SAM is a new segmentation model that can segment objects in images using natural language prompts. It was trained on over 1,100 datasets totaling over 10,000 images using a model-in-the-loop approach. SAM uses a transformer-based architecture with encoders for images, text, bounding boxes and masks. It achieves state-of-the-art zero-shot segmentation performance without any fine-tuning on target datasets.
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative ModelDeep Learning JP
NeRF-VAE is a 3D scene generative model that combines Neural Radiance Fields (NeRF) and Generative Query Networks (GQN) with a variational autoencoder (VAE). It uses a NeRF decoder to generate novel views conditioned on a latent code. An encoder extracts latent codes from input views. During training, it maximizes the evidence lower bound to learn the latent space of scenes and allow for novel view synthesis. NeRF-VAE aims to generate photorealistic novel views of scenes by leveraging NeRF's view synthesis abilities within a generative model framework.
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative ModelDeep Learning JP
NeRF-VAE is a 3D scene generative model that combines Neural Radiance Fields (NeRF) and Generative Query Networks (GQN) with a variational autoencoder (VAE). It uses a NeRF decoder to generate novel views conditioned on a latent code. An encoder extracts latent codes from input views. During training, it maximizes the evidence lower bound to learn the latent space of scenes and allow for novel view synthesis. NeRF-VAE aims to generate photorealistic novel views of scenes by leveraging NeRF's view synthesis abilities within a generative model framework.
Learning to summarize from human feedbackharmonylab
公開URL:https://arxiv.org/abs/2009.01325
出典:Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, Paul Christiano : Learning to summarize from human feedback, arXiv:2009.01325 (2020)
概要:言語モデルが強力になるにつれて、モデルの学習と評価は特定のタスクで使用されるデータとメトリクスによってボトルネックになることが多い。要約モデルでは人間が作成した参照要約を予測するように学習され、ROUGEによって評価されることが多い。しかし、これらのメトリクスと人間が本当に気にしている要約の品質との間にはズレが存在する。本研究では、大規模で高品質な人間のフィードバックデータセットを収集し、人間が好む要約を予測するモデルを学習する。そのモデルを報酬関数として使用して要約ポリシーをfine-tuneする。TL;DRデータセットにおいて本手法を適用したところ、人間の評価において参照要約よりも上回ることがわかった。
Variational Template Machine for Data-to-Text Generationharmonylab
公開URL:https://openreview.net/forum?id=HkejNgBtPB
出典:Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li : Variational Template Machine for Data-to-Text Generation, 8th International Conference on Learning Representations(ICLR2020), Addis Ababa, Ethiopia (2020)
概要:Table形式の構造化データから文章を生成するタスク(Data-to-Text)において、Variational Auto Encoder(VAE)ベースの手法Variational Template Machine(VTM)を提案する論文です。Encoder-Decoderモデルを用いた既存のアプローチでは、生成文の多様性に欠けるという課題があります。本論文では多様な文章を生成するためにはテンプレートが重要であるという主張に基づき、テンプレートを学習可能なVAEベースの手法を提案します。提案手法では潜在変数の空間をテンプレート空間とコンテンツ空間に明示的に分離することによって、正確で多様な文生成が可能となります。また、table-textのペアデータだけではなくtableデータのないraw textデータを利用した半教師あり学習を行います。
cvpaper.challengeにおいてECCVのOral論文をまとめた「ECCV 2020 報告」です。
ECCV2020 Oral論文 完全読破(2/2) [https://www.slideshare.net/cvpaperchallenge/eccv2020-22-238640597/1]
pp. 7-10 ECCVトレンド
pp. 12-81 3D geometry & reconstruction
pp. 82-137 Geometry, mapping and tracking
pp. 138-206 Image and Video synthesis
pp. 207-252 Learning methods
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ作成・アイディア考案・議論・実装・論文投稿に取り組み、凡ゆる知識を共有します。2020の目標は「トップ会議に30+本投稿」することです。