SlideShare a Scribd company logo
Hitoshi Kusano*, Ayaka Kume+, Eiichi Matsumoto+, Jethro Tan+


June 2, 2017
*Kyoto University
+Preferred Networks, Inc.
FCN-Based 6D Robotic Grasping

for Arbitrary Placed Objects
※This work is the output of Preferred Networks internship program
Requirement for successful robotic grasping:

Derive configurations of a robot and its end-effector

e.g. Grasp pose, Grasp width, Grasp height, Joint angle
・Traditional approach decomposes grasping process into
several stages, which require many heuristics
・Machine learning based end-to-end approach has emerged
Background
http://www.schunk-modular-robotics.com/
1/9
Complex end-effector Cluttered environment
None of prior methods can predict 6D grasp

Previous Work

~ Machine learning based end-to-end approach ~
Pinto2016 Levine2016
Araki2016 Guo2017
(x, y)height
width
2/9
(x, y, z, roll, pitch, yaw)
Our purpose:
End-to-End learning to grasp arbitrary placed objects

Contribution:
○ Novel data collection strategy to obtain 6D grasp
configurations using a teach tool by human
○ End-to-end CNN model predicting 6D grasp configurations
Purpose and Contribution
(x, y, z, w, p, r)
3/9
● An extension for Fully Convolutional Networks
● Outputs two maps with scores: Location Map for graspability per pixel, and
Configuration Map providing end-effector configurations (z, w, p, r) per pixel
● For Configuration Map, this network classifies valid grasp configurations to
300 classes, NOT regression
Grasp Configuration Network
(x, y, z, w, p, r)
4/9
Location MapConfiguration Map
Data Collection
Simple teach tool Data Collection
We demonstrated 11320 grasps for 7 objects
5/9
Robotic Gripper
https://www.thk.com
X
A. Intel Realsense SR300 RGB-D camera
B. Arbitrary placed object
C. THK TRX-S 3-finger gripper
D. FANUC M-10iA 6 DOF robot arm
Experiment Setup
B
C
D
A
6/9
● Predicted grasp configurations for the same (X,Y) location
Example of predicted grasp configurations
Cap
Bottle
TOP VIEW FRONT VIEW
Grasp Candidate Grasp Candidate
7/9
Known Objects Unknown Objects
Results of robotic experiment
70% 50% 60% 40%
20% 40% 60%
Number under the figure means success rate for 10 trials
60% 20% 20% 40% 30%
8/9
_
System Test
※This video is double speed
9/9
Thank you for listening
and
I hope to talk to you in the interactive session
Ad

More Related Content

What's hot (20)

Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Kenta Oono
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
Kenta Oono
 
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Altoros
 
[251] implementing deep learning using cu dnn
[251] implementing deep learning using cu dnn[251] implementing deep learning using cu dnn
[251] implementing deep learning using cu dnn
NAVER D2
 
CUDA and Caffe for deep learning
CUDA and Caffe for deep learningCUDA and Caffe for deep learning
CUDA and Caffe for deep learning
Amgad Muhammad
 
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
MLconf
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
TensorFlow Tutorial Part1
TensorFlow Tutorial Part1TensorFlow Tutorial Part1
TensorFlow Tutorial Part1
Sungjoon Choi
 
Overview of Chainer and Its Features
Overview of Chainer and Its FeaturesOverview of Chainer and Its Features
Overview of Chainer and Its Features
Seiya Tokui
 
Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer Chemistry
Preferred Networks
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introduction
Kenta Oono
 
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager ExecutionTensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
Taegyun Jeon
 
Electricity price forecasting with Recurrent Neural Networks
Electricity price forecasting with Recurrent Neural NetworksElectricity price forecasting with Recurrent Neural Networks
Electricity price forecasting with Recurrent Neural Networks
Taegyun Jeon
 
Keras on tensorflow in R & Python
Keras on tensorflow in R & PythonKeras on tensorflow in R & Python
Keras on tensorflow in R & Python
Longhow Lam
 
Chainer v2 and future dev plan
Chainer v2 and future dev planChainer v2 and future dev plan
Chainer v2 and future dev plan
Seiya Tokui
 
Deep Learning with PyTorch
Deep Learning with PyTorchDeep Learning with PyTorch
Deep Learning with PyTorch
Mayur Bhangale
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
butest
 
Deep Learning in Python with Tensorflow for Finance
Deep Learning in Python with Tensorflow for FinanceDeep Learning in Python with Tensorflow for Finance
Deep Learning in Python with Tensorflow for Finance
Ben Ball
 
Slide tesi
Slide tesiSlide tesi
Slide tesi
Nicolò Savioli
 
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Kenta Oono
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
Kenta Oono
 
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Deep Learning with TensorFlow: Understanding Tensors, Computations Graphs, Im...
Altoros
 
[251] implementing deep learning using cu dnn
[251] implementing deep learning using cu dnn[251] implementing deep learning using cu dnn
[251] implementing deep learning using cu dnn
NAVER D2
 
CUDA and Caffe for deep learning
CUDA and Caffe for deep learningCUDA and Caffe for deep learning
CUDA and Caffe for deep learning
Amgad Muhammad
 
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
MLconf
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
TensorFlow Tutorial Part1
TensorFlow Tutorial Part1TensorFlow Tutorial Part1
TensorFlow Tutorial Part1
Sungjoon Choi
 
Overview of Chainer and Its Features
Overview of Chainer and Its FeaturesOverview of Chainer and Its Features
Overview of Chainer and Its Features
Seiya Tokui
 
Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer Chemistry
Preferred Networks
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introduction
Kenta Oono
 
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager ExecutionTensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
TensorFlow Dev Summit 2018 Extended: TensorFlow Eager Execution
Taegyun Jeon
 
Electricity price forecasting with Recurrent Neural Networks
Electricity price forecasting with Recurrent Neural NetworksElectricity price forecasting with Recurrent Neural Networks
Electricity price forecasting with Recurrent Neural Networks
Taegyun Jeon
 
Keras on tensorflow in R & Python
Keras on tensorflow in R & PythonKeras on tensorflow in R & Python
Keras on tensorflow in R & Python
Longhow Lam
 
Chainer v2 and future dev plan
Chainer v2 and future dev planChainer v2 and future dev plan
Chainer v2 and future dev plan
Seiya Tokui
 
Deep Learning with PyTorch
Deep Learning with PyTorchDeep Learning with PyTorch
Deep Learning with PyTorch
Mayur Bhangale
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
butest
 
Deep Learning in Python with Tensorflow for Finance
Deep Learning in Python with Tensorflow for FinanceDeep Learning in Python with Tensorflow for Finance
Deep Learning in Python with Tensorflow for Finance
Ben Ball
 

Similar to FCN-Based 6D Robotic Grasping for Arbitrary Placed Objects (20)

Kk3517971799
Kk3517971799Kk3517971799
Kk3517971799
IJERA Editor
 
PointNet
PointNetPointNet
PointNet
PetteriTeikariPhD
 
How to Make Hand Detector on Native Activity with OpenCV
How to Make Hand Detector on Native Activity with OpenCVHow to Make Hand Detector on Native Activity with OpenCV
How to Make Hand Detector on Native Activity with OpenCV
Industrial Technology Research Institute (ITRI)(工業技術研究院, 工研院)
 
K-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective BackgroundK-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective Background
IJCSIS Research Publications
 
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
Kitsukawa Yuki
 
Intelligent Auto Horn System Using Artificial Intelligence
Intelligent Auto Horn System Using Artificial IntelligenceIntelligent Auto Horn System Using Artificial Intelligence
Intelligent Auto Horn System Using Artificial Intelligence
IRJET Journal
 
Flow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action RecognitionFlow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action Recognition
IRJET Journal
 
Foreground algorithms for detection and extraction of an object in multimedia...
Foreground algorithms for detection and extraction of an object in multimedia...Foreground algorithms for detection and extraction of an object in multimedia...
Foreground algorithms for detection and extraction of an object in multimedia...
IJECEIAES
 
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
Sergio Orts-Escolano
 
report
reportreport
report
Shikhar Gupta
 
Strategy for Foreground Movement Identification Adaptive to Background Variat...
Strategy for Foreground Movement Identification Adaptive to Background Variat...Strategy for Foreground Movement Identification Adaptive to Background Variat...
Strategy for Foreground Movement Identification Adaptive to Background Variat...
IJECEIAES
 
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
robocupathomeedu
 
Automatic selection of object recognition methods using reinforcement learning
Automatic selection of object recognition methods using reinforcement learningAutomatic selection of object recognition methods using reinforcement learning
Automatic selection of object recognition methods using reinforcement learning
Shunta Saito
 
IRJET- Moving Object Detection using Foreground Detection for Video Surveil...
IRJET- 	 Moving Object Detection using Foreground Detection for Video Surveil...IRJET- 	 Moving Object Detection using Foreground Detection for Video Surveil...
IRJET- Moving Object Detection using Foreground Detection for Video Surveil...
IRJET Journal
 
Partial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather ConditionsPartial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather Conditions
IRJET Journal
 
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision..."Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
Edge AI and Vision Alliance
 
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Kalle
 
Portfolio
PortfolioPortfolio
Portfolio
Ivan Khomyakov
 
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET- Object Detection and Recognition using Single Shot Multi-Box DetectorIRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET Journal
 
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture ScenesA Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
IJMER
 
K-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective BackgroundK-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective Background
IJCSIS Research Publications
 
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
Kitsukawa Yuki
 
Intelligent Auto Horn System Using Artificial Intelligence
Intelligent Auto Horn System Using Artificial IntelligenceIntelligent Auto Horn System Using Artificial Intelligence
Intelligent Auto Horn System Using Artificial Intelligence
IRJET Journal
 
Flow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action RecognitionFlow Trajectory Approach for Human Action Recognition
Flow Trajectory Approach for Human Action Recognition
IRJET Journal
 
Foreground algorithms for detection and extraction of an object in multimedia...
Foreground algorithms for detection and extraction of an object in multimedia...Foreground algorithms for detection and extraction of an object in multimedia...
Foreground algorithms for detection and extraction of an object in multimedia...
IJECEIAES
 
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
Sergio Orts-Escolano
 
Strategy for Foreground Movement Identification Adaptive to Background Variat...
Strategy for Foreground Movement Identification Adaptive to Background Variat...Strategy for Foreground Movement Identification Adaptive to Background Variat...
Strategy for Foreground Movement Identification Adaptive to Background Variat...
IJECEIAES
 
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
Robot Localisation: An Introduction - Luis Contreras 2020.06.09 | RoboCup@Hom...
robocupathomeedu
 
Automatic selection of object recognition methods using reinforcement learning
Automatic selection of object recognition methods using reinforcement learningAutomatic selection of object recognition methods using reinforcement learning
Automatic selection of object recognition methods using reinforcement learning
Shunta Saito
 
IRJET- Moving Object Detection using Foreground Detection for Video Surveil...
IRJET- 	 Moving Object Detection using Foreground Detection for Video Surveil...IRJET- 	 Moving Object Detection using Foreground Detection for Video Surveil...
IRJET- Moving Object Detection using Foreground Detection for Video Surveil...
IRJET Journal
 
Partial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather ConditionsPartial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather Conditions
IRJET Journal
 
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision..."Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
"Separable Convolutions for Efficient Implementation of CNNs and Other Vision...
Edge AI and Vision Alliance
 
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Pontillo Semanti Code Using Content Similarity And Database Driven Matching T...
Kalle
 
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET- Object Detection and Recognition using Single Shot Multi-Box DetectorIRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET- Object Detection and Recognition using Single Shot Multi-Box Detector
IRJET Journal
 
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture ScenesA Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
IJMER
 
Ad

Recently uploaded (20)

Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Ad

FCN-Based 6D Robotic Grasping for Arbitrary Placed Objects

  • 1. Hitoshi Kusano*, Ayaka Kume+, Eiichi Matsumoto+, Jethro Tan+ 
 June 2, 2017 *Kyoto University +Preferred Networks, Inc. FCN-Based 6D Robotic Grasping
 for Arbitrary Placed Objects ※This work is the output of Preferred Networks internship program
  • 2. Requirement for successful robotic grasping:
 Derive configurations of a robot and its end-effector
 e.g. Grasp pose, Grasp width, Grasp height, Joint angle ・Traditional approach decomposes grasping process into several stages, which require many heuristics ・Machine learning based end-to-end approach has emerged Background http://www.schunk-modular-robotics.com/ 1/9 Complex end-effector Cluttered environment
  • 3. None of prior methods can predict 6D grasp
 Previous Work
 ~ Machine learning based end-to-end approach ~ Pinto2016 Levine2016 Araki2016 Guo2017 (x, y)height width 2/9 (x, y, z, roll, pitch, yaw)
  • 4. Our purpose: End-to-End learning to grasp arbitrary placed objects
 Contribution: ○ Novel data collection strategy to obtain 6D grasp configurations using a teach tool by human ○ End-to-end CNN model predicting 6D grasp configurations Purpose and Contribution (x, y, z, w, p, r) 3/9
  • 5. ● An extension for Fully Convolutional Networks ● Outputs two maps with scores: Location Map for graspability per pixel, and Configuration Map providing end-effector configurations (z, w, p, r) per pixel ● For Configuration Map, this network classifies valid grasp configurations to 300 classes, NOT regression Grasp Configuration Network (x, y, z, w, p, r) 4/9 Location MapConfiguration Map
  • 6. Data Collection Simple teach tool Data Collection We demonstrated 11320 grasps for 7 objects 5/9 Robotic Gripper https://www.thk.com X
  • 7. A. Intel Realsense SR300 RGB-D camera B. Arbitrary placed object C. THK TRX-S 3-finger gripper D. FANUC M-10iA 6 DOF robot arm Experiment Setup B C D A 6/9
  • 8. ● Predicted grasp configurations for the same (X,Y) location Example of predicted grasp configurations Cap Bottle TOP VIEW FRONT VIEW Grasp Candidate Grasp Candidate 7/9
  • 9. Known Objects Unknown Objects Results of robotic experiment 70% 50% 60% 40% 20% 40% 60% Number under the figure means success rate for 10 trials 60% 20% 20% 40% 30% 8/9 _
  • 10. System Test ※This video is double speed 9/9
  • 11. Thank you for listening and I hope to talk to you in the interactive session