SlideShare a Scribd company logo
From Postgres to ScyllaDB:
Migration Strategies and
Performance Gains
Dan Harris & Sebastian Vercruysse
Company & Presenters
Dan Harris Sebastian Vercruysse
■ DataPrime Query Engine and metastore
■ ScyllaDB implementation
■ Conclusion
Agenda
DataPrime Query Engine
Dataprime Query Engine
■ Custom distributed query engine for proprietary query language (DataPrime)
on arbitrary semi-structured data
■ Querying data stored in object storage
■ Storage format is specialized parquet files
■ Reading parquet metadata from object storage is too expensive for large
queries
■ Move metadata into separate (faster) storage
■ Block listing with bloom filters
■ Transactional commit log
Metastore: Motivation
Requirements for metastore
■ Low latency
■ Scaleable
■ Transactional guarantees
Initial implementation: postgres
Metastore: Requirements
Example one (large) customer:
■ 2k parquet files / hour
■ 50k parquet files / day
■ 15 TB of data / day
■ 20 GB of metadata / day
Important for listing: give me all the blocks for a table in a given time range
Example:
■ Block url:
s3://cgx-production-c4c-archive-data/cx/parquet/v1/team_id=555585/…
…dt=2022-12-02/hr=10/0246f9e9-f0da-4723-9b64-a12346095d25.parquet
■ Row group: 0, 1, 2 …
■ Min timestamp
■ Max timestamp
■ Number of rows
■ Total size
■ …
Blocks
Bloom Filters
Used for pruning blocks when filtering by search term
■ is a given token maybe in this block or definitely not?
Works by hashing tokens multiple times & setting bits to 1. When checking, hash
again and check bits are all 1.
Specifically using blocked bloom filter (sequence of bloom filters):
8192 * 32 bytes
Column Metadata
Per-column parquet metadata required for scanning and decoding
parquet file
Example:
■ Block URL
■ Row Group
■ Column Name
■ Column metadata (blob)
ScyllaDB
Implementation
Blocks
Example:
■ s3://cgx-production-c4c-archive-data/cx/parquet/v1/team_id=555585/…
…dt=2022-12-02/hr=10/0246f9e9-f0da-4723-9b64-a12346095d25.parquet
What should the primary key be?
■ Table url?
■ ((Block url, row group))?
■ ((Table url, hour))?
■ ((Table url, hour), block url, row group)
Bloom Filters
Problem: how to verify bits are set?
Solution: read bloom filters and process in application
Problem: ~50k blocks/day * 262kB = ~12GB of data, too much for one query
Solution:
■ chunk bloom filters and split into rows
■ by chunking per bloom filter block we read one row per token,
50k * 32 bytes / token = 1.6MB / token
Bloom Filters: Primary Key (1)
Primary key: ((block_url, row_group), chunk index)
~ 8192 chunks of 32 bytes per bloom filter = ~262kB per partition
Pros:
■ Easy to insert and delete, single batch query
Cons:
■ Need to know the block id before reading
■ A lot of partitions to access, 1 day: 50k partitions
Bloom Filters: Primary Key (2)
Primary key: ((table url, hour, chunk index), block url, row group)
~ 2000 chunks of 32 bytes per bloom filter = ~64kB per partition
Pros
■ Very fast listing, less partitions.
1 day, 5 tokens: 24 * 5 = 120 partitions
■ No dependency on block, can read in parallel
Cons
■ Expensive to insert and delete: 8192 partitions for a single block!
Bloom Filters: Future Approach
Investigate optimal chunking:
find middle ground between writing large enough chunks and reading unnecessary data
Can we use UDF’s with WebAssembly?
SELECT block_url, row_group
FROM bloom_filters
WHERE table_url = ? AND hour = ? AND bloom_filter_matches(bloom_filter, indexes)
■ Let ScyllaDB do the hard work
■ Don’t need to worry about amount of data we’re sending back to app
■ Code is already written in rust
Be Careful
It’s very much not SQL - try to avoid migrations (/bugs)
Solutions:
■ Rename columns?
■ Add new columns, UPDATE blocks SET query?
■ Truncate table and start over again
ScyllaDB: Ecosystem
Extensive usage of ScyllaDB libraries and components:
■ Written in rust on top of ScyllaDB-rust-driver
■ ScyllaDB Operator for k8s
■ ScyllaDB Monitoring
■ ScyllaDB Manager
From knowing ScyllaDB exists to production ready & terabytes of data in 2 months
Hardware
Cost is very important
3-node cluster:
■ 8 vCPU
■ 32 GiB memory
■ ARM/Graviton
■ EBS volumes (gp3)
■ 500 MBps bandwidth
■ 12k IOPS
Metastore: Block Listing
Largest cluster: 4-5 TB on each node, mostly for one customer
Writes:
■ p99 latency: <1ms
■ ~10k writes / s
Block listing:
■ Depends on query & whether we’re using bloom filters
■ for 1 hour: <20ms latency
■ for 1 day: <500ms latency
Metastore: Column Metadata
Reads:
■ p50 latency: 5ms
■ p99 latency: 100ms (when we timeout)
Issue: large amount of concurrent queries
Probably disk issue
Conclusion
■ Keep an eye on partition sizes
■ Think about read/write patterns
■ Very happy with block listing…
… but unpredictable tail latency for reading
column metadata
■ Probably shouldn’t use EBS :-)
Thank You
Stay in Touch
Dan Harris
dan@coralogix.com
@thinkharderdev
github.com/thinkharderdev
www.linkedin.com/in/dsh2va
github.com/sebver
sebastian.vercruysse@coralogix.com
www.linkedin.com/in/sebastian-vercruysse
Sebastian Vercruysse
Ad

More Related Content

What's hot (20)

RedisConf17- Using Redis at scale @ Twitter
RedisConf17- Using Redis at scale @ TwitterRedisConf17- Using Redis at scale @ Twitter
RedisConf17- Using Redis at scale @ Twitter
Redis Labs
 
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
ScyllaDB
 
Log Structured Merge Tree
Log Structured Merge TreeLog Structured Merge Tree
Log Structured Merge Tree
University of California, Santa Cruz
 
The evolution of Netflix's S3 data warehouse (Strata NY 2018)
The evolution of Netflix's S3 data warehouse (Strata NY 2018)The evolution of Netflix's S3 data warehouse (Strata NY 2018)
The evolution of Netflix's S3 data warehouse (Strata NY 2018)
Ryan Blue
 
PostgreSQL + Kafka: The Delight of Change Data Capture
PostgreSQL + Kafka: The Delight of Change Data CapturePostgreSQL + Kafka: The Delight of Change Data Capture
PostgreSQL + Kafka: The Delight of Change Data Capture
Jeff Klukas
 
Building an open data platform with apache iceberg
Building an open data platform with apache icebergBuilding an open data platform with apache iceberg
Building an open data platform with apache iceberg
Alluxio, Inc.
 
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
Parallel Replication in MySQL and MariaDB
Parallel Replication in MySQL and MariaDBParallel Replication in MySQL and MariaDB
Parallel Replication in MySQL and MariaDB
Mydbops
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
PostgreSQL for Oracle Developers and DBA's
PostgreSQL for Oracle Developers and DBA'sPostgreSQL for Oracle Developers and DBA's
PostgreSQL for Oracle Developers and DBA's
Gerger
 
Build Low-Latency Applications in Rust on ScyllaDB
Build Low-Latency Applications in Rust on ScyllaDBBuild Low-Latency Applications in Rust on ScyllaDB
Build Low-Latency Applications in Rust on ScyllaDB
ScyllaDB
 
MariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & OptimizationMariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & Optimization
MariaDB plc
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Eventually, Scylla Chooses Consistency
Eventually, Scylla Chooses ConsistencyEventually, Scylla Chooses Consistency
Eventually, Scylla Chooses Consistency
ScyllaDB
 
HBase Low Latency
HBase Low LatencyHBase Low Latency
HBase Low Latency
DataWorks Summit
 
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
confluent
 
Active Session History in PostgreSQL:
Active Session History in PostgreSQL:Active Session History in PostgreSQL:
Active Session History in PostgreSQL:
BertrandDrouvot
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Jim Mlodgenski
 
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops TeamTop-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Mydbops
 
RedisConf17- Using Redis at scale @ Twitter
RedisConf17- Using Redis at scale @ TwitterRedisConf17- Using Redis at scale @ Twitter
RedisConf17- Using Redis at scale @ Twitter
Redis Labs
 
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2Scylla Summit 2022: Scylla 5.0 New Features, Part 2
Scylla Summit 2022: Scylla 5.0 New Features, Part 2
ScyllaDB
 
The evolution of Netflix's S3 data warehouse (Strata NY 2018)
The evolution of Netflix's S3 data warehouse (Strata NY 2018)The evolution of Netflix's S3 data warehouse (Strata NY 2018)
The evolution of Netflix's S3 data warehouse (Strata NY 2018)
Ryan Blue
 
PostgreSQL + Kafka: The Delight of Change Data Capture
PostgreSQL + Kafka: The Delight of Change Data CapturePostgreSQL + Kafka: The Delight of Change Data Capture
PostgreSQL + Kafka: The Delight of Change Data Capture
Jeff Klukas
 
Building an open data platform with apache iceberg
Building an open data platform with apache icebergBuilding an open data platform with apache iceberg
Building an open data platform with apache iceberg
Alluxio, Inc.
 
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
Parallel Replication in MySQL and MariaDB
Parallel Replication in MySQL and MariaDBParallel Replication in MySQL and MariaDB
Parallel Replication in MySQL and MariaDB
Mydbops
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
PostgreSQL for Oracle Developers and DBA's
PostgreSQL for Oracle Developers and DBA'sPostgreSQL for Oracle Developers and DBA's
PostgreSQL for Oracle Developers and DBA's
Gerger
 
Build Low-Latency Applications in Rust on ScyllaDB
Build Low-Latency Applications in Rust on ScyllaDBBuild Low-Latency Applications in Rust on ScyllaDB
Build Low-Latency Applications in Rust on ScyllaDB
ScyllaDB
 
MariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & OptimizationMariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & Optimization
MariaDB plc
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Eventually, Scylla Chooses Consistency
Eventually, Scylla Chooses ConsistencyEventually, Scylla Chooses Consistency
Eventually, Scylla Chooses Consistency
ScyllaDB
 
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
Streams and Tables: Two Sides of the Same Coin (BIRTE 2018)
confluent
 
Active Session History in PostgreSQL:
Active Session History in PostgreSQL:Active Session History in PostgreSQL:
Active Session History in PostgreSQL:
BertrandDrouvot
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Jim Mlodgenski
 
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops TeamTop-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Top-10-Features-In-MySQL-8.0 - Vinoth Kanna RS - Mydbops Team
Mydbops
 

Similar to From Postgres to ScyllaDB: Migration Strategies and Performance Gains (20)

Managing Data and Operation Distribution In MongoDB
Managing Data and Operation Distribution In MongoDBManaging Data and Operation Distribution In MongoDB
Managing Data and Operation Distribution In MongoDB
Jason Terpko
 
Managing data and operation distribution in MongoDB
Managing data and operation distribution in MongoDBManaging data and operation distribution in MongoDB
Managing data and operation distribution in MongoDB
Antonios Giannopoulos
 
QuestDB: ingesting a million time series per second on a single instance. Big...
QuestDB: ingesting a million time series per second on a single instance. Big...QuestDB: ingesting a million time series per second on a single instance. Big...
QuestDB: ingesting a million time series per second on a single instance. Big...
javier ramirez
 
MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
How QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it fasterHow QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it faster
MariaDB plc
 
Big data should be simple
Big data should be simpleBig data should be simple
Big data should be simple
Dori Waldman
 
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Kevin Xu
 
No sql presentation
No sql presentationNo sql presentation
No sql presentation
Saifuddin Kaijar
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Scale Relational Database with NewSQL
Scale Relational Database with NewSQLScale Relational Database with NewSQL
Scale Relational Database with NewSQL
PingCAP
 
Testing Persistent Storage Performance in Kubernetes with Sherlock
Testing Persistent Storage Performance in Kubernetes with SherlockTesting Persistent Storage Performance in Kubernetes with Sherlock
Testing Persistent Storage Performance in Kubernetes with Sherlock
ScyllaDB
 
week1slides1704202828322.pdf
week1slides1704202828322.pdfweek1slides1704202828322.pdf
week1slides1704202828322.pdf
TusharAgarwal49094
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
KSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success StoryKSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success Story
Kristofferson A
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
To Serverless and Beyond
To Serverless and BeyondTo Serverless and Beyond
To Serverless and Beyond
ScyllaDB
 
How We Added Replication to QuestDB - JonTheBeach
How We Added Replication to QuestDB - JonTheBeachHow We Added Replication to QuestDB - JonTheBeach
How We Added Replication to QuestDB - JonTheBeach
javier ramirez
 
How we switched to columnar at SpendHQ
How we switched to columnar at SpendHQHow we switched to columnar at SpendHQ
How we switched to columnar at SpendHQ
MariaDB plc
 
Introduction to Apache Tajo: Data Warehouse for Big Data
Introduction to Apache Tajo: Data Warehouse for Big DataIntroduction to Apache Tajo: Data Warehouse for Big Data
Introduction to Apache Tajo: Data Warehouse for Big Data
Jihoon Son
 
Managing Data and Operation Distribution In MongoDB
Managing Data and Operation Distribution In MongoDBManaging Data and Operation Distribution In MongoDB
Managing Data and Operation Distribution In MongoDB
Jason Terpko
 
Managing data and operation distribution in MongoDB
Managing data and operation distribution in MongoDBManaging data and operation distribution in MongoDB
Managing data and operation distribution in MongoDB
Antonios Giannopoulos
 
QuestDB: ingesting a million time series per second on a single instance. Big...
QuestDB: ingesting a million time series per second on a single instance. Big...QuestDB: ingesting a million time series per second on a single instance. Big...
QuestDB: ingesting a million time series per second on a single instance. Big...
javier ramirez
 
MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
How QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it fasterHow QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it faster
MariaDB plc
 
Big data should be simple
Big data should be simpleBig data should be simple
Big data should be simple
Dori Waldman
 
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Introducing TiDB [Delivered: 09/27/18 at NYC SQL Meetup]
Kevin Xu
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Scale Relational Database with NewSQL
Scale Relational Database with NewSQLScale Relational Database with NewSQL
Scale Relational Database with NewSQL
PingCAP
 
Testing Persistent Storage Performance in Kubernetes with Sherlock
Testing Persistent Storage Performance in Kubernetes with SherlockTesting Persistent Storage Performance in Kubernetes with Sherlock
Testing Persistent Storage Performance in Kubernetes with Sherlock
ScyllaDB
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
KSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success StoryKSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success Story
Kristofferson A
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
To Serverless and Beyond
To Serverless and BeyondTo Serverless and Beyond
To Serverless and Beyond
ScyllaDB
 
How We Added Replication to QuestDB - JonTheBeach
How We Added Replication to QuestDB - JonTheBeachHow We Added Replication to QuestDB - JonTheBeach
How We Added Replication to QuestDB - JonTheBeach
javier ramirez
 
How we switched to columnar at SpendHQ
How we switched to columnar at SpendHQHow we switched to columnar at SpendHQ
How we switched to columnar at SpendHQ
MariaDB plc
 
Introduction to Apache Tajo: Data Warehouse for Big Data
Introduction to Apache Tajo: Data Warehouse for Big DataIntroduction to Apache Tajo: Data Warehouse for Big Data
Introduction to Apache Tajo: Data Warehouse for Big Data
Jihoon Son
 
Ad

More from ScyllaDB (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
A Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr SarnaA Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr Sarna
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Database Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick BossmanDatabase Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick Bossman
ScyllaDB
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
A Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr SarnaA Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr Sarna
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Database Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick BossmanDatabase Migration Strategies and Pitfalls by Patrick Bossman
Database Migration Strategies and Pitfalls by Patrick Bossman
ScyllaDB
 
Ad

Recently uploaded (20)

Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Unlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive GuideUnlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive Guide
vikasascentbpo
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Unlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive GuideUnlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive Guide
vikasascentbpo
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 

From Postgres to ScyllaDB: Migration Strategies and Performance Gains

  • 1. From Postgres to ScyllaDB: Migration Strategies and Performance Gains Dan Harris & Sebastian Vercruysse
  • 2. Company & Presenters Dan Harris Sebastian Vercruysse
  • 3. ■ DataPrime Query Engine and metastore ■ ScyllaDB implementation ■ Conclusion Agenda
  • 5. Dataprime Query Engine ■ Custom distributed query engine for proprietary query language (DataPrime) on arbitrary semi-structured data ■ Querying data stored in object storage ■ Storage format is specialized parquet files
  • 6. ■ Reading parquet metadata from object storage is too expensive for large queries ■ Move metadata into separate (faster) storage ■ Block listing with bloom filters ■ Transactional commit log Metastore: Motivation
  • 7. Requirements for metastore ■ Low latency ■ Scaleable ■ Transactional guarantees Initial implementation: postgres Metastore: Requirements Example one (large) customer: ■ 2k parquet files / hour ■ 50k parquet files / day ■ 15 TB of data / day ■ 20 GB of metadata / day
  • 8. Important for listing: give me all the blocks for a table in a given time range Example: ■ Block url: s3://cgx-production-c4c-archive-data/cx/parquet/v1/team_id=555585/… …dt=2022-12-02/hr=10/0246f9e9-f0da-4723-9b64-a12346095d25.parquet ■ Row group: 0, 1, 2 … ■ Min timestamp ■ Max timestamp ■ Number of rows ■ Total size ■ … Blocks
  • 9. Bloom Filters Used for pruning blocks when filtering by search term ■ is a given token maybe in this block or definitely not? Works by hashing tokens multiple times & setting bits to 1. When checking, hash again and check bits are all 1. Specifically using blocked bloom filter (sequence of bloom filters): 8192 * 32 bytes
  • 10. Column Metadata Per-column parquet metadata required for scanning and decoding parquet file Example: ■ Block URL ■ Row Group ■ Column Name ■ Column metadata (blob)
  • 12. Blocks Example: ■ s3://cgx-production-c4c-archive-data/cx/parquet/v1/team_id=555585/… …dt=2022-12-02/hr=10/0246f9e9-f0da-4723-9b64-a12346095d25.parquet What should the primary key be? ■ Table url? ■ ((Block url, row group))? ■ ((Table url, hour))? ■ ((Table url, hour), block url, row group)
  • 13. Bloom Filters Problem: how to verify bits are set? Solution: read bloom filters and process in application Problem: ~50k blocks/day * 262kB = ~12GB of data, too much for one query Solution: ■ chunk bloom filters and split into rows ■ by chunking per bloom filter block we read one row per token, 50k * 32 bytes / token = 1.6MB / token
  • 14. Bloom Filters: Primary Key (1) Primary key: ((block_url, row_group), chunk index) ~ 8192 chunks of 32 bytes per bloom filter = ~262kB per partition Pros: ■ Easy to insert and delete, single batch query Cons: ■ Need to know the block id before reading ■ A lot of partitions to access, 1 day: 50k partitions
  • 15. Bloom Filters: Primary Key (2) Primary key: ((table url, hour, chunk index), block url, row group) ~ 2000 chunks of 32 bytes per bloom filter = ~64kB per partition Pros ■ Very fast listing, less partitions. 1 day, 5 tokens: 24 * 5 = 120 partitions ■ No dependency on block, can read in parallel Cons ■ Expensive to insert and delete: 8192 partitions for a single block!
  • 16. Bloom Filters: Future Approach Investigate optimal chunking: find middle ground between writing large enough chunks and reading unnecessary data Can we use UDF’s with WebAssembly? SELECT block_url, row_group FROM bloom_filters WHERE table_url = ? AND hour = ? AND bloom_filter_matches(bloom_filter, indexes) ■ Let ScyllaDB do the hard work ■ Don’t need to worry about amount of data we’re sending back to app ■ Code is already written in rust
  • 17. Be Careful It’s very much not SQL - try to avoid migrations (/bugs) Solutions: ■ Rename columns? ■ Add new columns, UPDATE blocks SET query? ■ Truncate table and start over again
  • 18. ScyllaDB: Ecosystem Extensive usage of ScyllaDB libraries and components: ■ Written in rust on top of ScyllaDB-rust-driver ■ ScyllaDB Operator for k8s ■ ScyllaDB Monitoring ■ ScyllaDB Manager From knowing ScyllaDB exists to production ready & terabytes of data in 2 months
  • 19. Hardware Cost is very important 3-node cluster: ■ 8 vCPU ■ 32 GiB memory ■ ARM/Graviton ■ EBS volumes (gp3) ■ 500 MBps bandwidth ■ 12k IOPS
  • 20. Metastore: Block Listing Largest cluster: 4-5 TB on each node, mostly for one customer Writes: ■ p99 latency: <1ms ■ ~10k writes / s Block listing: ■ Depends on query & whether we’re using bloom filters ■ for 1 hour: <20ms latency ■ for 1 day: <500ms latency
  • 21. Metastore: Column Metadata Reads: ■ p50 latency: 5ms ■ p99 latency: 100ms (when we timeout) Issue: large amount of concurrent queries Probably disk issue
  • 22. Conclusion ■ Keep an eye on partition sizes ■ Think about read/write patterns ■ Very happy with block listing… … but unpredictable tail latency for reading column metadata ■ Probably shouldn’t use EBS :-)
  • 23. Thank You Stay in Touch Dan Harris [email protected] @thinkharderdev github.com/thinkharderdev www.linkedin.com/in/dsh2va github.com/sebver [email protected] www.linkedin.com/in/sebastian-vercruysse Sebastian Vercruysse