The document discusses feature subset selection for high dimensional data using clustering techniques. It proposes a FAST algorithm that has three steps: (1) removing irrelevant features, (2) dividing features into clusters, (3) selecting the most representative feature from each cluster. The FAST algorithm uses DBSCAN, a density-based clustering algorithm, to cluster the features. DBSCAN can identify clusters of arbitrary shape and detect noise, making it suitable for high dimensional data. The goal of feature subset selection is to find a small number of discriminative features that best represent the data.