SlideShare a Scribd company logo
Flexible Indexing with Postgres
BRUCE MOMJIAN
December, 2014
Postgres offers a wide variety of indexing structures, and many
index lookup methods with specialized capabilities.This talk
explores the many Postgres indexing options. Includes concepts from
Teodor Sigaev, Alexander Korotkov, Oleg Bartunov, Jonathan Katz
Creative Commons Attribution License http://momjian.us/presentations
1 / 53
PostgreSQL the database…
◮ Open Source Object Relational DBMS since 1996
◮ Distributed under the PostgreSQL License
◮ Similar technical heritage as Oracle, SQL Server & DB2
◮ However, a strong adherence to standards (ANSI-SQL 2008)
◮ Highly extensible and adaptable design
◮ Languages, indexing, data types, etc.
◮ E.g. PostGIS, JSONB, SQL/MED
◮ Extensive use throughout the world for applications and
organizations of all types
◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS
and Amazon Linux
Flexible Indexing with Postgres 2 / 53
PostgreSQL the community…
◮ Independent community led by a Core Team of six
◮ Large, active and vibrant community
◮ www.postgresql.org
◮ Downloads, Mailing lists, Documentation
◮ Sponsors sampler:
◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and
EnterpriseDB
◮ http://www.postgresql.org/community/
Flexible Indexing with Postgres 3 / 53
EnterpriseDB the company…
◮ The worldwide leader of Postgres based products and
services founded in 2004
◮ Customers include 50 of the Fortune 500 and 98 of the
Forbes Global 2000
◮ Enterprise offerings:
◮ PostgreSQL Support, Services and Training
◮ Postgres Plus Advanced Server with Oracle Compatibility
◮ Tools for Monitoring, Replication, HA, Backup & Recovery
Community
◮ Citizenship
◮ Contributor of key features: Materialized Views, JSON, &
more
◮ Nine community members on staff
Flexible Indexing with Postgres 4 / 53
EnterpriseDB the company…
Flexible Indexing with Postgres 5 / 53
Outline
1. Traditional indexing
2. Expression indexes
3. Partial indexes
4. Benefits of bitmap index scans
5. Non-b-tree index types
6. Data type support for index types
7. Index usage summary
Flexible Indexing with Postgres 6 / 53
Traditional Indexing
https://www.flickr.com/photos/ogimogi/
Flexible Indexing with Postgres 7 / 53
B-Tree
◮ Ideal for looking up unique values and maintaining unique
indexes
◮ High concurrency implementation
◮ Index is key/row-pointer, key/row-pointer
◮ Supply ordered data for queries
◮ ORDER BY clauses (and LIMIT)
◮ Merge joins
◮ Nested loop with index scans
Flexible Indexing with Postgres 8 / 53
But I Want More!
◮ Index expressions/functions
◮ Row control
◮ Index non-linear data
◮ Closest-match searches
◮ Index data with many duplicates
◮ Index multi-valued fields
Flexible Indexing with Postgres 9 / 53
Expression Index
SELECT * FROM customer WHERE lower(name) = ’andy’;
CREATE INDEX i_customer_name ON customer (name);
CREATE INDEX i_customer_lower ON customer (lower(name));
Flexible Indexing with Postgres 10 / 53
Let’s Test It
CREATE TABLE customer (name) AS
SELECT ’cust’ || i
FROM generate_series(1, 1000) AS g(i);
SELECT 1000
CREATE INDEX i_customer_name ON customer (name);
CREATE INDEX
EXPLAIN SELECT * FROM customer WHERE name = ’cust999’;
QUERY PLAN
------------------------------------------------------
Index Only Scan using i_customer_name on customer ...
Index Cond: (name = ’cust999’::text)
EXPLAIN SELECT * FROM customer WHERE lower(name) = ’cust999’;
QUERY PLAN
---------------------------------------------------------
Seq Scan on customer (cost=0.00..20.00 rows=5 width=7)
Filter: (lower(name) = ’cust999’::text)
Flexible Indexing with Postgres 11 / 53
Create an Expression Index
CREATE INDEX i_customer_lower ON customer (lower(name));
CREATE INDEX
EXPLAIN SELECT * FROM customer WHERE lower(name) = ’cust999’;
QUERY PLAN
---------------------------------------------------------------
Bitmap Heap Scan on customer (cost=4.32..9.66 rows=5 width=7)
Recheck Cond: (lower(name) = ’cust999’::text)
-> Bitmap Index Scan on i_customer_lower ...
Index Cond: (lower(name) = ’cust999’::text)
Flexible Indexing with Postgres 12 / 53
Other Expression Index Options
◮ User-defined functions
◮ Concatenation of columns
◮ Math expressions
◮ Only IMMUTABLE functions can be used
◮ Consider casting when matching WHERE clause expressions
to the indexed expression
Flexible Indexing with Postgres 13 / 53
Partial Index: Index Row Control
◮ Why index every row if you are only going to look up some
of them?
◮ Smaller index on disk and in memory
◮ More shallow index
◮ Less INSERT/UPDATE index overhead
◮ Sequential scan still possible
Flexible Indexing with Postgres 14 / 53
Partial Index Creation
ALTER TABLE customer ADD COLUMN state CHAR(2);
ALTER TABLE
UPDATE customer SET state = ’AZ’
WHERE name LIKE ’cust9__’;
UPDATE 100
CREATE INDEX i_customer_state_az ON customer (state) WHERE state = ’AZ’;
CREATE INDEX
Flexible Indexing with Postgres 15 / 53
Test the Partial Index
EXPLAIN SELECT * FROM customer WHERE state = ’PA’;
QUERY PLAN
----------------------------------------------------------
Seq Scan on customer (cost=0.00..17.50 rows=5 width=19)
Filter: (state = ’PA’::bpchar)
EXPLAIN SELECT * FROM customer WHERE state = ’AZ’;
QUERY PLAN
----------------------------------------------------------------------------
Bitmap Heap Scan on customer (cost=4.18..9.51 rows=5 width=19)
Recheck Cond: (state = ’AZ’::bpchar)
-> Bitmap Index Scan on i_customer_state_az ...
Index Cond: (state = ’AZ’::bpchar)
Flexible Indexing with Postgres 16 / 53
Partial Index With Different Indexed Column
DROP INDEX i_customer_name;
DROP INDEX
CREATE INDEX i_customer_name_az ON customer (name) WHERE state = ’AZ’;
CREATE INDEX
EXPLAIN SELECT * FROM customer WHERE name = ’cust975’;
QUERY PLAN
----------------------------------------------------------
Seq Scan on customer (cost=0.00..17.50 rows=1 width=19)
Filter: (name = ’cust975’::text)
Index Cond: (state = ’AZ’::bpchar)
Flexible Indexing with Postgres 17 / 53
Partial Index With Different Indexed Column
EXPLAIN SELECT * FROM customer
WHERE name = ’cust975’ AND state = ’AZ’;
QUERY PLAN
-----------------------------------------------------
Index Scan using i_customer_name_az on customer ...
Index Cond: (name = ’cust975’::text)
EXPLAIN SELECT * FROM customer
WHERE state = ’AZ’;
QUERY PLAN
----------------------------------------------------------------
Bitmap Heap Scan on customer (cost=4.17..9.50 rows=5 width=19)
Recheck Cond: (state = ’AZ’::bpchar)
-> Bitmap Index Scan on i_customer_name_az ...
Flexible Indexing with Postgres 18 / 53
Benefits of Bitmap Index Scans
◮ Used when:
◮ an index lookup might generate multiple hits on the same
heap (data) page
◮ using multiple indexes for a single query is useful
◮ Creates a bitmap of matching entries in memory
◮ Row or block-level granularity
◮ Bitmap allows heap pages to be visited only once for
multiple matches
◮ Bitmap can merge the results from several indexes with
AND/OR filtering
◮ Automatically enabled by the optimizer
Flexible Indexing with Postgres 19 / 53
Bitmap Index Scan
=&
Combined
’A’ AND ’NS’
1
0
1
0
TableIndex 1
col1 = ’A’
Index 2
1
0
0
col2 = ’NS’
1 0
1
0
0
Index
Flexible Indexing with Postgres 20 / 53
Non-B-Tree Index Types
https://www.flickr.com/photos/archeon/
Flexible Indexing with Postgres 21 / 53
Generalized Inverted Index (GIN)
◮ Best for indexing values that can contain multiple keys, e.g.
◮ text documents
◮ JSON
◮ multi-dimensional data
◮ Also ideal for columns that contain many duplicates
◮ Key is stored only once
◮ Index is key/many-row-pointers
◮ Index updates are batched, though always checked for
accuracy
◮ In Postgres 9.4
◮ compression of row pointer list
◮ optimized multi-key filtering
Flexible Indexing with Postgres 22 / 53
Generalized Search Tree (GIST)
GIST is a general indexing framework designed to allow indexing
of complex data types with minimal programming. Supported
data types include:
◮ geometric types
◮ range types
◮ hstore (key/value pairs)
◮ intarray (integer arrays)
◮ pg_trgm (trigrams)
Supports optional “distance” for nearest-neighbors/closest
matches. (GIN is also generalized.)
Flexible Indexing with Postgres 23 / 53
Space-Partitioned Generalized Search Tree
(SP-GIST)
◮ Similar to GIST in that it is a generalized indexing framework
◮ Allows the key to be split apart (decomposed)
◮ Parts are indexed hierarchically into partitions
◮ Partitions are of different sizes
◮ Each child needs to store only the child-unique portion of
the original value because each entry in the partition shares
the same parent value.
Flexible Indexing with Postgres 24 / 53
Hash Indexes
◮ Equality, non-equality lookups; no range lookups
◮ Not crash-safe
◮ Not replicated
◮ Cannot be restored via point-in-time recovery
◮ Poor performance and concurrency characteristics
◮ Boo
Flexible Indexing with Postgres 25 / 53
I Am Not Making This Up
SELECT amname, obj_description(oid, ’pg_am’)
FROM pg_am ORDER BY 1;
amname | obj_description
--------+-----------------------------
btree | b-tree index access method
gin | GIN index access method
gist | GiST index access method
hash | hash index access method
spgist | SP-GiST index access method
Flexible Indexing with Postgres 26 / 53
Data Type Support for Index Types
https://www.flickr.com/photos/jonobass/
Flexible Indexing with Postgres 27 / 53
Finding Supported Data Types - B-Tree
SELECT opfname FROM pg_opfamily, pg_am
WHERE opfmethod = pg_am.oid AND amname = ’btree’ ORDER BY 1;
abstime_ops jsonb_ops text_ops
array_ops macaddr_ops text_pattern_ops
bit_ops money_ops tid_ops
bool_ops name_ops time_ops
bpchar_ops network_ops timetz_ops
bpchar_pattern_ops numeric_ops tinterval_ops
bytea_ops oid_ops tsquery_ops
char_ops oidvector_ops tsvector_ops
datetime_ops pg_lsn_ops uuid_ops
enum_ops range_ops varbit_ops
float_ops record_image_ops
integer_ops record_ops
interval_ops reltime_ops
These data types are mostly single-value and easily ordered.
B-tree support for multi-valued types like tsvector is only for
complete-field equality comparisons.
Flexible Indexing with Postgres 28 / 53
Finding Supported Data Types - GIN
SELECT opfname FROM pg_opfamily, pg_am
WHERE opfmethod = pg_am.oid AND amname = ’gin’ ORDER BY 1;
opfname
----------------
array_ops
jsonb_ops
jsonb_path_ops
tsvector_ops
These date types are multi-value, where each value is
independent.
Flexible Indexing with Postgres 29 / 53
Finding Supported Data Types - GIST
SELECT opfname FROM pg_opfamily, pg_am
WHERE opfmethod = pg_am.oid AND amname = ’gist’ ORDER BY 1;
opfname
--------------
box_ops
circle_ops
jsonb_ops
network_ops
point_ops
poly_ops
range_ops
tsquery_ops
tsvector_ops
These date types are multi-value — some have independent
values (JSON, tsvector), others have dependent values (point,
box).
Flexible Indexing with Postgres 30 / 53
Finding Supported Data Types - SP-GIST
SELECT opfname FROM pg_opfamily, pg_am
WHERE opfmethod = pg_am.oid AND amname = ’spgist’ ORDER BY 1;
opfname
----------------
kd_point_ops
quad_point_ops
range_ops
text_ops
For text, this is useful when the keys are long.
Flexible Indexing with Postgres 31 / 53
Index Type Examples
https://www.flickr.com/photos/samcatchesides/
Flexible Indexing with Postgres 32 / 53
B-Tree
C
Item Item Item
Special< N< F
>= N
G
Internal
Leaf
Page Header Item Item Item
SpecialC
E
A
Heap
Page Header Item Item Item
SpecialK
L
G
M I A E P K W L
Page Header
Flexible Indexing with Postgres 33 / 53
GIN Example Using tsvector_ops
CREATE TABLE articles (doc TSVECTOR);
CREATE TABLE
INSERT INTO articles VALUES (’The fox is sick’);
INSERT 0 1
INSERT INTO articles VALUES (’How sick is this’);
INSERT 0 1
SELECT ctid, * FROM articles ORDER BY 1;
ctid | doc
-------+---------------------------
(0,1) | ’The’ ’fox’ ’is’ ’sick’
(0,2) | ’How’ ’is’ ’sick’ ’this’
Flexible Indexing with Postgres 34 / 53
GIN Example Using tsvector_ops
SELECT ctid, * FROM articles ORDER BY 1;
ctid | doc
-------+---------------------------
(0,1) | ’The’ ’fox’ ’is’ ’sick’
(0,2) | ’How’ ’is’ ’sick’ ’this’
fox (0,1)
is (0,1), (0,2)
sick (0,1), (0,2)
this (0,2)
How (0,2)
The (0,1)
Integer arrays are indexed similarly.
Flexible Indexing with Postgres 35 / 53
GIN Example Using JSON
CREATE TABLE webapp (doc JSON);
CREATE TABLE
INSERT INTO webapp VALUES
(’{"name" : "Bill", "active" : true}’);
INSERT 0 1
INSERT INTO webapp VALUES
(’{"name" : "Jack", "active" : true}’);
INSERT 0 1
SELECT ctid, * FROM webapp ORDER BY 1;
ctid | doc
-------+------------------------------------
(0,1) | {"name" : "Bill", "active" : true}
(0,2) | {"name" : "Jack", "active" : true}
Flexible Indexing with Postgres 36 / 53
GIN Example Using jsonb_ops (default)
(0,1) | {"name" : "Bill", "active" : true}
(0,2) | {"name" : "Jack", "active" : true}
CREATE INDEX i_webapp_yc ON webapp
USING gin (doc /* jsonb_ops */);
active (0,1), (0,2)
name (0,1), (0,2)
true (0,1), (0,2)
Bill (0,1)
Jack (0,2)
Flexible Indexing with Postgres 37 / 53
GIN Example Using jsonb_path_ops
(0,1) | {"name" : "Bill", "active" : true}
(0,2) | {"name" : "Jack", "active" : true}
CREATE INDEX i_webapp_doc_path ON webapp
USING gin (doc jsonb_path_ops);
hash(active, true) (0,1), (0,2)
hash(name, Bill) (0,1)
hash(name, Jack) (0,2)
Nested keys have their parent keys (paths) prepended before
hashing.
Flexible Indexing with Postgres 38 / 53
GIST
◮ Supports data types with loosely-coupled values, like
tsvector, JSONB
◮ Uniquely supports data types with tightly-coupled values
◮ multi-dimensional types (geographic)
◮ range types
◮ IP network data type
Flexible Indexing with Postgres 39 / 53
Linear Indexing
0 5−5
0 5−5
0 5−5
= 2
>= 2
Flexible Indexing with Postgres 40 / 53
Multi-Dimensional
5−5
x
y
Flexible Indexing with Postgres 41 / 53
Linear Methods Are Inefficient
5−5
x
y
x >= 2
x
Flexible Indexing with Postgres 42 / 53
R-Tree Indexes Bounding Boxes
5−5
x
y
x
Level 1
Level 3
Level 2
Geographic objects (lines, polygons) also can appear in r-tree
indexes. based on their own bounding boxes.
Flexible Indexing with Postgres 43 / 53
GIST Two-Dimensional Ops
box_ops
circle_ops
point_ops
poly_ops
PostGIS also uses this indexing method.
Flexible Indexing with Postgres 44 / 53
Range Indexing With GIST
GIST range type indexing uses large ranges at the top level of the
index, with ranges decreasing in size at lower levels, just like how
r-tree bounding boxes are indexed.
Flexible Indexing with Postgres 45 / 53
SP-GIST TEXT_OPS Example (Suffix Tree)
yahoo.com/google.com/
http://
index.html
maps.html
index.html
flickr.html cgi.html
google.com/public/ berkeley.edu/
README
ftp://
bin.tar.gz
doc.pdf
Internally split by character. B-trees use range partitioning, e.g.
A-C, rather than common prefix partitioning, so a btree key must
store the full key value.
Flexible Indexing with Postgres 46 / 53
Other SP-GIST Index Examples
◮ quad_point_ops uses four corner points in square partitions of
decreasing size
◮ kd_point_ops splits on only one dimension
Flexible Indexing with Postgres 47 / 53
Extension Index Support
◮ btree_gin (GIN)
◮ btree_gist (GIST)
◮ cube (GIST)
◮ hstore (GIST, GIN)
◮ intarray (GIST, GIN)
◮ ltree (GIST)
◮ pg_trgm (GIST, GIN)
◮ PostGIS
◮ seg
Flexible Indexing with Postgres 48 / 53
Index Usage Summary
https://www.flickr.com/photos/jubilo/
Flexible Indexing with Postgres 49 / 53
When To Create Indexes
◮ pg_stat_user_tables.seq_scan is high
◮ Check frequently-executed queries with EXPLAIN (find via
pg_stat_statements or pgbadger)
◮ Squential scans are not always bad
◮ If pg_stat_user_indexes.idx_scan is low,the index might be
unnecessary
◮ Unnecessary indexes use storage space and slow down
INSERTs and some UPDATEs
Flexible Indexing with Postgres 50 / 53
Evaluating Index Types
◮ Build time, INSERT/UPDATE overhead
◮ Storage size
◮ Access speed
◮ Operator lookup flexibility
Flexible Indexing with Postgres 51 / 53
Additional Resources…
◮ Postgres Downloads:
◮ www.enterprisedb.com/downloads
◮ Product and Services information:
◮ info@enterprisedb.com
Flexible Indexing with Postgres 52 / 53
Conclusion
http://momjian.us/presentations https://www.flickr.com/photos/philipp_zurmoehle/
Flexible Indexing with Postgres 53 / 53

More Related Content

What's hot (20)

PDF
ProxySQL High Avalability and Configuration Management Overview
René Cannaò
 
PDF
Almost Perfect Service Discovery and Failover with ProxySQL and Orchestrator
Jean-François Gagné
 
PDF
Percona XtraDB Cluster ( Ensure high Availability )
Mydbops
 
PDF
The MySQL Query Optimizer Explained Through Optimizer Trace
oysteing
 
PDF
Fighting legacy with hexagonal architecture and frameworkless php
Fabio Pellegrini
 
PDF
MySQL Performance - Best practices
Ted Wennmark
 
PDF
The InnoDB Storage Engine for MySQL
Morgan Tocker
 
PDF
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
PgDay.Seoul
 
PPTX
Running MariaDB in multiple data centers
MariaDB plc
 
PDF
PostgreSQL Deep Internal
EXEM
 
PDF
MySQL: Indexing for Better Performance
jkeriaki
 
PPTX
Troubleshooting Kerberos in Hadoop: Taming the Beast
DataWorks Summit
 
PPTX
Lightweight Transactions in Scylla versus Apache Cassandra
ScyllaDB
 
PDF
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
PDF
Percona XtraDB Cluster vs Galera Cluster vs MySQL Group Replication
Kenny Gryp
 
PDF
Scylla Summit 2022: How to Migrate a Counter Table for 68 Billion Records
ScyllaDB
 
PDF
Wait! What’s going on inside my database?
Jeremy Schneider
 
PPTX
Low Level CPU Performance Profiling Examples
Tanel Poder
 
PDF
cLoki: Like Loki but for ClickHouse
Altinity Ltd
 
PDF
ProxySQL in the Cloud
René Cannaò
 
ProxySQL High Avalability and Configuration Management Overview
René Cannaò
 
Almost Perfect Service Discovery and Failover with ProxySQL and Orchestrator
Jean-François Gagné
 
Percona XtraDB Cluster ( Ensure high Availability )
Mydbops
 
The MySQL Query Optimizer Explained Through Optimizer Trace
oysteing
 
Fighting legacy with hexagonal architecture and frameworkless php
Fabio Pellegrini
 
MySQL Performance - Best practices
Ted Wennmark
 
The InnoDB Storage Engine for MySQL
Morgan Tocker
 
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
PgDay.Seoul
 
Running MariaDB in multiple data centers
MariaDB plc
 
PostgreSQL Deep Internal
EXEM
 
MySQL: Indexing for Better Performance
jkeriaki
 
Troubleshooting Kerberos in Hadoop: Taming the Beast
DataWorks Summit
 
Lightweight Transactions in Scylla versus Apache Cassandra
ScyllaDB
 
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
Percona XtraDB Cluster vs Galera Cluster vs MySQL Group Replication
Kenny Gryp
 
Scylla Summit 2022: How to Migrate a Counter Table for 68 Billion Records
ScyllaDB
 
Wait! What’s going on inside my database?
Jeremy Schneider
 
Low Level CPU Performance Profiling Examples
Tanel Poder
 
cLoki: Like Loki but for ClickHouse
Altinity Ltd
 
ProxySQL in the Cloud
René Cannaò
 

Viewers also liked (10)

PDF
Indexing Complex PostgreSQL Data Types
Jonathan Katz
 
PPTX
The strength of a spatial database
Peter Horsbøll Møller
 
PDF
On Beyond (PostgreSQL) Data Types
Jonathan Katz
 
PDF
Postgres clusters
Stas Kelvich
 
PDF
Postgres-XC as a Key Value Store Compared To MongoDB
Mason Sharp
 
PDF
Postgres-XC: Symmetric PostgreSQL Cluster
Pavan Deolasee
 
PDF
Distributed Postgres
Stas Kelvich
 
PDF
Multimaster
Stas Kelvich
 
PDF
Postgres-XC Write Scalable PostgreSQL Cluster
Mason Sharp
 
Indexing Complex PostgreSQL Data Types
Jonathan Katz
 
The strength of a spatial database
Peter Horsbøll Møller
 
On Beyond (PostgreSQL) Data Types
Jonathan Katz
 
Postgres clusters
Stas Kelvich
 
Postgres-XC as a Key Value Store Compared To MongoDB
Mason Sharp
 
Postgres-XC: Symmetric PostgreSQL Cluster
Pavan Deolasee
 
Distributed Postgres
Stas Kelvich
 
Multimaster
Stas Kelvich
 
Postgres-XC Write Scalable PostgreSQL Cluster
Mason Sharp
 
Ad

Similar to Flexible Indexing with Postgres (20)

PDF
Flexible Indexing with Postgres
EDB
 
PDF
Steam Learn: Introduction to RDBMS indexes
inovia
 
PDF
Btree. Explore the heart of PostgreSQL.
Anastasia Lubennikova
 
PDF
Индексируем базу: как делать хорошо и не делать плохо Winter saint p 2021 m...
Андрей Новиков
 
PPTX
Postgres indexes
Bartosz Sypytkowski
 
PDF
Gurjeet Singh - How Postgres is Different From (Better Tha) Your RDBMS @ Post...
PostgresOpen
 
PDF
PostgreSQL 9.0 & The Future
Aaron Thul
 
PDF
PostgreSQL performance improvements in 9.5 and 9.6
Tomas Vondra
 
PPTX
PostgreSQL as NoSQL
Himanchali -
 
PPTX
Postgres indexes: how to make them work for your application
Bartosz Sypytkowski
 
PDF
Ten Reasons Why You Should Prefer PostgreSQL to MySQL
anandology
 
PDF
PostgreSQL 9.4: NoSQL on ACID
Oleg Bartunov
 
PDF
Deep dive to PostgreSQL Indexes
Ibrar Ahmed
 
PDF
PostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 Taipei
Satoshi Nagayasu
 
PDF
Non-Relational Postgres
EDB
 
PDF
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PROIDEA
 
PDF
PostgreSQL 9.5 Features
Saiful
 
PDF
Postgres can do THAT?
alexbrasetvik
 
KEY
PostgreSQL
Reuven Lerner
 
PDF
10 Reasons to Start Your Analytics Project with PostgreSQL
Satoshi Nagayasu
 
Flexible Indexing with Postgres
EDB
 
Steam Learn: Introduction to RDBMS indexes
inovia
 
Btree. Explore the heart of PostgreSQL.
Anastasia Lubennikova
 
Индексируем базу: как делать хорошо и не делать плохо Winter saint p 2021 m...
Андрей Новиков
 
Postgres indexes
Bartosz Sypytkowski
 
Gurjeet Singh - How Postgres is Different From (Better Tha) Your RDBMS @ Post...
PostgresOpen
 
PostgreSQL 9.0 & The Future
Aaron Thul
 
PostgreSQL performance improvements in 9.5 and 9.6
Tomas Vondra
 
PostgreSQL as NoSQL
Himanchali -
 
Postgres indexes: how to make them work for your application
Bartosz Sypytkowski
 
Ten Reasons Why You Should Prefer PostgreSQL to MySQL
anandology
 
PostgreSQL 9.4: NoSQL on ACID
Oleg Bartunov
 
Deep dive to PostgreSQL Indexes
Ibrar Ahmed
 
PostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 Taipei
Satoshi Nagayasu
 
Non-Relational Postgres
EDB
 
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PROIDEA
 
PostgreSQL 9.5 Features
Saiful
 
Postgres can do THAT?
alexbrasetvik
 
PostgreSQL
Reuven Lerner
 
10 Reasons to Start Your Analytics Project with PostgreSQL
Satoshi Nagayasu
 
Ad

More from EDB (20)

PDF
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
EDB
 
PDF
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
EDB
 
PDF
Migre sus bases de datos Oracle a la nube
EDB
 
PDF
EFM Office Hours - APJ - July 29, 2021
EDB
 
PDF
Benchmarking Cloud Native PostgreSQL
EDB
 
PDF
Las Variaciones de la Replicación de PostgreSQL
EDB
 
PDF
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
PDF
Is There Anything PgBouncer Can’t Do?
EDB
 
PDF
Data Analysis with TensorFlow in PostgreSQL
EDB
 
PDF
Practical Partitioning in Production with Postgres
EDB
 
PDF
A Deeper Dive into EXPLAIN
EDB
 
PDF
IOT with PostgreSQL
EDB
 
PDF
A Journey from Oracle to PostgreSQL
EDB
 
PDF
Psql is awesome!
EDB
 
PDF
EDB 13 - New Enhancements for Security and Usability - APJ
EDB
 
PPTX
Comment sauvegarder correctement vos données
EDB
 
PDF
Cloud Native PostgreSQL - Italiano
EDB
 
PDF
New enhancements for security and usability in EDB 13
EDB
 
PPTX
Best Practices in Security with PostgreSQL
EDB
 
PDF
Cloud Native PostgreSQL - APJ
EDB
 
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
EDB
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
EDB
 
Migre sus bases de datos Oracle a la nube
EDB
 
EFM Office Hours - APJ - July 29, 2021
EDB
 
Benchmarking Cloud Native PostgreSQL
EDB
 
Las Variaciones de la Replicación de PostgreSQL
EDB
 
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
Is There Anything PgBouncer Can’t Do?
EDB
 
Data Analysis with TensorFlow in PostgreSQL
EDB
 
Practical Partitioning in Production with Postgres
EDB
 
A Deeper Dive into EXPLAIN
EDB
 
IOT with PostgreSQL
EDB
 
A Journey from Oracle to PostgreSQL
EDB
 
Psql is awesome!
EDB
 
EDB 13 - New Enhancements for Security and Usability - APJ
EDB
 
Comment sauvegarder correctement vos données
EDB
 
Cloud Native PostgreSQL - Italiano
EDB
 
New enhancements for security and usability in EDB 13
EDB
 
Best Practices in Security with PostgreSQL
EDB
 
Cloud Native PostgreSQL - APJ
EDB
 

Recently uploaded (20)

PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PPTX
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
DOCX
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Digital Circuits, important subject in CS
contactparinay1
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 

Flexible Indexing with Postgres

  • 1. Flexible Indexing with Postgres BRUCE MOMJIAN December, 2014 Postgres offers a wide variety of indexing structures, and many index lookup methods with specialized capabilities.This talk explores the many Postgres indexing options. Includes concepts from Teodor Sigaev, Alexander Korotkov, Oleg Bartunov, Jonathan Katz Creative Commons Attribution License http://momjian.us/presentations 1 / 53
  • 2. PostgreSQL the database… ◮ Open Source Object Relational DBMS since 1996 ◮ Distributed under the PostgreSQL License ◮ Similar technical heritage as Oracle, SQL Server & DB2 ◮ However, a strong adherence to standards (ANSI-SQL 2008) ◮ Highly extensible and adaptable design ◮ Languages, indexing, data types, etc. ◮ E.g. PostGIS, JSONB, SQL/MED ◮ Extensive use throughout the world for applications and organizations of all types ◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS and Amazon Linux Flexible Indexing with Postgres 2 / 53
  • 3. PostgreSQL the community… ◮ Independent community led by a Core Team of six ◮ Large, active and vibrant community ◮ www.postgresql.org ◮ Downloads, Mailing lists, Documentation ◮ Sponsors sampler: ◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and EnterpriseDB ◮ http://www.postgresql.org/community/ Flexible Indexing with Postgres 3 / 53
  • 4. EnterpriseDB the company… ◮ The worldwide leader of Postgres based products and services founded in 2004 ◮ Customers include 50 of the Fortune 500 and 98 of the Forbes Global 2000 ◮ Enterprise offerings: ◮ PostgreSQL Support, Services and Training ◮ Postgres Plus Advanced Server with Oracle Compatibility ◮ Tools for Monitoring, Replication, HA, Backup & Recovery Community ◮ Citizenship ◮ Contributor of key features: Materialized Views, JSON, & more ◮ Nine community members on staff Flexible Indexing with Postgres 4 / 53
  • 5. EnterpriseDB the company… Flexible Indexing with Postgres 5 / 53
  • 6. Outline 1. Traditional indexing 2. Expression indexes 3. Partial indexes 4. Benefits of bitmap index scans 5. Non-b-tree index types 6. Data type support for index types 7. Index usage summary Flexible Indexing with Postgres 6 / 53
  • 8. B-Tree ◮ Ideal for looking up unique values and maintaining unique indexes ◮ High concurrency implementation ◮ Index is key/row-pointer, key/row-pointer ◮ Supply ordered data for queries ◮ ORDER BY clauses (and LIMIT) ◮ Merge joins ◮ Nested loop with index scans Flexible Indexing with Postgres 8 / 53
  • 9. But I Want More! ◮ Index expressions/functions ◮ Row control ◮ Index non-linear data ◮ Closest-match searches ◮ Index data with many duplicates ◮ Index multi-valued fields Flexible Indexing with Postgres 9 / 53
  • 10. Expression Index SELECT * FROM customer WHERE lower(name) = ’andy’; CREATE INDEX i_customer_name ON customer (name); CREATE INDEX i_customer_lower ON customer (lower(name)); Flexible Indexing with Postgres 10 / 53
  • 11. Let’s Test It CREATE TABLE customer (name) AS SELECT ’cust’ || i FROM generate_series(1, 1000) AS g(i); SELECT 1000 CREATE INDEX i_customer_name ON customer (name); CREATE INDEX EXPLAIN SELECT * FROM customer WHERE name = ’cust999’; QUERY PLAN ------------------------------------------------------ Index Only Scan using i_customer_name on customer ... Index Cond: (name = ’cust999’::text) EXPLAIN SELECT * FROM customer WHERE lower(name) = ’cust999’; QUERY PLAN --------------------------------------------------------- Seq Scan on customer (cost=0.00..20.00 rows=5 width=7) Filter: (lower(name) = ’cust999’::text) Flexible Indexing with Postgres 11 / 53
  • 12. Create an Expression Index CREATE INDEX i_customer_lower ON customer (lower(name)); CREATE INDEX EXPLAIN SELECT * FROM customer WHERE lower(name) = ’cust999’; QUERY PLAN --------------------------------------------------------------- Bitmap Heap Scan on customer (cost=4.32..9.66 rows=5 width=7) Recheck Cond: (lower(name) = ’cust999’::text) -> Bitmap Index Scan on i_customer_lower ... Index Cond: (lower(name) = ’cust999’::text) Flexible Indexing with Postgres 12 / 53
  • 13. Other Expression Index Options ◮ User-defined functions ◮ Concatenation of columns ◮ Math expressions ◮ Only IMMUTABLE functions can be used ◮ Consider casting when matching WHERE clause expressions to the indexed expression Flexible Indexing with Postgres 13 / 53
  • 14. Partial Index: Index Row Control ◮ Why index every row if you are only going to look up some of them? ◮ Smaller index on disk and in memory ◮ More shallow index ◮ Less INSERT/UPDATE index overhead ◮ Sequential scan still possible Flexible Indexing with Postgres 14 / 53
  • 15. Partial Index Creation ALTER TABLE customer ADD COLUMN state CHAR(2); ALTER TABLE UPDATE customer SET state = ’AZ’ WHERE name LIKE ’cust9__’; UPDATE 100 CREATE INDEX i_customer_state_az ON customer (state) WHERE state = ’AZ’; CREATE INDEX Flexible Indexing with Postgres 15 / 53
  • 16. Test the Partial Index EXPLAIN SELECT * FROM customer WHERE state = ’PA’; QUERY PLAN ---------------------------------------------------------- Seq Scan on customer (cost=0.00..17.50 rows=5 width=19) Filter: (state = ’PA’::bpchar) EXPLAIN SELECT * FROM customer WHERE state = ’AZ’; QUERY PLAN ---------------------------------------------------------------------------- Bitmap Heap Scan on customer (cost=4.18..9.51 rows=5 width=19) Recheck Cond: (state = ’AZ’::bpchar) -> Bitmap Index Scan on i_customer_state_az ... Index Cond: (state = ’AZ’::bpchar) Flexible Indexing with Postgres 16 / 53
  • 17. Partial Index With Different Indexed Column DROP INDEX i_customer_name; DROP INDEX CREATE INDEX i_customer_name_az ON customer (name) WHERE state = ’AZ’; CREATE INDEX EXPLAIN SELECT * FROM customer WHERE name = ’cust975’; QUERY PLAN ---------------------------------------------------------- Seq Scan on customer (cost=0.00..17.50 rows=1 width=19) Filter: (name = ’cust975’::text) Index Cond: (state = ’AZ’::bpchar) Flexible Indexing with Postgres 17 / 53
  • 18. Partial Index With Different Indexed Column EXPLAIN SELECT * FROM customer WHERE name = ’cust975’ AND state = ’AZ’; QUERY PLAN ----------------------------------------------------- Index Scan using i_customer_name_az on customer ... Index Cond: (name = ’cust975’::text) EXPLAIN SELECT * FROM customer WHERE state = ’AZ’; QUERY PLAN ---------------------------------------------------------------- Bitmap Heap Scan on customer (cost=4.17..9.50 rows=5 width=19) Recheck Cond: (state = ’AZ’::bpchar) -> Bitmap Index Scan on i_customer_name_az ... Flexible Indexing with Postgres 18 / 53
  • 19. Benefits of Bitmap Index Scans ◮ Used when: ◮ an index lookup might generate multiple hits on the same heap (data) page ◮ using multiple indexes for a single query is useful ◮ Creates a bitmap of matching entries in memory ◮ Row or block-level granularity ◮ Bitmap allows heap pages to be visited only once for multiple matches ◮ Bitmap can merge the results from several indexes with AND/OR filtering ◮ Automatically enabled by the optimizer Flexible Indexing with Postgres 19 / 53
  • 20. Bitmap Index Scan =& Combined ’A’ AND ’NS’ 1 0 1 0 TableIndex 1 col1 = ’A’ Index 2 1 0 0 col2 = ’NS’ 1 0 1 0 0 Index Flexible Indexing with Postgres 20 / 53
  • 22. Generalized Inverted Index (GIN) ◮ Best for indexing values that can contain multiple keys, e.g. ◮ text documents ◮ JSON ◮ multi-dimensional data ◮ Also ideal for columns that contain many duplicates ◮ Key is stored only once ◮ Index is key/many-row-pointers ◮ Index updates are batched, though always checked for accuracy ◮ In Postgres 9.4 ◮ compression of row pointer list ◮ optimized multi-key filtering Flexible Indexing with Postgres 22 / 53
  • 23. Generalized Search Tree (GIST) GIST is a general indexing framework designed to allow indexing of complex data types with minimal programming. Supported data types include: ◮ geometric types ◮ range types ◮ hstore (key/value pairs) ◮ intarray (integer arrays) ◮ pg_trgm (trigrams) Supports optional “distance” for nearest-neighbors/closest matches. (GIN is also generalized.) Flexible Indexing with Postgres 23 / 53
  • 24. Space-Partitioned Generalized Search Tree (SP-GIST) ◮ Similar to GIST in that it is a generalized indexing framework ◮ Allows the key to be split apart (decomposed) ◮ Parts are indexed hierarchically into partitions ◮ Partitions are of different sizes ◮ Each child needs to store only the child-unique portion of the original value because each entry in the partition shares the same parent value. Flexible Indexing with Postgres 24 / 53
  • 25. Hash Indexes ◮ Equality, non-equality lookups; no range lookups ◮ Not crash-safe ◮ Not replicated ◮ Cannot be restored via point-in-time recovery ◮ Poor performance and concurrency characteristics ◮ Boo Flexible Indexing with Postgres 25 / 53
  • 26. I Am Not Making This Up SELECT amname, obj_description(oid, ’pg_am’) FROM pg_am ORDER BY 1; amname | obj_description --------+----------------------------- btree | b-tree index access method gin | GIN index access method gist | GiST index access method hash | hash index access method spgist | SP-GiST index access method Flexible Indexing with Postgres 26 / 53
  • 27. Data Type Support for Index Types https://www.flickr.com/photos/jonobass/ Flexible Indexing with Postgres 27 / 53
  • 28. Finding Supported Data Types - B-Tree SELECT opfname FROM pg_opfamily, pg_am WHERE opfmethod = pg_am.oid AND amname = ’btree’ ORDER BY 1; abstime_ops jsonb_ops text_ops array_ops macaddr_ops text_pattern_ops bit_ops money_ops tid_ops bool_ops name_ops time_ops bpchar_ops network_ops timetz_ops bpchar_pattern_ops numeric_ops tinterval_ops bytea_ops oid_ops tsquery_ops char_ops oidvector_ops tsvector_ops datetime_ops pg_lsn_ops uuid_ops enum_ops range_ops varbit_ops float_ops record_image_ops integer_ops record_ops interval_ops reltime_ops These data types are mostly single-value and easily ordered. B-tree support for multi-valued types like tsvector is only for complete-field equality comparisons. Flexible Indexing with Postgres 28 / 53
  • 29. Finding Supported Data Types - GIN SELECT opfname FROM pg_opfamily, pg_am WHERE opfmethod = pg_am.oid AND amname = ’gin’ ORDER BY 1; opfname ---------------- array_ops jsonb_ops jsonb_path_ops tsvector_ops These date types are multi-value, where each value is independent. Flexible Indexing with Postgres 29 / 53
  • 30. Finding Supported Data Types - GIST SELECT opfname FROM pg_opfamily, pg_am WHERE opfmethod = pg_am.oid AND amname = ’gist’ ORDER BY 1; opfname -------------- box_ops circle_ops jsonb_ops network_ops point_ops poly_ops range_ops tsquery_ops tsvector_ops These date types are multi-value — some have independent values (JSON, tsvector), others have dependent values (point, box). Flexible Indexing with Postgres 30 / 53
  • 31. Finding Supported Data Types - SP-GIST SELECT opfname FROM pg_opfamily, pg_am WHERE opfmethod = pg_am.oid AND amname = ’spgist’ ORDER BY 1; opfname ---------------- kd_point_ops quad_point_ops range_ops text_ops For text, this is useful when the keys are long. Flexible Indexing with Postgres 31 / 53
  • 33. B-Tree C Item Item Item Special< N< F >= N G Internal Leaf Page Header Item Item Item SpecialC E A Heap Page Header Item Item Item SpecialK L G M I A E P K W L Page Header Flexible Indexing with Postgres 33 / 53
  • 34. GIN Example Using tsvector_ops CREATE TABLE articles (doc TSVECTOR); CREATE TABLE INSERT INTO articles VALUES (’The fox is sick’); INSERT 0 1 INSERT INTO articles VALUES (’How sick is this’); INSERT 0 1 SELECT ctid, * FROM articles ORDER BY 1; ctid | doc -------+--------------------------- (0,1) | ’The’ ’fox’ ’is’ ’sick’ (0,2) | ’How’ ’is’ ’sick’ ’this’ Flexible Indexing with Postgres 34 / 53
  • 35. GIN Example Using tsvector_ops SELECT ctid, * FROM articles ORDER BY 1; ctid | doc -------+--------------------------- (0,1) | ’The’ ’fox’ ’is’ ’sick’ (0,2) | ’How’ ’is’ ’sick’ ’this’ fox (0,1) is (0,1), (0,2) sick (0,1), (0,2) this (0,2) How (0,2) The (0,1) Integer arrays are indexed similarly. Flexible Indexing with Postgres 35 / 53
  • 36. GIN Example Using JSON CREATE TABLE webapp (doc JSON); CREATE TABLE INSERT INTO webapp VALUES (’{"name" : "Bill", "active" : true}’); INSERT 0 1 INSERT INTO webapp VALUES (’{"name" : "Jack", "active" : true}’); INSERT 0 1 SELECT ctid, * FROM webapp ORDER BY 1; ctid | doc -------+------------------------------------ (0,1) | {"name" : "Bill", "active" : true} (0,2) | {"name" : "Jack", "active" : true} Flexible Indexing with Postgres 36 / 53
  • 37. GIN Example Using jsonb_ops (default) (0,1) | {"name" : "Bill", "active" : true} (0,2) | {"name" : "Jack", "active" : true} CREATE INDEX i_webapp_yc ON webapp USING gin (doc /* jsonb_ops */); active (0,1), (0,2) name (0,1), (0,2) true (0,1), (0,2) Bill (0,1) Jack (0,2) Flexible Indexing with Postgres 37 / 53
  • 38. GIN Example Using jsonb_path_ops (0,1) | {"name" : "Bill", "active" : true} (0,2) | {"name" : "Jack", "active" : true} CREATE INDEX i_webapp_doc_path ON webapp USING gin (doc jsonb_path_ops); hash(active, true) (0,1), (0,2) hash(name, Bill) (0,1) hash(name, Jack) (0,2) Nested keys have their parent keys (paths) prepended before hashing. Flexible Indexing with Postgres 38 / 53
  • 39. GIST ◮ Supports data types with loosely-coupled values, like tsvector, JSONB ◮ Uniquely supports data types with tightly-coupled values ◮ multi-dimensional types (geographic) ◮ range types ◮ IP network data type Flexible Indexing with Postgres 39 / 53
  • 40. Linear Indexing 0 5−5 0 5−5 0 5−5 = 2 >= 2 Flexible Indexing with Postgres 40 / 53
  • 42. Linear Methods Are Inefficient 5−5 x y x >= 2 x Flexible Indexing with Postgres 42 / 53
  • 43. R-Tree Indexes Bounding Boxes 5−5 x y x Level 1 Level 3 Level 2 Geographic objects (lines, polygons) also can appear in r-tree indexes. based on their own bounding boxes. Flexible Indexing with Postgres 43 / 53
  • 44. GIST Two-Dimensional Ops box_ops circle_ops point_ops poly_ops PostGIS also uses this indexing method. Flexible Indexing with Postgres 44 / 53
  • 45. Range Indexing With GIST GIST range type indexing uses large ranges at the top level of the index, with ranges decreasing in size at lower levels, just like how r-tree bounding boxes are indexed. Flexible Indexing with Postgres 45 / 53
  • 46. SP-GIST TEXT_OPS Example (Suffix Tree) yahoo.com/google.com/ http:// index.html maps.html index.html flickr.html cgi.html google.com/public/ berkeley.edu/ README ftp:// bin.tar.gz doc.pdf Internally split by character. B-trees use range partitioning, e.g. A-C, rather than common prefix partitioning, so a btree key must store the full key value. Flexible Indexing with Postgres 46 / 53
  • 47. Other SP-GIST Index Examples ◮ quad_point_ops uses four corner points in square partitions of decreasing size ◮ kd_point_ops splits on only one dimension Flexible Indexing with Postgres 47 / 53
  • 48. Extension Index Support ◮ btree_gin (GIN) ◮ btree_gist (GIST) ◮ cube (GIST) ◮ hstore (GIST, GIN) ◮ intarray (GIST, GIN) ◮ ltree (GIST) ◮ pg_trgm (GIST, GIN) ◮ PostGIS ◮ seg Flexible Indexing with Postgres 48 / 53
  • 50. When To Create Indexes ◮ pg_stat_user_tables.seq_scan is high ◮ Check frequently-executed queries with EXPLAIN (find via pg_stat_statements or pgbadger) ◮ Squential scans are not always bad ◮ If pg_stat_user_indexes.idx_scan is low,the index might be unnecessary ◮ Unnecessary indexes use storage space and slow down INSERTs and some UPDATEs Flexible Indexing with Postgres 50 / 53
  • 51. Evaluating Index Types ◮ Build time, INSERT/UPDATE overhead ◮ Storage size ◮ Access speed ◮ Operator lookup flexibility Flexible Indexing with Postgres 51 / 53
  • 52. Additional Resources… ◮ Postgres Downloads: ◮ www.enterprisedb.com/downloads ◮ Product and Services information: ◮ [email protected] Flexible Indexing with Postgres 52 / 53