SlideShare a Scribd company logo
Extending Spark SQL 2.4
with New Data Sources
Live Coding Session
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl / Spark+AI Summit 2019
● Freelance IT consultant
● Specializing in Spark, Kafka, Kafka Streams, Scala
● Development | Consulting | Training | Speaking
● "The Internals Of" online books
● Among contributors to Apache Spark
● Among Confluent Community Catalyst (Class of 2019 - 2020)
● Contact me at jacek@japila.pl
● Follow @JacekLaskowski on twitter for more #ApacheSpark
#ApacheKafka #KafkaStreams
Jacek Laskowski
Friendly reminder
Pictures...take a lot of pictures! 📷
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Why Should You Care?
1. Why would you ever consider developing a new data
source for Spark SQL?
2. Let structured queries access data in external systems
(e.g. Splice Machine, Google Cloud Spanner)
3. Make loading or writing process self-contained
a. Hidden from developers who'd focus on what to do with the data
not how to make the data available in a proper format
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Data Source / Data Provider
1. Data Source is an pluggable “abstraction” in Spark SQL for loading and saving
data
a. Abstraction in a loose meaning
b. Also known as Data Provider or Data Format or Relation Provider
2. Built-In Data Sources: parquet, kafka, avro, json, etc.
3. All available for developers, data engineers, and data scientists
a. Scala, Java, Python, SQL
4. Allows for new data sources
5. Source or Reader for loading data
6. Sink or Writer for saving data
7. Read up on Data Sources in the official documentation
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
The goal of the session! 🎯
Before Developing New Data Source
1. What Apache Spark version?
2. Data Source API V1 vs Data Source API V2?
3. Loading and/or Saving Data?
4. Spark SQL only?
5. Spark Structured Streaming?
a. Micro-Batch Stream Processing?
b. Continuous Stream Processing?
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
DataFrameReader (1 of 2)
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
1. SparkSession.read to start describing a data flow
a. Creates a DataFrameReader
2. DataFrameReader is a fluent interface to describe the
input data source
3. Used to “load” data from external storage systems (e.g.
file systems, key-value stores, etc.)
a. No physical data movement yet
b. Metadata of an input node in a data flow (graph)
4. DataFrameReader.load to finish describing the input
DataFrameReader (2 of 2)
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Worth noticing:
1. DataSource.lookupDataS
ource
2. DataSourceV2
3. ReadSupport
4. DataSourceV2Relation
5. loadV1Source
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
loadV1Source = DataSource.resolveRelation
1. loadV1Source loads a DataSource API V1 data source
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Data Source API
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
1. DataSourceRegister
2. 👉 Data Source API V1
3. 👉 Data Source API V2
Friendly reminders
1. Pictures...take a lot of pictures! 📷
2. It should be a live coding, shouldn’t it? 🤔
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Data Source API V1
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
1. DataSourceRegister
a. SchemaRelationProvider
b. RelationProvider
c. FileFormat
d. CreatableRelationProvider
2. BaseRelation
a. PrunedFilteredScan
b. InsertableRelation
c. PrunedScan
d. TableScan
e. CatalystScan
Data Source API V2
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
1. DataSourceRegister
2. DataSourceV2
3. ReadSupport
4. WriteSupport
“The Internals Of” Online Books
1. The Internals of Spark SQL
2. The Internals of Spark Structured Streaming
3. The Internals of Apache Spark
Questions?
1. Follow @jaceklaskowski on twitter (DMs open)
2. Upvote my questions and answers on StackOverflow
3. Contact me at jacek@japila.pl
4. Connect with me at LinkedIn
© Jacek Laskowski / @JacekLaskowski / jacek@japila.pl
Ad

More Related Content

What's hot (20)

Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Databricks
 
Infrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache SparkInfrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache Spark
Databricks
 
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Databricks
 
Self-Service Apache Spark Structured Streaming Applications and Analytics
Self-Service Apache Spark Structured Streaming Applications and AnalyticsSelf-Service Apache Spark Structured Streaming Applications and Analytics
Self-Service Apache Spark Structured Streaming Applications and Analytics
Databricks
 
Downscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Downscaling: The Achilles heel of Autoscaling Apache Spark ClustersDownscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Downscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Databricks
 
Databricks with R: Deep Dive
Databricks with R: Deep DiveDatabricks with R: Deep Dive
Databricks with R: Deep Dive
Databricks
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos Erotocritou
Spark Summit
 
Anatomy of Data Frame API : A deep dive into Spark Data Frame API
Anatomy of Data Frame API :  A deep dive into Spark Data Frame APIAnatomy of Data Frame API :  A deep dive into Spark Data Frame API
Anatomy of Data Frame API : A deep dive into Spark Data Frame API
datamantra
 
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Khai Tran
 
Powering Custom Apps at Facebook using Spark Script Transformation
Powering Custom Apps at Facebook using Spark Script TransformationPowering Custom Apps at Facebook using Spark Script Transformation
Powering Custom Apps at Facebook using Spark Script Transformation
Databricks
 
Acid ORC, Iceberg and Delta Lake
Acid ORC, Iceberg and Delta LakeAcid ORC, Iceberg and Delta Lake
Acid ORC, Iceberg and Delta Lake
Michal Gancarski
 
Accelerating Machine Learning on Databricks Runtime
Accelerating Machine Learning on Databricks RuntimeAccelerating Machine Learning on Databricks Runtime
Accelerating Machine Learning on Databricks Runtime
Databricks
 
End-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache SparkEnd-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache Spark
Burak Yavuz
 
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
Spark Summit
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Spark Summit
 
Insights Without Tradeoffs: Using Structured Streaming
Insights Without Tradeoffs: Using Structured StreamingInsights Without Tradeoffs: Using Structured Streaming
Insights Without Tradeoffs: Using Structured Streaming
Databricks
 
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Databricks
 
Infrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache SparkInfrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache Spark
Databricks
 
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Near Real-Time Analytics with Apache Spark: Ingestion, ETL, and Interactive Q...
Databricks
 
Self-Service Apache Spark Structured Streaming Applications and Analytics
Self-Service Apache Spark Structured Streaming Applications and AnalyticsSelf-Service Apache Spark Structured Streaming Applications and Analytics
Self-Service Apache Spark Structured Streaming Applications and Analytics
Databricks
 
Downscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Downscaling: The Achilles heel of Autoscaling Apache Spark ClustersDownscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Downscaling: The Achilles heel of Autoscaling Apache Spark Clusters
Databricks
 
Databricks with R: Deep Dive
Databricks with R: Deep DiveDatabricks with R: Deep Dive
Databricks with R: Deep Dive
Databricks
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos Erotocritou
Spark Summit
 
Anatomy of Data Frame API : A deep dive into Spark Data Frame API
Anatomy of Data Frame API :  A deep dive into Spark Data Frame APIAnatomy of Data Frame API :  A deep dive into Spark Data Frame API
Anatomy of Data Frame API : A deep dive into Spark Data Frame API
datamantra
 
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Conquering the Lambda architecture in LinkedIn metrics platform with Apache C...
Khai Tran
 
Powering Custom Apps at Facebook using Spark Script Transformation
Powering Custom Apps at Facebook using Spark Script TransformationPowering Custom Apps at Facebook using Spark Script Transformation
Powering Custom Apps at Facebook using Spark Script Transformation
Databricks
 
Acid ORC, Iceberg and Delta Lake
Acid ORC, Iceberg and Delta LakeAcid ORC, Iceberg and Delta Lake
Acid ORC, Iceberg and Delta Lake
Michal Gancarski
 
Accelerating Machine Learning on Databricks Runtime
Accelerating Machine Learning on Databricks RuntimeAccelerating Machine Learning on Databricks Runtime
Accelerating Machine Learning on Databricks Runtime
Databricks
 
End-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache SparkEnd-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache Spark
Burak Yavuz
 
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
What No One Tells You About Writing a Streaming App: Spark Summit East talk b...
Spark Summit
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Spark Summit
 
Insights Without Tradeoffs: Using Structured Streaming
Insights Without Tradeoffs: Using Structured StreamingInsights Without Tradeoffs: Using Structured Streaming
Insights Without Tradeoffs: Using Structured Streaming
Databricks
 

Similar to Extending Spark SQL 2.4 with New Data Sources (Live Coding Session) (20)

 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin... Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
Jacek Laskowski
 
Spark sql under the hood - Data KRK meetup
Spark sql under the hood  - Data KRK meetupSpark sql under the hood  - Data KRK meetup
Spark sql under the hood - Data KRK meetup
Mikołaj Kromka
 
Started with-apache-spark
Started with-apache-sparkStarted with-apache-spark
Started with-apache-spark
Happiest Minds Technologies
 
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
bemeneqhueen
 
Writing Apache Spark and Apache Flink Applications Using Apache Bahir
Writing Apache Spark and Apache Flink Applications Using Apache BahirWriting Apache Spark and Apache Flink Applications Using Apache Bahir
Writing Apache Spark and Apache Flink Applications Using Apache Bahir
Luciano Resende
 
Azure Databricks is Easier Than You Think
Azure Databricks is Easier Than You ThinkAzure Databricks is Easier Than You Think
Azure Databricks is Easier Than You Think
Ike Ellis
 
2016 Spark Summit East Keynote: Matei Zaharia
2016 Spark Summit East Keynote: Matei Zaharia2016 Spark Summit East Keynote: Matei Zaharia
2016 Spark Summit East Keynote: Matei Zaharia
Databricks
 
Apache Spark Overview
Apache Spark OverviewApache Spark Overview
Apache Spark Overview
Dharmjit Singh
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks
Databricks
 
Jumpstart on Apache Spark 2.2 on Databricks
Jumpstart on Apache Spark 2.2 on DatabricksJumpstart on Apache Spark 2.2 on Databricks
Jumpstart on Apache Spark 2.2 on Databricks
Databricks
 
H2O PySparkling Water
H2O PySparkling WaterH2O PySparkling Water
H2O PySparkling Water
Sri Ambati
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
A Master Guide To Apache Spark Application And Versatile Uses.pdf
A Master Guide To Apache Spark Application And Versatile Uses.pdfA Master Guide To Apache Spark Application And Versatile Uses.pdf
A Master Guide To Apache Spark Application And Versatile Uses.pdf
DataSpace Academy
 
Spark Will Replace Hadoop ! Know Why
Spark Will Replace Hadoop ! Know Why Spark Will Replace Hadoop ! Know Why
Spark Will Replace Hadoop ! Know Why
Edureka!
 
Scalable Machine Learning with PySpark
Scalable Machine Learning with PySparkScalable Machine Learning with PySpark
Scalable Machine Learning with PySpark
Ladle Patel
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Paco Nathan
 
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf
 
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­ticaA noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
Data Con LA
 
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Yao Yao
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin... Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
Jacek Laskowski
 
Spark sql under the hood - Data KRK meetup
Spark sql under the hood  - Data KRK meetupSpark sql under the hood  - Data KRK meetup
Spark sql under the hood - Data KRK meetup
Mikołaj Kromka
 
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch ...
bemeneqhueen
 
Writing Apache Spark and Apache Flink Applications Using Apache Bahir
Writing Apache Spark and Apache Flink Applications Using Apache BahirWriting Apache Spark and Apache Flink Applications Using Apache Bahir
Writing Apache Spark and Apache Flink Applications Using Apache Bahir
Luciano Resende
 
Azure Databricks is Easier Than You Think
Azure Databricks is Easier Than You ThinkAzure Databricks is Easier Than You Think
Azure Databricks is Easier Than You Think
Ike Ellis
 
2016 Spark Summit East Keynote: Matei Zaharia
2016 Spark Summit East Keynote: Matei Zaharia2016 Spark Summit East Keynote: Matei Zaharia
2016 Spark Summit East Keynote: Matei Zaharia
Databricks
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks
Databricks
 
Jumpstart on Apache Spark 2.2 on Databricks
Jumpstart on Apache Spark 2.2 on DatabricksJumpstart on Apache Spark 2.2 on Databricks
Jumpstart on Apache Spark 2.2 on Databricks
Databricks
 
H2O PySparkling Water
H2O PySparkling WaterH2O PySparkling Water
H2O PySparkling Water
Sri Ambati
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
A Master Guide To Apache Spark Application And Versatile Uses.pdf
A Master Guide To Apache Spark Application And Versatile Uses.pdfA Master Guide To Apache Spark Application And Versatile Uses.pdf
A Master Guide To Apache Spark Application And Versatile Uses.pdf
DataSpace Academy
 
Spark Will Replace Hadoop ! Know Why
Spark Will Replace Hadoop ! Know Why Spark Will Replace Hadoop ! Know Why
Spark Will Replace Hadoop ! Know Why
Edureka!
 
Scalable Machine Learning with PySpark
Scalable Machine Learning with PySparkScalable Machine Learning with PySpark
Scalable Machine Learning with PySpark
Ladle Patel
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Paco Nathan
 
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf
 
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­ticaA noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
Data Con LA
 
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Yao Yao
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 

Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)

  • 1. Extending Spark SQL 2.4 with New Data Sources Live Coding Session © Jacek Laskowski / @JacekLaskowski / [email protected] / Spark+AI Summit 2019
  • 2. ● Freelance IT consultant ● Specializing in Spark, Kafka, Kafka Streams, Scala ● Development | Consulting | Training | Speaking ● "The Internals Of" online books ● Among contributors to Apache Spark ● Among Confluent Community Catalyst (Class of 2019 - 2020) ● Contact me at [email protected] ● Follow @JacekLaskowski on twitter for more #ApacheSpark #ApacheKafka #KafkaStreams Jacek Laskowski
  • 3. Friendly reminder Pictures...take a lot of pictures! 📷 © Jacek Laskowski / @JacekLaskowski / [email protected]
  • 4. Why Should You Care? 1. Why would you ever consider developing a new data source for Spark SQL? 2. Let structured queries access data in external systems (e.g. Splice Machine, Google Cloud Spanner) 3. Make loading or writing process self-contained a. Hidden from developers who'd focus on what to do with the data not how to make the data available in a proper format © Jacek Laskowski / @JacekLaskowski / [email protected]
  • 5. Data Source / Data Provider 1. Data Source is an pluggable “abstraction” in Spark SQL for loading and saving data a. Abstraction in a loose meaning b. Also known as Data Provider or Data Format or Relation Provider 2. Built-In Data Sources: parquet, kafka, avro, json, etc. 3. All available for developers, data engineers, and data scientists a. Scala, Java, Python, SQL 4. Allows for new data sources 5. Source or Reader for loading data 6. Sink or Writer for saving data 7. Read up on Data Sources in the official documentation © Jacek Laskowski / @JacekLaskowski / [email protected] The goal of the session! 🎯
  • 6. Before Developing New Data Source 1. What Apache Spark version? 2. Data Source API V1 vs Data Source API V2? 3. Loading and/or Saving Data? 4. Spark SQL only? 5. Spark Structured Streaming? a. Micro-Batch Stream Processing? b. Continuous Stream Processing? © Jacek Laskowski / @JacekLaskowski / [email protected]
  • 7. DataFrameReader (1 of 2) © Jacek Laskowski / @JacekLaskowski / [email protected] 1. SparkSession.read to start describing a data flow a. Creates a DataFrameReader 2. DataFrameReader is a fluent interface to describe the input data source 3. Used to “load” data from external storage systems (e.g. file systems, key-value stores, etc.) a. No physical data movement yet b. Metadata of an input node in a data flow (graph) 4. DataFrameReader.load to finish describing the input
  • 8. DataFrameReader (2 of 2) © Jacek Laskowski / @JacekLaskowski / [email protected] Worth noticing: 1. DataSource.lookupDataS ource 2. DataSourceV2 3. ReadSupport 4. DataSourceV2Relation 5. loadV1Source
  • 10. loadV1Source = DataSource.resolveRelation 1. loadV1Source loads a DataSource API V1 data source © Jacek Laskowski / @JacekLaskowski / [email protected]
  • 11. Data Source API © Jacek Laskowski / @JacekLaskowski / [email protected] 1. DataSourceRegister 2. 👉 Data Source API V1 3. 👉 Data Source API V2
  • 12. Friendly reminders 1. Pictures...take a lot of pictures! 📷 2. It should be a live coding, shouldn’t it? 🤔 © Jacek Laskowski / @JacekLaskowski / [email protected]
  • 13. Data Source API V1 © Jacek Laskowski / @JacekLaskowski / [email protected] 1. DataSourceRegister a. SchemaRelationProvider b. RelationProvider c. FileFormat d. CreatableRelationProvider 2. BaseRelation a. PrunedFilteredScan b. InsertableRelation c. PrunedScan d. TableScan e. CatalystScan
  • 14. Data Source API V2 © Jacek Laskowski / @JacekLaskowski / [email protected] 1. DataSourceRegister 2. DataSourceV2 3. ReadSupport 4. WriteSupport
  • 15. “The Internals Of” Online Books 1. The Internals of Spark SQL 2. The Internals of Spark Structured Streaming 3. The Internals of Apache Spark
  • 16. Questions? 1. Follow @jaceklaskowski on twitter (DMs open) 2. Upvote my questions and answers on StackOverflow 3. Contact me at [email protected] 4. Connect with me at LinkedIn © Jacek Laskowski / @JacekLaskowski / [email protected]