The document describes multilayer neural networks and their use for classification problems. It discusses how neural networks can handle continuous-valued inputs and outputs unlike decision trees. Neural networks are inherently parallel and can be sped up through parallelization techniques. The document then provides details on the basic components of neural networks, including neurons, weights, biases, and activation functions. It also describes common network architectures like feedforward networks and discusses backpropagation for training networks.
This is a deep learning presentation based on Deep Neural Network. It reviews the deep learning concept, related works and specific application areas.It describes a use case scenario of deep learning and highlights the current trends and research issues of deep learning
Artificial neural networks mimic the human brain by using interconnected layers of neurons that fire electrical signals between each other. Activation functions are important for neural networks to learn complex patterns by introducing non-linearity. Without activation functions, neural networks would be limited to linear regression. Common activation functions include sigmoid, tanh, ReLU, and LeakyReLU, with ReLU and LeakyReLU helping to address issues like vanishing gradients that can occur with sigmoid and tanh functions.
- A state space consists of nodes representing problem states and arcs representing moves between states. It can be represented as a tree or graph.
- To solve a problem using search, it must first be represented as a state space with an initial state, goal state(s), and legal operators defining state transitions.
- Different search algorithms like depth-first, breadth-first, A*, and best-first are then applied to traverse the state space to find a solution path from initial to goal state.
- Heuristic functions can be used to guide search by estimating state proximity to the goal, improving efficiency over uninformed searches.
1. The document discusses the key elements of digital image processing including image acquisition, enhancement, restoration, segmentation, representation and description, recognition, and knowledge bases.
2. It also covers fundamentals of human visual perception such as the anatomy of the eye, image formation, brightness adaptation, color fundamentals, and color models like RGB and HSI.
3. The principles of video cameras are explained including the construction and working of the vidicon camera tube.
Talk on Optimization for Deep Learning, which gives an overview of gradient descent optimization algorithms and highlights some current research directions.
Introduction to Recurrent Neural NetworkKnoldus Inc.
The document provides an introduction to recurrent neural networks (RNNs). It discusses how RNNs differ from feedforward neural networks in that they have internal memory and can use their output from the previous time step as input. This allows RNNs to process sequential data like time series. The document outlines some common RNN types and explains the vanishing gradient problem that can occur in RNNs due to multiplication of small gradient values over many time steps. It discusses solutions to this problem like LSTMs and techniques like weight initialization and gradient clipping.
1. A perceptron is a basic artificial neural network that can learn linearly separable patterns. It takes weighted inputs, applies an activation function, and outputs a single binary value.
2. Multilayer perceptrons can learn non-linear patterns by using multiple layers of perceptrons with weighted connections between them. They were developed to overcome limitations of single-layer perceptrons.
3. Perceptrons are trained using an error-correction learning rule called the delta rule or the least mean squares algorithm. Weights are adjusted to minimize the error between the actual and target outputs.
- Naive Bayes is a classification technique based on Bayes' theorem that uses "naive" independence assumptions. It is easy to build and can perform well even with large datasets.
- It works by calculating the posterior probability for each class given predictor values using the Bayes theorem and independence assumptions between predictors. The class with the highest posterior probability is predicted.
- It is commonly used for text classification, spam filtering, and sentiment analysis due to its fast performance and high success rates compared to other algorithms.
This document provides an overview of associative memories and discrete Hopfield networks. It begins with introductions to basic concepts like autoassociative and heteroassociative memory. It then describes linear associative memory, which uses a Hebbian learning rule to form associations between input-output patterns. Next, it covers Hopfield's autoassociative memory, a recurrent neural network for associating patterns to themselves. Finally, it discusses performance analysis of recurrent autoassociative memories. The document presents key concepts in associative memory theory and different models like linear associative memory and Hopfield networks.
The document discusses various activation functions used in deep learning neural networks including sigmoid, tanh, ReLU, LeakyReLU, ELU, softmax, swish, maxout, and softplus. For each activation function, the document provides details on how the function works and lists pros and cons. Overall, the document provides an overview of common activation functions and considerations for choosing an activation function for different types of deep learning problems.
Neural networks can be biological models of the brain or artificial models created through software and hardware. The human brain consists of interconnected neurons that transmit signals through connections called synapses. Artificial neural networks aim to mimic this structure using simple processing units called nodes that are connected by weighted links. A feed-forward neural network passes information in one direction from input to output nodes through hidden layers. Backpropagation is a common supervised learning method that uses gradient descent to minimize error by calculating error terms and adjusting weights between layers in the network backwards from output to input. Neural networks have been applied successfully to problems like speech recognition, character recognition, and autonomous vehicle navigation.
Linear regression is a supervised machine learning technique used to model the relationship between a continuous dependent variable and one or more independent variables. It is commonly used for prediction and forecasting. The regression line represents the best fit line for the data using the least squares method to minimize the distance between the observed data points and the regression line. R-squared measures how well the regression line represents the data, on a scale of 0-100%. Linear regression performs well when data is linearly separable but has limitations such as assuming linear relationships and being sensitive to outliers and multicollinearity.
This document presents information on Hopfield networks through a slideshow presentation. It begins with an introduction to Hopfield networks, describing them as fully connected, single layer neural networks that can perform pattern recognition. It then discusses the properties of Hopfield networks, including their symmetric weights and binary neuron outputs. The document proceeds to provide derivations of the Hopfield network model based on an additive neuron model. It concludes by discussing applications of Hopfield networks.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
hetero associative memory is a single layer neural network. However, in this network the input training vector and the output target vectors are not the same. The weights are determined so that the network stores a set of patterns. Hetero associative network is static in nature, hence, there would be no non-linear and delay operations.
The document provides an overview of perceptrons and neural networks. It discusses how neural networks are modeled after the human brain and consist of interconnected artificial neurons. The key aspects covered include the McCulloch-Pitts neuron model, Rosenblatt's perceptron, different types of learning (supervised, unsupervised, reinforcement), the backpropagation algorithm, and applications of neural networks such as pattern recognition and machine translation.
This document provides an overview of machine learning concepts including supervised learning, unsupervised learning, and reinforcement learning. It explains that supervised learning involves learning from labeled examples, unsupervised learning involves categorizing without labels, and reinforcement learning involves learning behaviors to achieve goals through interaction. The document also discusses regression vs classification problems, the learning and testing process, and examples of machine learning applications like customer profiling, face recognition, and handwritten character recognition.
Recurrent Neural Networks have shown to be very powerful models as they can propagate context over several time steps. Due to this they can be applied effectively for addressing several problems in Natural Language Processing, such as Language Modelling, Tagging problems, Speech Recognition etc. In this presentation we introduce the basic RNN model and discuss the vanishing gradient problem. We describe LSTM (Long Short Term Memory) and Gated Recurrent Units (GRU). We also discuss Bidirectional RNN with an example. RNN architectures can be considered as deep learning systems where the number of time steps can be considered as the depth of the network. It is also possible to build the RNN with multiple hidden layers, each having recurrent connections from the previous time steps that represent the abstraction both in time and space.
This document summarizes graph coloring using backtracking. It defines graph coloring as minimizing the number of colors used to color a graph. The chromatic number is the fewest colors needed. Graph coloring is NP-complete. The document outlines a backtracking algorithm that tries assigning colors to vertices, checks if the assignment is valid (no adjacent vertices have the same color), and backtracks if not. It provides pseudocode for the algorithm and lists applications like scheduling, Sudoku, and map coloring.
1. Machine learning involves developing algorithms that can learn from data and improve their performance over time without being explicitly programmed. 2. Neural networks are a type of machine learning algorithm inspired by the human brain that can perform both supervised and unsupervised learning tasks. 3. Supervised learning involves using labeled training data to infer a function that maps inputs to outputs, while unsupervised learning involves discovering hidden patterns in unlabeled data through techniques like clustering.
Linear regression with gradient descentSuraj Parmar
Intro to the very popular optimization Technique(Gradient descent) with linear regression . Linear regression with Gradient descent on www.landofai.com
Decision trees are a type of supervised learning algorithm used for classification and regression. ID3 and C4.5 are algorithms that generate decision trees by choosing the attribute with the highest information gain at each step. Random forest is an ensemble method that creates multiple decision trees and aggregates their results, improving accuracy. It introduces randomness when building trees to decrease variance.
Introduction to Recurrent Neural NetworkKnoldus Inc.
The document provides an introduction to recurrent neural networks (RNNs). It discusses how RNNs differ from feedforward neural networks in that they have internal memory and can use their output from the previous time step as input. This allows RNNs to process sequential data like time series. The document outlines some common RNN types and explains the vanishing gradient problem that can occur in RNNs due to multiplication of small gradient values over many time steps. It discusses solutions to this problem like LSTMs and techniques like weight initialization and gradient clipping.
1. A perceptron is a basic artificial neural network that can learn linearly separable patterns. It takes weighted inputs, applies an activation function, and outputs a single binary value.
2. Multilayer perceptrons can learn non-linear patterns by using multiple layers of perceptrons with weighted connections between them. They were developed to overcome limitations of single-layer perceptrons.
3. Perceptrons are trained using an error-correction learning rule called the delta rule or the least mean squares algorithm. Weights are adjusted to minimize the error between the actual and target outputs.
- Naive Bayes is a classification technique based on Bayes' theorem that uses "naive" independence assumptions. It is easy to build and can perform well even with large datasets.
- It works by calculating the posterior probability for each class given predictor values using the Bayes theorem and independence assumptions between predictors. The class with the highest posterior probability is predicted.
- It is commonly used for text classification, spam filtering, and sentiment analysis due to its fast performance and high success rates compared to other algorithms.
This document provides an overview of associative memories and discrete Hopfield networks. It begins with introductions to basic concepts like autoassociative and heteroassociative memory. It then describes linear associative memory, which uses a Hebbian learning rule to form associations between input-output patterns. Next, it covers Hopfield's autoassociative memory, a recurrent neural network for associating patterns to themselves. Finally, it discusses performance analysis of recurrent autoassociative memories. The document presents key concepts in associative memory theory and different models like linear associative memory and Hopfield networks.
The document discusses various activation functions used in deep learning neural networks including sigmoid, tanh, ReLU, LeakyReLU, ELU, softmax, swish, maxout, and softplus. For each activation function, the document provides details on how the function works and lists pros and cons. Overall, the document provides an overview of common activation functions and considerations for choosing an activation function for different types of deep learning problems.
Neural networks can be biological models of the brain or artificial models created through software and hardware. The human brain consists of interconnected neurons that transmit signals through connections called synapses. Artificial neural networks aim to mimic this structure using simple processing units called nodes that are connected by weighted links. A feed-forward neural network passes information in one direction from input to output nodes through hidden layers. Backpropagation is a common supervised learning method that uses gradient descent to minimize error by calculating error terms and adjusting weights between layers in the network backwards from output to input. Neural networks have been applied successfully to problems like speech recognition, character recognition, and autonomous vehicle navigation.
Linear regression is a supervised machine learning technique used to model the relationship between a continuous dependent variable and one or more independent variables. It is commonly used for prediction and forecasting. The regression line represents the best fit line for the data using the least squares method to minimize the distance between the observed data points and the regression line. R-squared measures how well the regression line represents the data, on a scale of 0-100%. Linear regression performs well when data is linearly separable but has limitations such as assuming linear relationships and being sensitive to outliers and multicollinearity.
This document presents information on Hopfield networks through a slideshow presentation. It begins with an introduction to Hopfield networks, describing them as fully connected, single layer neural networks that can perform pattern recognition. It then discusses the properties of Hopfield networks, including their symmetric weights and binary neuron outputs. The document proceeds to provide derivations of the Hopfield network model based on an additive neuron model. It concludes by discussing applications of Hopfield networks.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
hetero associative memory is a single layer neural network. However, in this network the input training vector and the output target vectors are not the same. The weights are determined so that the network stores a set of patterns. Hetero associative network is static in nature, hence, there would be no non-linear and delay operations.
The document provides an overview of perceptrons and neural networks. It discusses how neural networks are modeled after the human brain and consist of interconnected artificial neurons. The key aspects covered include the McCulloch-Pitts neuron model, Rosenblatt's perceptron, different types of learning (supervised, unsupervised, reinforcement), the backpropagation algorithm, and applications of neural networks such as pattern recognition and machine translation.
This document provides an overview of machine learning concepts including supervised learning, unsupervised learning, and reinforcement learning. It explains that supervised learning involves learning from labeled examples, unsupervised learning involves categorizing without labels, and reinforcement learning involves learning behaviors to achieve goals through interaction. The document also discusses regression vs classification problems, the learning and testing process, and examples of machine learning applications like customer profiling, face recognition, and handwritten character recognition.
Recurrent Neural Networks have shown to be very powerful models as they can propagate context over several time steps. Due to this they can be applied effectively for addressing several problems in Natural Language Processing, such as Language Modelling, Tagging problems, Speech Recognition etc. In this presentation we introduce the basic RNN model and discuss the vanishing gradient problem. We describe LSTM (Long Short Term Memory) and Gated Recurrent Units (GRU). We also discuss Bidirectional RNN with an example. RNN architectures can be considered as deep learning systems where the number of time steps can be considered as the depth of the network. It is also possible to build the RNN with multiple hidden layers, each having recurrent connections from the previous time steps that represent the abstraction both in time and space.
This document summarizes graph coloring using backtracking. It defines graph coloring as minimizing the number of colors used to color a graph. The chromatic number is the fewest colors needed. Graph coloring is NP-complete. The document outlines a backtracking algorithm that tries assigning colors to vertices, checks if the assignment is valid (no adjacent vertices have the same color), and backtracks if not. It provides pseudocode for the algorithm and lists applications like scheduling, Sudoku, and map coloring.
1. Machine learning involves developing algorithms that can learn from data and improve their performance over time without being explicitly programmed. 2. Neural networks are a type of machine learning algorithm inspired by the human brain that can perform both supervised and unsupervised learning tasks. 3. Supervised learning involves using labeled training data to infer a function that maps inputs to outputs, while unsupervised learning involves discovering hidden patterns in unlabeled data through techniques like clustering.
Linear regression with gradient descentSuraj Parmar
Intro to the very popular optimization Technique(Gradient descent) with linear regression . Linear regression with Gradient descent on www.landofai.com
Decision trees are a type of supervised learning algorithm used for classification and regression. ID3 and C4.5 are algorithms that generate decision trees by choosing the attribute with the highest information gain at each step. Random forest is an ensemble method that creates multiple decision trees and aggregates their results, improving accuracy. It introduces randomness when building trees to decrease variance.
This document provides legal notices and disclaimers for an informational presentation by Intel. It states that the presentation is for informational purposes only and that Intel makes no warranties. It also notes that Intel technologies' features and benefits depend on system configuration. Finally, it specifies that the sample source code in the presentation is released under the Intel Sample Source Code License Agreement and that Intel and its logo are trademarks.
- The document discusses multi-layer perceptrons (MLPs), a type of artificial neural network. MLPs have multiple layers of nodes and can classify non-linearly separable data using backpropagation.
- It describes the basic components and working of perceptrons, the simplest type of neural network, and how they led to the development of MLPs. MLPs use backpropagation to calculate error gradients and update weights between layers.
- Various concepts are explained like activation functions, forward and backward propagation, biases, and error functions used for training MLPs. Applications mentioned include speech recognition, image recognition and machine translation.
- Artificial neural networks are inspired by biological neurons and are made up of artificial neurons (perceptrons).
- A perceptron receives multiple inputs, assigns weights to them, calculates the weighted sum, and passes it through an activation function to produce an output.
- Weights allow the perceptron to learn the importance of different inputs and change the orientation of the decision boundary. The bias helps shift the activation function curve.
- Common activation functions include sigmoid, tanh, ReLU, and leaky ReLU. They introduce non-linearity and help address issues like vanishing gradients.
This PPT contains entire content in short. My book on ANN under the title "SOFT COMPUTING" with Watson Publication and my classmates can be referred together.
Neural networks are inspired by biological neurons and are used to learn relationships in data. The document defines an artificial neural network as a large number of interconnected processing elements called neurons that learn from examples. It outlines the key components of artificial neurons including weights, inputs, summation, and activation functions. Examples of neural network architectures include single-layer perceptrons, multi-layer perceptrons, convolutional neural networks, and recurrent neural networks. Common applications of neural networks include pattern recognition, data classification, and processing sequences.
The field of artificial neural networks is often just called neural networks or multi-layer perceptrons after perhaps the most useful type of neural network. A perceptron is a single neuron model that was a precursor to larger neural networks.
It is a field that investigates how simple models of biological brains can be used to solve difficult computational tasks like the predictive modeling tasks we see in machine learning. The goal is not to create realistic models of the brain but instead to develop robust algorithms and data structures that we can use to model difficult problems.
The power of neural networks comes from their ability to learn the representation in your training data and how best to relate it to the output variable you want to predict. In this sense, neural networks learn mapping. Mathematically, they are capable of learning any mapping function and have been proven to be a universal approximation algorithm.
The predictive capability of neural networks comes from the hierarchical or multi-layered structure of the networks. The data structure can pick out (learn to represent) features at different scales or resolutions and combine them into higher-order features, for example, from lines to collections of lines to shapes.
Deep Learning Interview Questions And Answers | AI & Deep Learning Interview ...Simplilearn
- TensorFlow is a popular deep learning library that provides both C++ and Python APIs to make working with deep learning models easier. It supports both CPU and GPU computing and has a faster compilation time than other libraries like Keras and Torch.
- Tensors are multidimensional arrays that represent inputs, outputs, and parameters of deep learning models in TensorFlow. They are the fundamental data structure that flows through graphs in TensorFlow.
- The main programming elements in TensorFlow include constants, variables, placeholders, and sessions. Constants are parameters whose values do not change, variables allow adding trainable parameters, placeholders feed data from outside the graph, and sessions run the graph to evaluate nodes.
This document provides an overview of neural networks. It discusses how neural networks were inspired by biological neural systems and attempt to model their massive parallelism and distributed representations. It covers the perceptron algorithm for learning basic neural networks and the development of backpropagation for learning in multi-layer networks. The document discusses concepts like hidden units, representational power of neural networks, and successful applications of neural networks.
This document discusses pattern association in neural networks using the Hebb rule and delta rule. It provides examples of how pattern association works in autoassociative and heteroassociative networks. The key points are:
- Pattern association networks can learn associations between input and output patterns by adjusting connection weights. The Hebb rule and delta rule are commonly used learning algorithms.
- Autoassociative networks have the same input and output patterns, while heteroassociative networks have different input and output patterns.
- Examples show how these networks can accurately recall a stored pattern when presented with a partial or corrupted input pattern.
- Other association models discussed include bidirectional associative memory (BAM) networks, temporal association networks, and
This document summarizes different types of supervised learning networks including perceptrons, Adaline networks, and backpropagation networks. It provides details on their architectures, training algorithms, and how they work. The key points are:
- Perceptrons are single layer feedforward networks that use the perceptron learning rule to update weights and converge on the correct output.
- Adaline networks have a single linear output unit and use the delta rule to minimize mean squared error and adjust weights between the input and output units.
- Backpropagation networks can have multiple hidden layers and use gradient descent to calculate and propagate error back through the network to update weights between layers and improve classification of input patterns.
This document provides an overview of multi-layer perceptrons (MLPs), also known as neural networks. It begins by discussing how perceptrons work, including taking inputs, multiplying them by weights, passing them through an activation function, and producing an output. MLPs consist of multiple stacked perceptron layers that allow them to solve more complex problems. Key aspects that enable deep learning with MLPs include backpropagation to optimize weights, tuning hyperparameters like the number of layers and activation functions, and using advanced training techniques involving learning rates, epochs, batches and optimizer algorithms.
HCL Nomad Web – Best Practices and Managing Multiuser Environmentspanagenda
Webinar Recording: https://www.panagenda.com/webinars/hcl-nomad-web-best-practices-and-managing-multiuser-environments/
HCL Nomad Web is heralded as the next generation of the HCL Notes client, offering numerous advantages such as eliminating the need for packaging, distribution, and installation. Nomad Web client upgrades will be installed “automatically” in the background. This significantly reduces the administrative footprint compared to traditional HCL Notes clients. However, troubleshooting issues in Nomad Web present unique challenges compared to the Notes client.
Join Christoph and Marc as they demonstrate how to simplify the troubleshooting process in HCL Nomad Web, ensuring a smoother and more efficient user experience.
In this webinar, we will explore effective strategies for diagnosing and resolving common problems in HCL Nomad Web, including
- Accessing the console
- Locating and interpreting log files
- Accessing the data folder within the browser’s cache (using OPFS)
- Understand the difference between single- and multi-user scenarios
- Utilizing Client Clocking
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersToradex
Toradex brings robust Linux support to SMARC (Smart Mobility Architecture), ensuring high performance and long-term reliability for embedded applications. Here’s how:
• Optimized Torizon OS & Yocto Support – Toradex provides Torizon OS, a Debian-based easy-to-use platform, and Yocto BSPs for customized Linux images on SMARC modules.
• Seamless Integration with i.MX 8M Plus and i.MX 95 – Toradex SMARC solutions leverage NXP’s i.MX 8 M Plus and i.MX 95 SoCs, delivering power efficiency and AI-ready performance.
• Secure and Reliable – With Secure Boot, over-the-air (OTA) updates, and LTS kernel support, Toradex ensures industrial-grade security and longevity.
• Containerized Workflows for AI & IoT – Support for Docker, ROS, and real-time Linux enables scalable AI, ML, and IoT applications.
• Strong Ecosystem & Developer Support – Toradex offers comprehensive documentation, developer tools, and dedicated support, accelerating time-to-market.
With Toradex’s Linux support for SMARC, developers get a scalable, secure, and high-performance solution for industrial, medical, and AI-driven applications.
Do you have a specific project or application in mind where you're considering SMARC? We can help with Free Compatibility Check and help you with quick time-to-market
For more information: https://www.toradex.com/computer-on-modules/smarc-arm-family
How Can I use the AI Hype in my Business Context?Daniel Lehner
𝙄𝙨 𝘼𝙄 𝙟𝙪𝙨𝙩 𝙝𝙮𝙥𝙚? 𝙊𝙧 𝙞𝙨 𝙞𝙩 𝙩𝙝𝙚 𝙜𝙖𝙢𝙚 𝙘𝙝𝙖𝙣𝙜𝙚𝙧 𝙮𝙤𝙪𝙧 𝙗𝙪𝙨𝙞𝙣𝙚𝙨𝙨 𝙣𝙚𝙚𝙙𝙨?
Everyone’s talking about AI but is anyone really using it to create real value?
Most companies want to leverage AI. Few know 𝗵𝗼𝘄.
✅ What exactly should you ask to find real AI opportunities?
✅ Which AI techniques actually fit your business?
✅ Is your data even ready for AI?
If you’re not sure, you’re not alone. This is a condensed version of the slides I presented at a Linkedin webinar for Tecnovy on 28.04.2025.
Quantum Computing Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxJustin Reock
Building 10x Organizations with Modern Productivity Metrics
10x developers may be a myth, but 10x organizations are very real, as proven by the influential study performed in the 1980s, ‘The Coding War Games.’
Right now, here in early 2025, we seem to be experiencing YAPP (Yet Another Productivity Philosophy), and that philosophy is converging on developer experience. It seems that with every new method we invent for the delivery of products, whether physical or virtual, we reinvent productivity philosophies to go alongside them.
But which of these approaches actually work? DORA? SPACE? DevEx? What should we invest in and create urgency behind today, so that we don’t find ourselves having the same discussion again in a decade?
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxAnoop Ashok
In today's fast-paced retail environment, efficiency is key. Every minute counts, and every penny matters. One tool that can significantly boost your store's efficiency is a well-executed planogram. These visual merchandising blueprints not only enhance store layouts but also save time and money in the process.
Procurement Insights Cost To Value Guide.pptxJon Hansen
Procurement Insights integrated Historic Procurement Industry Archives, serves as a powerful complement — not a competitor — to other procurement industry firms. It fills critical gaps in depth, agility, and contextual insight that most traditional analyst and association models overlook.
Learn more about this value- driven proprietary service offering here.
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxshyamraj55
We’re bringing the TDX energy to our community with 2 power-packed sessions:
🛠️ Workshop: MuleSoft for Agentforce
Explore the new version of our hands-on workshop featuring the latest Topic Center and API Catalog updates.
📄 Talk: Power Up Document Processing
Dive into smart automation with MuleSoft IDP, NLP, and Einstein AI for intelligent document workflows.
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfSoftware Company
Explore the benefits and features of advanced logistics management software for businesses in Riyadh. This guide delves into the latest technologies, from real-time tracking and route optimization to warehouse management and inventory control, helping businesses streamline their logistics operations and reduce costs. Learn how implementing the right software solution can enhance efficiency, improve customer satisfaction, and provide a competitive edge in the growing logistics sector of Riyadh.
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...Alan Dix
Talk at the final event of Data Fusion Dynamics: A Collaborative UK-Saudi Initiative in Cybersecurity and Artificial Intelligence funded by the British Council UK-Saudi Challenge Fund 2024, Cardiff Metropolitan University, 29th April 2025
https://alandix.com/academic/talks/CMet2025-AI-Changes-Everything/
Is AI just another technology, or does it fundamentally change the way we live and think?
Every technology has a direct impact with micro-ethical consequences, some good, some bad. However more profound are the ways in which some technologies reshape the very fabric of society with macro-ethical impacts. The invention of the stirrup revolutionised mounted combat, but as a side effect gave rise to the feudal system, which still shapes politics today. The internal combustion engine offers personal freedom and creates pollution, but has also transformed the nature of urban planning and international trade. When we look at AI the micro-ethical issues, such as bias, are most obvious, but the macro-ethical challenges may be greater.
At a micro-ethical level AI has the potential to deepen social, ethnic and gender bias, issues I have warned about since the early 1990s! It is also being used increasingly on the battlefield. However, it also offers amazing opportunities in health and educations, as the recent Nobel prizes for the developers of AlphaFold illustrate. More radically, the need to encode ethics acts as a mirror to surface essential ethical problems and conflicts.
At the macro-ethical level, by the early 2000s digital technology had already begun to undermine sovereignty (e.g. gambling), market economics (through network effects and emergent monopolies), and the very meaning of money. Modern AI is the child of big data, big computation and ultimately big business, intensifying the inherent tendency of digital technology to concentrate power. AI is already unravelling the fundamentals of the social, political and economic world around us, but this is a world that needs radical reimagining to overcome the global environmental and human challenges that confront us. Our challenge is whether to let the threads fall as they may, or to use them to weave a better future.
3. Kyoto University
• An Artificial Neural Network (ANN) is a system that is based on
biological neural network (brain).
▫ The brain has approximately 100 billion neurons, which communicate
through electro-chemical signals
▫ Each neuron receives thousands of connections (signals)
▫ If the resulting sum of signals surpasses certain threshold, the response is
sent
• The ANN attempts to recreate the computational mirror of the
biological neural network …
Artificial Neural Network
3
5. Kyoto University
What is Perceptron?
5
• A perceptron models a neuron
• It receives n inputs (feature vector)
• It sum those inputs , calculated, then
output
• Used for linear or binary classification
6. Kyoto University 6
Perceptron
• The perceptron consists of weights, the summation processor, and an
activation function
• A perceptron takes a weighted sum of inputs and outputs:
7. Kyoto University
Weight & Bias
7
• Bias can also be treated as another input
▫ The bias allow to shift the line
• The weights determine the slope
8. Kyoto University
Transfer or Activation Functions
8
• The transfer function translate the input signals to output signals
• It uses a threshold to produce an output
• Some examples are
▫ Unit Step (threshold)
▫ Sigmoid (logistic regression)
▫ Piecewise linear
▫ Gaussian
9. Kyoto University 9
Unit Step (Threshold)
• The output is set depending on whether the total input is greater or less
than some threshold value.
11. Kyoto University 11
Sigmoid function
• It is used when the output is expected to be a positive number
▫ It generates outputs between 0 and 1
12. Kyoto University 12
Gaussian
• Gaussian functions are bell-shaped curves that are continuous
• It is used in radial basis function ANN (RBF kernel – Chapter 14)
▫ Output is real value
13. Kyoto University 13
The learning rate
• To update the weights and bias to get smaller error
• Help us control how much we change the weight and bias
14. Kyoto University 14
How the algorithm work?
• Initialize the weights (zero or small random value)
• Pick a learning rate (0 – 1)
• For each training set
• Compute the activation output
▫ Adjusting
Error = differences between predicted and actual
Update bias and weight
• Repeating till the error is very small or zero
• If the it is linear separable, we will found solution
16. Kyoto University 16
What if the data is non-linearly separable?
• Because SLP is a linear classifier and if the data are not linearly
separable, the learning process will never find the solution
• For example: XOR problem
19. Kyoto University 19
• A series of logistic regression models stacked on top of each other, with
the final layer being either another logistic regression or a linear
regression model, depending on whether we are solving a classification
or regression problem.
Multi-layer perceptron (MLP)
23. Kyoto University 23
• Use output error, to adjust the weights of inputs at the output layer
• Calculate the error at the previous layer and use it to adjust the weights
• Repeat this process of back-propagating errors through any number of
layers
• You may find mathematical equation of how to minimize cost function
of neural network at 16.5.4 The backpropagation algorithm
The Back Propagation Algorithm
24. Kyoto University 24
Convolutional neural networks
http://yann.lecun.com/exdb/lenet/index.html
• Designed to recognize visual patterns directly from pixel images with
minimal preprocessing.
• The purpose of multiple hidden units are used to learn non-linear
combination of the original inputs (feature extraction)
▫ Individual Informative
▫ Each pixel in an image is not very informative
▫ But the combination will tell
30. Kyoto University 30
• Simplifier the parameters/features
▫ Remove some unnecessary features
• Regularization
▫ Adjusting the weight
How to address it?
31. Kyoto University 31
• The MLP can overfit, esp. if the number of nodes is large
• A simple way to prevent is early stopping
▫ Stopping the training procedure when the error on the validation set first
start to increase
• Techniques are
▫ Consistent Gaussian prior
▫ Weight pruning: smaller the parameters value
▫ Soft weight sharing: group of parameters value have similar value
▫ Semi-supervised embedding: used with deep learning NN
▫ Bayesian Inference
Determine number of hidden units – faster than cross-validation
Regularization