Abstract
One of the major influential factors which affects the accuracy of classification rate is the selection of right features. Not all features have vital role in classification. Many of the features in the dataset may be redundant and irrelevant, which increase the computational cost and may reduce classification rate. In this paper, we used DCT(Discrete cosine transform) coefficients as features for face recognition application. The coefficients are optimally selected based on a modified PSO algorithm. In this, the choice of coefficients is done by incorporating the average of the mean normalized standard deviations of various classes and giving more weightage to the lower indexed DCT coefficients. The algorithm is tested on ORL database. A recognition rate of 97% is obtained. Average number of features selected is about 40 percent for a 10 × 10 input. The modified PSO took about 50 iterations for convergence. These performance figures are found to be better than some of the work reported in literature.
Keywords: Particle swarm optimization, Discrete cosine transform, feature extraction, feature selection, face recognition, classification rate.