Embed Domain
Data Product ownership into cross functional
teams
Thank you
pavan@platformatory.com
www.platformatory.io
Ad

More Related Content

What's hot (19)

Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
HostedbyConfluent
 
The evolution of the big data platform @ Netflix (OSCON 2015)
The evolution of the big data platform @ Netflix (OSCON 2015)The evolution of the big data platform @ Netflix (OSCON 2015)
The evolution of the big data platform @ Netflix (OSCON 2015)
Eva Tse
 
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
HostedbyConfluent
 
Distributed Data Quality - Technical Solutions for Organizational Scaling
Distributed Data Quality - Technical Solutions for Organizational ScalingDistributed Data Quality - Technical Solutions for Organizational Scaling
Distributed Data Quality - Technical Solutions for Organizational Scaling
Justin Cunningham
 
Cloud native data platform
Cloud native data platformCloud native data platform
Cloud native data platform
Li Gao
 
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
HostedbyConfluent
 
A unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
A unified analytics platform with Kafka and Flink | Stephan Ewen, VervericaA unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
A unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
HostedbyConfluent
 
ASPgems - kappa architecture
ASPgems - kappa architectureASPgems - kappa architecture
ASPgems - kappa architecture
Juantomás García Molina
 
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
Monal Daxini
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming Platform
Dr. Mirko Kämpf
 
Cloud Connect 2012, Big Data @ Netflix
Cloud Connect 2012, Big Data @ NetflixCloud Connect 2012, Big Data @ Netflix
Cloud Connect 2012, Big Data @ Netflix
Jerome Boulon
 
Enterprise Metadata Integration
Enterprise Metadata IntegrationEnterprise Metadata Integration
Enterprise Metadata Integration
Dr. Mirko Kämpf
 
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
HostedbyConfluent
 
Netflix Big Data Paris 2017
Netflix Big Data Paris 2017Netflix Big Data Paris 2017
Netflix Big Data Paris 2017
Jason Flittner
 
How Disney+ uses fast data ubiquity to improve the customer experience
 How Disney+ uses fast data ubiquity to improve the customer experience  How Disney+ uses fast data ubiquity to improve the customer experience
How Disney+ uses fast data ubiquity to improve the customer experience
Martin Zapletal
 
Kafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
Kafka Summit SF 2017 - Riot's Journey to Global Kafka AggregationKafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
Kafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
confluent
 
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
HostedbyConfluent
 
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
Lightbend
 
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream RegistryKafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
confluent
 
Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
Streaming Data in the Cloud with Confluent and MongoDB Atlas | Robert Walters...
HostedbyConfluent
 
The evolution of the big data platform @ Netflix (OSCON 2015)
The evolution of the big data platform @ Netflix (OSCON 2015)The evolution of the big data platform @ Netflix (OSCON 2015)
The evolution of the big data platform @ Netflix (OSCON 2015)
Eva Tse
 
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
Druid + Kafka: transform your data-in-motion to analytics-in-motion | Gian Me...
HostedbyConfluent
 
Distributed Data Quality - Technical Solutions for Organizational Scaling
Distributed Data Quality - Technical Solutions for Organizational ScalingDistributed Data Quality - Technical Solutions for Organizational Scaling
Distributed Data Quality - Technical Solutions for Organizational Scaling
Justin Cunningham
 
Cloud native data platform
Cloud native data platformCloud native data platform
Cloud native data platform
Li Gao
 
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
Streaming data in the cloud with Confluent and MongoDB Atlas | Robert Waters,...
HostedbyConfluent
 
A unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
A unified analytics platform with Kafka and Flink | Stephan Ewen, VervericaA unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
A unified analytics platform with Kafka and Flink | Stephan Ewen, Ververica
HostedbyConfluent
 
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
AWS Re-Invent 2017 Netflix Keystone SPaaS - Monal Daxini - Abd320 2017
Monal Daxini
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming Platform
Dr. Mirko Kämpf
 
Cloud Connect 2012, Big Data @ Netflix
Cloud Connect 2012, Big Data @ NetflixCloud Connect 2012, Big Data @ Netflix
Cloud Connect 2012, Big Data @ Netflix
Jerome Boulon
 
Enterprise Metadata Integration
Enterprise Metadata IntegrationEnterprise Metadata Integration
Enterprise Metadata Integration
Dr. Mirko Kämpf
 
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
HostedbyConfluent
 
Netflix Big Data Paris 2017
Netflix Big Data Paris 2017Netflix Big Data Paris 2017
Netflix Big Data Paris 2017
Jason Flittner
 
How Disney+ uses fast data ubiquity to improve the customer experience
 How Disney+ uses fast data ubiquity to improve the customer experience  How Disney+ uses fast data ubiquity to improve the customer experience
How Disney+ uses fast data ubiquity to improve the customer experience
Martin Zapletal
 
Kafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
Kafka Summit SF 2017 - Riot's Journey to Global Kafka AggregationKafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
Kafka Summit SF 2017 - Riot's Journey to Global Kafka Aggregation
confluent
 
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
Money Heist - A Stream Processing Original! | Meha Pandey and Shengze Yu, Net...
HostedbyConfluent
 
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
How Credit Karma Makes Real-Time Decisions For 60 Million Users With Akka Str...
Lightbend
 
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream RegistryKafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
Kafka Summit SF 2017 - DNS for Data: The Need for a Stream Registry
confluent
 

Similar to Event & Data Mesh as a Service: Industrializing Microservices in the Enterprise | Pavan Keshavamurthy, Platformatory (20)

Salesforce & SAP Integration
Salesforce & SAP IntegrationSalesforce & SAP Integration
Salesforce & SAP Integration
Raymond Gao
 
Engineering practices in big data storage and processing
Engineering practices in big data storage and processingEngineering practices in big data storage and processing
Engineering practices in big data storage and processing
Schubert Zhang
 
Architecting a next generation data platform
Architecting a next generation data platformArchitecting a next generation data platform
Architecting a next generation data platform
hadooparchbook
 
5 Steps for Migrating Relational Databases to Next-Gen Architectures
5 Steps for Migrating Relational Databases to Next-Gen Architectures5 Steps for Migrating Relational Databases to Next-Gen Architectures
5 Steps for Migrating Relational Databases to Next-Gen Architectures
NuoDB
 
Prague data management meetup 2017-01-23
Prague data management meetup 2017-01-23Prague data management meetup 2017-01-23
Prague data management meetup 2017-01-23
Martin Bém
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Codemotion
 
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Demi Ben-Ari
 
Middle Tier Scalability - Present and Future
Middle Tier Scalability - Present and FutureMiddle Tier Scalability - Present and Future
Middle Tier Scalability - Present and Future
dfilppi
 
Architecting a next-generation data platform
Architecting a next-generation data platformArchitecting a next-generation data platform
Architecting a next-generation data platform
hadooparchbook
 
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
Deepak Chandramouli
 
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Demi Ben-Ari
 
Data Vault 2.0: Big Data Meets Data Warehousing
Data Vault 2.0: Big Data Meets Data WarehousingData Vault 2.0: Big Data Meets Data Warehousing
Data Vault 2.0: Big Data Meets Data Warehousing
All Things Open
 
Unlocking the Value of Your Data Lake
Unlocking the Value of Your Data LakeUnlocking the Value of Your Data Lake
Unlocking the Value of Your Data Lake
DATAVERSITY
 
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are InterchangeableMyth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Denodo
 
Continuous Intelligence - Intersecting Event-Based Business Logic and ML
Continuous Intelligence - Intersecting Event-Based Business Logic and MLContinuous Intelligence - Intersecting Event-Based Business Logic and ML
Continuous Intelligence - Intersecting Event-Based Business Logic and ML
Paris Carbone
 
Transforming the Database: Critical Innovations for Performance at Scale
Transforming the Database: Critical Innovations for Performance at ScaleTransforming the Database: Critical Innovations for Performance at Scale
Transforming the Database: Critical Innovations for Performance at Scale
ScyllaDB
 
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardDelta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Paris Data Engineers !
 
Building a data warehouse with Amazon Redshift … and a quick look at Amazon ...
Building a data warehouse  with Amazon Redshift … and a quick look at Amazon ...Building a data warehouse  with Amazon Redshift … and a quick look at Amazon ...
Building a data warehouse with Amazon Redshift … and a quick look at Amazon ...
Julien SIMON
 
Druid: Under the Covers (Virtual Meetup)
Druid: Under the Covers (Virtual Meetup)Druid: Under the Covers (Virtual Meetup)
Druid: Under the Covers (Virtual Meetup)
Imply
 
Salesforce & SAP Integration
Salesforce & SAP IntegrationSalesforce & SAP Integration
Salesforce & SAP Integration
Raymond Gao
 
Engineering practices in big data storage and processing
Engineering practices in big data storage and processingEngineering practices in big data storage and processing
Engineering practices in big data storage and processing
Schubert Zhang
 
Architecting a next generation data platform
Architecting a next generation data platformArchitecting a next generation data platform
Architecting a next generation data platform
hadooparchbook
 
5 Steps for Migrating Relational Databases to Next-Gen Architectures
5 Steps for Migrating Relational Databases to Next-Gen Architectures5 Steps for Migrating Relational Databases to Next-Gen Architectures
5 Steps for Migrating Relational Databases to Next-Gen Architectures
NuoDB
 
Prague data management meetup 2017-01-23
Prague data management meetup 2017-01-23Prague data management meetup 2017-01-23
Prague data management meetup 2017-01-23
Martin Bém
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Demi Ben-Ari - Monitoring Big Data Systems Done "The Simple Way" - Codemotion...
Codemotion
 
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Milan 2017 - D...
Demi Ben-Ari
 
Middle Tier Scalability - Present and Future
Middle Tier Scalability - Present and FutureMiddle Tier Scalability - Present and Future
Middle Tier Scalability - Present and Future
dfilppi
 
Architecting a next-generation data platform
Architecting a next-generation data platformArchitecting a next-generation data platform
Architecting a next-generation data platform
hadooparchbook
 
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
PayPal datalake journey | teradata - edge of next | san diego | 2017 october ...
Deepak Chandramouli
 
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Monitoring Big Data Systems Done "The Simple Way" - Codemotion Berlin 2017
Demi Ben-Ari
 
Data Vault 2.0: Big Data Meets Data Warehousing
Data Vault 2.0: Big Data Meets Data WarehousingData Vault 2.0: Big Data Meets Data Warehousing
Data Vault 2.0: Big Data Meets Data Warehousing
All Things Open
 
Unlocking the Value of Your Data Lake
Unlocking the Value of Your Data LakeUnlocking the Value of Your Data Lake
Unlocking the Value of Your Data Lake
DATAVERSITY
 
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are InterchangeableMyth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Denodo
 
Continuous Intelligence - Intersecting Event-Based Business Logic and ML
Continuous Intelligence - Intersecting Event-Based Business Logic and MLContinuous Intelligence - Intersecting Event-Based Business Logic and ML
Continuous Intelligence - Intersecting Event-Based Business Logic and ML
Paris Carbone
 
Transforming the Database: Critical Innovations for Performance at Scale
Transforming the Database: Critical Innovations for Performance at ScaleTransforming the Database: Critical Innovations for Performance at Scale
Transforming the Database: Critical Innovations for Performance at Scale
ScyllaDB
 
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardDelta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Paris Data Engineers !
 
Building a data warehouse with Amazon Redshift … and a quick look at Amazon ...
Building a data warehouse  with Amazon Redshift … and a quick look at Amazon ...Building a data warehouse  with Amazon Redshift … and a quick look at Amazon ...
Building a data warehouse with Amazon Redshift … and a quick look at Amazon ...
Julien SIMON
 
Druid: Under the Covers (Virtual Meetup)
Druid: Under the Covers (Virtual Meetup)Druid: Under the Covers (Virtual Meetup)
Druid: Under the Covers (Virtual Meetup)
Imply
 
Ad

More from HostedbyConfluent (20)

Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
HostedbyConfluent
 
Renaming a Kafka Topic | Kafka Summit London
Renaming a Kafka Topic | Kafka Summit LondonRenaming a Kafka Topic | Kafka Summit London
Renaming a Kafka Topic | Kafka Summit London
HostedbyConfluent
 
Evolution of NRT Data Ingestion Pipeline at Trendyol
Evolution of NRT Data Ingestion Pipeline at TrendyolEvolution of NRT Data Ingestion Pipeline at Trendyol
Evolution of NRT Data Ingestion Pipeline at Trendyol
HostedbyConfluent
 
Ensuring Kafka Service Resilience: A Dive into Health-Checking Techniques
Ensuring Kafka Service Resilience: A Dive into Health-Checking TechniquesEnsuring Kafka Service Resilience: A Dive into Health-Checking Techniques
Ensuring Kafka Service Resilience: A Dive into Health-Checking Techniques
HostedbyConfluent
 
Exactly-once Stream Processing with Arroyo and Kafka
Exactly-once Stream Processing with Arroyo and KafkaExactly-once Stream Processing with Arroyo and Kafka
Exactly-once Stream Processing with Arroyo and Kafka
HostedbyConfluent
 
Fish Plays Pokemon | Kafka Summit London
Fish Plays Pokemon | Kafka Summit LondonFish Plays Pokemon | Kafka Summit London
Fish Plays Pokemon | Kafka Summit London
HostedbyConfluent
 
Tiered Storage 101 | Kafla Summit London
Tiered Storage 101 | Kafla Summit LondonTiered Storage 101 | Kafla Summit London
Tiered Storage 101 | Kafla Summit London
HostedbyConfluent
 
Building a Self-Service Stream Processing Portal: How And Why
Building a Self-Service Stream Processing Portal: How And WhyBuilding a Self-Service Stream Processing Portal: How And Why
Building a Self-Service Stream Processing Portal: How And Why
HostedbyConfluent
 
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
HostedbyConfluent
 
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
HostedbyConfluent
 
Navigating Private Network Connectivity Options for Kafka Clusters
Navigating Private Network Connectivity Options for Kafka ClustersNavigating Private Network Connectivity Options for Kafka Clusters
Navigating Private Network Connectivity Options for Kafka Clusters
HostedbyConfluent
 
Apache Flink: Building a Company-wide Self-service Streaming Data Platform
Apache Flink: Building a Company-wide Self-service Streaming Data PlatformApache Flink: Building a Company-wide Self-service Streaming Data Platform
Apache Flink: Building a Company-wide Self-service Streaming Data Platform
HostedbyConfluent
 
Explaining How Real-Time GenAI Works in a Noisy Pub
Explaining How Real-Time GenAI Works in a Noisy PubExplaining How Real-Time GenAI Works in a Noisy Pub
Explaining How Real-Time GenAI Works in a Noisy Pub
HostedbyConfluent
 
TL;DR Kafka Metrics | Kafka Summit London
TL;DR Kafka Metrics | Kafka Summit LondonTL;DR Kafka Metrics | Kafka Summit London
TL;DR Kafka Metrics | Kafka Summit London
HostedbyConfluent
 
A Window Into Your Kafka Streams Tasks | KSL
A Window Into Your Kafka Streams Tasks | KSLA Window Into Your Kafka Streams Tasks | KSL
A Window Into Your Kafka Streams Tasks | KSL
HostedbyConfluent
 
Mastering Kafka Producer Configs: A Guide to Optimizing Performance
Mastering Kafka Producer Configs: A Guide to Optimizing PerformanceMastering Kafka Producer Configs: A Guide to Optimizing Performance
Mastering Kafka Producer Configs: A Guide to Optimizing Performance
HostedbyConfluent
 
Data Contracts Management: Schema Registry and Beyond
Data Contracts Management: Schema Registry and BeyondData Contracts Management: Schema Registry and Beyond
Data Contracts Management: Schema Registry and Beyond
HostedbyConfluent
 
Code-First Approach: Crafting Efficient Flink Apps
Code-First Approach: Crafting Efficient Flink AppsCode-First Approach: Crafting Efficient Flink Apps
Code-First Approach: Crafting Efficient Flink Apps
HostedbyConfluent
 
Debezium vs. the World: An Overview of the CDC Ecosystem
Debezium vs. the World: An Overview of the CDC EcosystemDebezium vs. the World: An Overview of the CDC Ecosystem
Debezium vs. the World: An Overview of the CDC Ecosystem
HostedbyConfluent
 
Beyond Tiered Storage: Serverless Kafka with No Local Disks
Beyond Tiered Storage: Serverless Kafka with No Local DisksBeyond Tiered Storage: Serverless Kafka with No Local Disks
Beyond Tiered Storage: Serverless Kafka with No Local Disks
HostedbyConfluent
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
HostedbyConfluent
 
Renaming a Kafka Topic | Kafka Summit London
Renaming a Kafka Topic | Kafka Summit LondonRenaming a Kafka Topic | Kafka Summit London
Renaming a Kafka Topic | Kafka Summit London
HostedbyConfluent
 
Evolution of NRT Data Ingestion Pipeline at Trendyol
Evolution of NRT Data Ingestion Pipeline at TrendyolEvolution of NRT Data Ingestion Pipeline at Trendyol
Evolution of NRT Data Ingestion Pipeline at Trendyol
HostedbyConfluent
 
Ensuring Kafka Service Resilience: A Dive into Health-Checking Techniques
Ensuring Kafka Service Resilience: A Dive into Health-Checking TechniquesEnsuring Kafka Service Resilience: A Dive into Health-Checking Techniques
Ensuring Kafka Service Resilience: A Dive into Health-Checking Techniques
HostedbyConfluent
 
Exactly-once Stream Processing with Arroyo and Kafka
Exactly-once Stream Processing with Arroyo and KafkaExactly-once Stream Processing with Arroyo and Kafka
Exactly-once Stream Processing with Arroyo and Kafka
HostedbyConfluent
 
Fish Plays Pokemon | Kafka Summit London
Fish Plays Pokemon | Kafka Summit LondonFish Plays Pokemon | Kafka Summit London
Fish Plays Pokemon | Kafka Summit London
HostedbyConfluent
 
Tiered Storage 101 | Kafla Summit London
Tiered Storage 101 | Kafla Summit LondonTiered Storage 101 | Kafla Summit London
Tiered Storage 101 | Kafla Summit London
HostedbyConfluent
 
Building a Self-Service Stream Processing Portal: How And Why
Building a Self-Service Stream Processing Portal: How And WhyBuilding a Self-Service Stream Processing Portal: How And Why
Building a Self-Service Stream Processing Portal: How And Why
HostedbyConfluent
 
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
From the Trenches: Improving Kafka Connect Source Connector Ingestion from 7 ...
HostedbyConfluent
 
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
Future with Zero Down-Time: End-to-end Resiliency with Chaos Engineering and ...
HostedbyConfluent
 
Navigating Private Network Connectivity Options for Kafka Clusters
Navigating Private Network Connectivity Options for Kafka ClustersNavigating Private Network Connectivity Options for Kafka Clusters
Navigating Private Network Connectivity Options for Kafka Clusters
HostedbyConfluent
 
Apache Flink: Building a Company-wide Self-service Streaming Data Platform
Apache Flink: Building a Company-wide Self-service Streaming Data PlatformApache Flink: Building a Company-wide Self-service Streaming Data Platform
Apache Flink: Building a Company-wide Self-service Streaming Data Platform
HostedbyConfluent
 
Explaining How Real-Time GenAI Works in a Noisy Pub
Explaining How Real-Time GenAI Works in a Noisy PubExplaining How Real-Time GenAI Works in a Noisy Pub
Explaining How Real-Time GenAI Works in a Noisy Pub
HostedbyConfluent
 
TL;DR Kafka Metrics | Kafka Summit London
TL;DR Kafka Metrics | Kafka Summit LondonTL;DR Kafka Metrics | Kafka Summit London
TL;DR Kafka Metrics | Kafka Summit London
HostedbyConfluent
 
A Window Into Your Kafka Streams Tasks | KSL
A Window Into Your Kafka Streams Tasks | KSLA Window Into Your Kafka Streams Tasks | KSL
A Window Into Your Kafka Streams Tasks | KSL
HostedbyConfluent
 
Mastering Kafka Producer Configs: A Guide to Optimizing Performance
Mastering Kafka Producer Configs: A Guide to Optimizing PerformanceMastering Kafka Producer Configs: A Guide to Optimizing Performance
Mastering Kafka Producer Configs: A Guide to Optimizing Performance
HostedbyConfluent
 
Data Contracts Management: Schema Registry and Beyond
Data Contracts Management: Schema Registry and BeyondData Contracts Management: Schema Registry and Beyond
Data Contracts Management: Schema Registry and Beyond
HostedbyConfluent
 
Code-First Approach: Crafting Efficient Flink Apps
Code-First Approach: Crafting Efficient Flink AppsCode-First Approach: Crafting Efficient Flink Apps
Code-First Approach: Crafting Efficient Flink Apps
HostedbyConfluent
 
Debezium vs. the World: An Overview of the CDC Ecosystem
Debezium vs. the World: An Overview of the CDC EcosystemDebezium vs. the World: An Overview of the CDC Ecosystem
Debezium vs. the World: An Overview of the CDC Ecosystem
HostedbyConfluent
 
Beyond Tiered Storage: Serverless Kafka with No Local Disks
Beyond Tiered Storage: Serverless Kafka with No Local DisksBeyond Tiered Storage: Serverless Kafka with No Local Disks
Beyond Tiered Storage: Serverless Kafka with No Local Disks
HostedbyConfluent
 
Ad

Recently uploaded (20)

Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 

Event & Data Mesh as a Service: Industrializing Microservices in the Enterprise | Pavan Keshavamurthy, Platformatory

  • 1. Data & Eventing Mesh The next frontier of modernization Pavan Keshavamurthy Kafka Summit APAC 2021
  • 2. Whoami? ● Founder - OpenDevX → www.opendevx.io - Platformatory → www.platformatory.io ● Technologist, Programmer - Distributed Systems - Modernization ● OSS Contributor ● Hobby Genomics ● Classical music ● Amateur Astronomy ● ..and a lot of other things
  • 3. Layers & Silos Big Data (Warehouse, Lake, Mart) Transactional DB Transactional DB Transactional DB {API Management} no|new-sql <Service/> <Service/> <Service/> <Service/> <Service/> <Service/> <Service/> <Service/> ETL / Data Engg Analytics & BI Advanced Analytics (ML) Data Governance …... …... …... no|new-sql no|new-sql no|new-sql ESB | MoM | BPM
  • 4. The Reality. That Middleware... That Warehouse... That Lake... Some things about that didn’t scale very well in practice.
  • 5. Layers & Silos Big Data (Warehouse, Lake, Mart) Transactional DB Transactional DB Transactional DB no|new-sql ETL / Data Engg Analytics & BI Advanced Analytics (ML) Data Governance …... …... …... no|new-sql no|new-sql no|new-sql The biggest impediment = Hyperspecialization Silos
  • 6. “A database is a giant global variable that pervades your code. How, exactly, is that a good thing?” “We pride ourselves on creating the biggest monolith of them all, the big data platform” https://twitter.com/allenholub/status/140379691815 3531393 https://martinfowler.com/articles/data-monolith-to-mesh.html
  • 7. - Decompose data (just like services) by product ←→ domain & context bounds - Evolve a Reactive Core (Event Sourcing & CQRS) Break the Monolith: Let the data (& events) flow - Mesh Topology over layered architecture
  • 8. Real-Time Event Store Data Flow & Observability ProductC atalog Data Security & Governance Service Mesh Observability (OpenTracing) Product Catalog Security & Governance Data & Event Mesh Control Plane API Mgmt & Service Mesh Control Plane Traffic & Routing Bounded Context Bounded Context Bounded Context
  • 9. The Data Product {{Data}} Bulk /Raw Data Sets (REST / File Transfer) Querying, Aggregation (OData, GraphQL..) Real Time Events (AsyncAPI, CloudEvents, *RPC Polyglot Pipeline Composition (Beam, DAG…) X X X X X X Developer BI / Analyst X X X X X … {as a service} Stakeholder Use-cases
  • 10. Closing Thoughts - Culture eats strategy for breakfast - Small, distributed & self contained → resilient in the long haul - Not about tooling alone. People & process transformation crucial - Data Ops is the new DevOps - Embed Domain Data Product ownership into cross functional teams