SlideShare a Scribd company logo
DATA VIRTUALIZATION PACKED LUNCH
WEBINAR SERIES
Sessions Covering Key Data Integration Challenges
Solved with Data Virtualization
From Single Purpose to Multi Purpose
Data Lakes - Broadening End Users
Michael Dickson
Sales Engineer, Denodo
Paul Moxon
VP Data Architectures & Chief Evangelist, Denodo
A data lake is a storage repository that holds a
vast amount of raw data in its native format.
The data structure and requirements are not
defined until the data is needed
The current needs for sophisticated
data-driven intelligence and data
science favored this concept for its
simplicity and power
Hadoop and its ecosystem
provided the foundation that data
lakes required: vast storage and
processing muscle
It also favored the concept of ELT
vs ETL: load data first, (maybe)
Data Lakes
3
The early data scientists saw Hadoop
as their personal supercomputer.
Hadoop-based Data Lakes helped
democratize access to state of the
art supercomputing with off-the-
shelf HW (and later cloud)
The industry push for BI made
Hadoop–based solutions the
standard to bring modern analytics
to any corporation
Data Lakes – A Data Scientist’s Playground
4
Data Lakes – Not a Perfect World
Physical Nature
• Based on Replication. Data Lakes require data to be copied to its physical storage
• Replication extends development cycles and costs
• Not all data is suitable for replication
• Real time needs: Cloud and SaaS APIs
• Large volumes: existing EDW
• Laws and restrictions
Single Purpose
• Usage of the data lake is often monopolize by data scientists
• New data silo. No clear path to share insights with business users
• Lacks the governance, security and quality that business users are used to (e.g. in
the EDW)
5
6
The Rise of Logical Architectures
The Evolution of Analytical Architectures
Source: Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs Gartner April 2018
Rick Van der Lans, R20 Consultancy
Multi‐purpose data lakes are data delivery environments developed to
support a broad range of users, from traditional self‐service BI users (e.g.
finance, marketing, human resource, transport) to sophisticated data scientists.
Multi‐purpose data lakes allow a broader and deeper use of the data lake
investment without minimizing the potential value for data science and without
making it an inflexible environment.
The Multipurpose Data Lake with Data Virtualization
Logical Nature
• Replication is an option, not a necessity
• Broaden data access, shorten development times, better
insights
• Tight integration with big data systems. Fast execution with
large data volumes
Multi-purpose
• Curated access for non-technical users
• Better governance and access control
• Better ROI for the investment of the lake
8
9
The Multipurpose Data Lake with Data Virtualization
“A multi-purpose data lake can become an organization’s universal data delivery system”
Architecting the Multi-Purpose Data Lake with Data Virtualization , Rick Van der Lans, April 2018
Single access to all data assets, internal
and external:
▪ Physical Data Lake (usually based on SQL-on-
Hadoop systems)
▪ Other databases (EDW, ODS, applications,
etc.)
▪ SaaS APIs (Salesforce, Google, social media,
etc.)
▪ Files (local, S3, Azure, etc.)
The Virtual Data Lake – Access to all Data Sources
10
The physical Data Lake can also be used as
Denodo’s cache
This allows to quickly load any data accessible by
Denodo to the Hadoop cluster
Caching becomes an alternative to ingestion ELT
processes that preserves lineage and governance
Load process based on direct load to HDFS:
1. Creation of the target table in Cache
system
2. Generation of Parquet files (in chunks) with
Snappy compression in the local machine
3. Upload in parallel of Parquet files to HDFS
The Virtual Data Lake – Ingesting and Caching
11
Denodo optimizer provides native integration
with MPP systems to provide one extra key
capability: Query Acceleration
Denodo can move, on demand, processing to
the MPP during execution of a query
• Parallel power for calculations in the
virtual layer
• Avoids slow processing in-disk when
processing buffers don’t fit into
Denodo’s memory (swapped data)
The Virtual Data Lake – Using the Lake Processing Engine
12
13
The Virtual Data Lake – Putting the Pieces Together
2M rows
(sales by customer)
Current Sales
68 M rows
1. Partial Aggregation
push down
Maximizes source processing
dramatically Reduces network
traffic 3. On-demand data transfer
Denodo automatically generates
and upload Parquet files
4. Integration with local data
The engine detects when data
is cached or comes from a
local table already in the MPP
2. Integrated with Cost Based Optimizer
Based on data volume estimation and
the cost of these particular operations,
the CBO can decide to move all or part
of the execution tree to the MPP
5. Fast parallel execution
Support for Spark, Presto and Impala
for fast analytical processing in
inexpensive Hadoop-based solutions
Hist. Sales
220 M rows
Customer
2 M rows
(Cached)
join
group by ZIP
System Execution Time Optimization Techniques
Others ~ 10 min Simple federation
No MPP 43 sec Aggregation push-down
With MPP 11 sec
Aggregation push-down + MPP integration
(Impala 8 nodes)
group by
Customer ID
▪ A Virtual Data Lake improves decision making and
shortens development cycles
• Surfaces all company data from multiple repositories without
the need to replicate all data into the lake
• Eliminates data silos: allows for on-demand combination of data
from multiple sources
▪ A Virtual Data Lake broadens adoption of the lake and
improves its ROI
• Improves governance and metadata management to avoid
“data swamps”
• Allows controlled access to the lake to non-technical users
▪ A Virtual Data Lake offer performance for the Big Data World
• Leverages the processing power of the existing cluster
controlled by Denodo’s optimizer
The Virtual Data Lake - Conclusions
14
15
Gartner, Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical
Needs, May 2018
When designed properly, DV can speed data
integration, lower data latency, offer flexibility and
reuse, and reduce data sprawl across dispersed data
sources.
Due to its many benefits, DV is often the first step
for organizations evolving a traditional, repository-
style data warehouse into a Logical Architecture”
Product Demonstration
A Multipurpose Data Lake with Data
Virtualization
16
Sales Engineer, Denodo
Michael Dickson
17
Demo Architecture
What’s the impact of a new
marketing campaign for each
country?
▪ Historical sales data offloaded
to Hadoop cluster for cheaper
storage
▪ Marketing campaigns managed
in an external cloud app
▪ Country is part of the customer
details table, stored in the DW Sources
Combine,
Transfor
m
&
Integrate
Consume
Base View
Source
Abstraction
join
group by
state
join
Sales Campaign Customer
Demo
18
Key Takeaways
19
Key Takeaways
20
FIRST
Takeaway
Hadoop-based Data Lakes are the standard approach to modern
analytics within most organizations
SECOND
Takeaway
Physical Data Lakes introduce many complexities (replication,
synchronization, governance, etc.) that restrict their use
THIRD
Takeaway
Logical Data Lakes allow users to access data from all sources –
internal and external – to grow value of Data Lake approach
FOURTH
Takeaway
Data Virtualization creates ‘multipurpose’ Data Lakes for all kinds
of users – data scientists and business users
FIFTH
Takeaway
Data Virtualization introduces governance and access controls to
the Data Lake without impeding the ‘power users'
Q&A
Next steps
Download Denodo Express:
www.denodoexpress.com
Access Denodo Platform in the Cloud!
30 day FREE trial available!
Denodo for Azure:
www.denodo.com/TrialAzure/PackedLunch
Denodo for AWS: www.denodo.com/TrialAWS/PackedLunch
Next session
The Role of Data Virtualization in an
API Economy
Thursday, September 20, 2018 | 11:00 AM PT / 2:00 PM ET
Paul Moxon
VP Data Architectures & Chief Evangelist, Denodo
Thank you!
© Copyright Denodo Technologies. All rights reserved
Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and
microfilm, without prior the written authorization from Denodo Technologies.
Ad

More Related Content

What's hot (20)

Data Virtualization: From Zero to Hero
Data Virtualization: From Zero to HeroData Virtualization: From Zero to Hero
Data Virtualization: From Zero to Hero
Denodo
 
Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)
Denodo
 
Data Ninja Webinar Series: Realizing the Promise of Data Lakes
Data Ninja Webinar Series: Realizing the Promise of Data LakesData Ninja Webinar Series: Realizing the Promise of Data Lakes
Data Ninja Webinar Series: Realizing the Promise of Data Lakes
Denodo
 
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Denodo
 
Fast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow PresentationFast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow Presentation
Denodo
 
Unlock Your Data for ML & AI using Data Virtualization
Unlock Your Data for ML & AI using Data VirtualizationUnlock Your Data for ML & AI using Data Virtualization
Unlock Your Data for ML & AI using Data Virtualization
Denodo
 
Building a Logical Data Fabric using Data Virtualization (ASEAN)
Building a Logical Data Fabric using Data Virtualization (ASEAN)Building a Logical Data Fabric using Data Virtualization (ASEAN)
Building a Logical Data Fabric using Data Virtualization (ASEAN)
Denodo
 
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo
 
Performance Acceleration: Summaries, Recommendation, MPP and more
Performance Acceleration: Summaries, Recommendation, MPP and morePerformance Acceleration: Summaries, Recommendation, MPP and more
Performance Acceleration: Summaries, Recommendation, MPP and more
Denodo
 
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Denodo
 
In Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data ScenariosIn Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data Scenarios
Denodo
 
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
ijcsit
 
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Denodo
 
GDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data VirtualizationGDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data Virtualization
Denodo
 
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
MapR Technologies
 
DW 101
DW 101DW 101
DW 101
jeffd00
 
Enabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data VirtualizationEnabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data Virtualization
Denodo
 
ds_Pivotal_Big_Data_Suite_Product_Suite
ds_Pivotal_Big_Data_Suite_Product_Suiteds_Pivotal_Big_Data_Suite_Product_Suite
ds_Pivotal_Big_Data_Suite_Product_Suite
Robin Fong 方俊强
 
Gartner Cool Vendor Report 2014
Gartner Cool Vendor Report 2014Gartner Cool Vendor Report 2014
Gartner Cool Vendor Report 2014
jenjermain
 
Hadoop
HadoopHadoop
Hadoop
Veera Sundari
 
Data Virtualization: From Zero to Hero
Data Virtualization: From Zero to HeroData Virtualization: From Zero to Hero
Data Virtualization: From Zero to Hero
Denodo
 
Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)Enabling Cloud Data Integration (EMEA)
Enabling Cloud Data Integration (EMEA)
Denodo
 
Data Ninja Webinar Series: Realizing the Promise of Data Lakes
Data Ninja Webinar Series: Realizing the Promise of Data LakesData Ninja Webinar Series: Realizing the Promise of Data Lakes
Data Ninja Webinar Series: Realizing the Promise of Data Lakes
Denodo
 
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Denodo
 
Fast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow PresentationFast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow Presentation
Denodo
 
Unlock Your Data for ML & AI using Data Virtualization
Unlock Your Data for ML & AI using Data VirtualizationUnlock Your Data for ML & AI using Data Virtualization
Unlock Your Data for ML & AI using Data Virtualization
Denodo
 
Building a Logical Data Fabric using Data Virtualization (ASEAN)
Building a Logical Data Fabric using Data Virtualization (ASEAN)Building a Logical Data Fabric using Data Virtualization (ASEAN)
Building a Logical Data Fabric using Data Virtualization (ASEAN)
Denodo
 
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo
 
Performance Acceleration: Summaries, Recommendation, MPP and more
Performance Acceleration: Summaries, Recommendation, MPP and morePerformance Acceleration: Summaries, Recommendation, MPP and more
Performance Acceleration: Summaries, Recommendation, MPP and more
Denodo
 
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Denodo
 
In Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data ScenariosIn Memory Parallel Processing for Big Data Scenarios
In Memory Parallel Processing for Big Data Scenarios
Denodo
 
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
CYBER INFRASTRUCTURE AS A SERVICE TO EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN S...
ijcsit
 
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...Designing Fast Data Architecture for Big Data  using Logical Data Warehouse a...
Designing Fast Data Architecture for Big Data using Logical Data Warehouse a...
Denodo
 
GDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data VirtualizationGDPR Noncompliance: Avoid the Risk with Data Virtualization
GDPR Noncompliance: Avoid the Risk with Data Virtualization
Denodo
 
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
Fast and Furious: From POC to an Enterprise Big Data Stack in 2014
MapR Technologies
 
Enabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data VirtualizationEnabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data Virtualization
Denodo
 
ds_Pivotal_Big_Data_Suite_Product_Suite
ds_Pivotal_Big_Data_Suite_Product_Suiteds_Pivotal_Big_Data_Suite_Product_Suite
ds_Pivotal_Big_Data_Suite_Product_Suite
Robin Fong 方俊强
 
Gartner Cool Vendor Report 2014
Gartner Cool Vendor Report 2014Gartner Cool Vendor Report 2014
Gartner Cool Vendor Report 2014
jenjermain
 

Similar to From Single Purpose to Multi Purpose Data Lakes - Broadening End Users (20)

Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
Data Lakes: A Logical Approach for Faster Unified Insights
Data Lakes: A Logical Approach for Faster Unified InsightsData Lakes: A Logical Approach for Faster Unified Insights
Data Lakes: A Logical Approach for Faster Unified Insights
Denodo
 
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data InitiativeBig Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Denodo
 
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Denodo
 
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric ArchitectureShaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Denodo
 
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Denodo
 
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
ADV Slides: When and How Data Lakes Fit into a Modern Data ArchitectureADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
DATAVERSITY
 
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Denodo
 
Exploring the Wider World of Big Data
Exploring the Wider World of Big DataExploring the Wider World of Big Data
Exploring the Wider World of Big Data
NetApp
 
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric ArchitectureShaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Denodo
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo
 
Flash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lonFlash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lon
Jeffrey T. Pollock
 
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Denodo
 
Enabling Self-Service Analytics with Logical Data Warehouse
Enabling Self-Service Analytics with Logical Data WarehouseEnabling Self-Service Analytics with Logical Data Warehouse
Enabling Self-Service Analytics with Logical Data Warehouse
Denodo
 
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical DemonstrationMaximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Denodo
 
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
Data Lakes: A Logical Approach for Faster Unified Insights
Data Lakes: A Logical Approach for Faster Unified InsightsData Lakes: A Logical Approach for Faster Unified Insights
Data Lakes: A Logical Approach for Faster Unified Insights
Denodo
 
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data InitiativeBig Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Denodo
 
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Data Lakes: A Logical Approach for Faster Unified Insights (ASEAN)
Denodo
 
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric ArchitectureShaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Denodo
 
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Data Virtualization enabled Data Fabric: Operationalize the Data Lake (APAC)
Denodo
 
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
ADV Slides: When and How Data Lakes Fit into a Modern Data ArchitectureADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
DATAVERSITY
 
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Simplifying Your Cloud Architecture with a Logical Data Fabric (APAC)
Denodo
 
Exploring the Wider World of Big Data
Exploring the Wider World of Big DataExploring the Wider World of Big Data
Exploring the Wider World of Big Data
NetApp
 
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric ArchitectureShaping the Role of a Data Lake in a Modern Data Fabric Architecture
Shaping the Role of a Data Lake in a Modern Data Fabric Architecture
Denodo
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo
 
Flash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lonFlash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lon
Jeffrey T. Pollock
 
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Denodo
 
Enabling Self-Service Analytics with Logical Data Warehouse
Enabling Self-Service Analytics with Logical Data WarehouseEnabling Self-Service Analytics with Logical Data Warehouse
Enabling Self-Service Analytics with Logical Data Warehouse
Denodo
 
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical DemonstrationMaximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Denodo
 
Ad

More from Denodo (20)

Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Ad

Recently uploaded (20)

Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 

From Single Purpose to Multi Purpose Data Lakes - Broadening End Users

  • 1. DATA VIRTUALIZATION PACKED LUNCH WEBINAR SERIES Sessions Covering Key Data Integration Challenges Solved with Data Virtualization
  • 2. From Single Purpose to Multi Purpose Data Lakes - Broadening End Users Michael Dickson Sales Engineer, Denodo Paul Moxon VP Data Architectures & Chief Evangelist, Denodo
  • 3. A data lake is a storage repository that holds a vast amount of raw data in its native format. The data structure and requirements are not defined until the data is needed The current needs for sophisticated data-driven intelligence and data science favored this concept for its simplicity and power Hadoop and its ecosystem provided the foundation that data lakes required: vast storage and processing muscle It also favored the concept of ELT vs ETL: load data first, (maybe) Data Lakes 3
  • 4. The early data scientists saw Hadoop as their personal supercomputer. Hadoop-based Data Lakes helped democratize access to state of the art supercomputing with off-the- shelf HW (and later cloud) The industry push for BI made Hadoop–based solutions the standard to bring modern analytics to any corporation Data Lakes – A Data Scientist’s Playground 4
  • 5. Data Lakes – Not a Perfect World Physical Nature • Based on Replication. Data Lakes require data to be copied to its physical storage • Replication extends development cycles and costs • Not all data is suitable for replication • Real time needs: Cloud and SaaS APIs • Large volumes: existing EDW • Laws and restrictions Single Purpose • Usage of the data lake is often monopolize by data scientists • New data silo. No clear path to share insights with business users • Lacks the governance, security and quality that business users are used to (e.g. in the EDW) 5
  • 6. 6 The Rise of Logical Architectures The Evolution of Analytical Architectures Source: Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs Gartner April 2018
  • 7. Rick Van der Lans, R20 Consultancy Multi‐purpose data lakes are data delivery environments developed to support a broad range of users, from traditional self‐service BI users (e.g. finance, marketing, human resource, transport) to sophisticated data scientists. Multi‐purpose data lakes allow a broader and deeper use of the data lake investment without minimizing the potential value for data science and without making it an inflexible environment.
  • 8. The Multipurpose Data Lake with Data Virtualization Logical Nature • Replication is an option, not a necessity • Broaden data access, shorten development times, better insights • Tight integration with big data systems. Fast execution with large data volumes Multi-purpose • Curated access for non-technical users • Better governance and access control • Better ROI for the investment of the lake 8
  • 9. 9 The Multipurpose Data Lake with Data Virtualization “A multi-purpose data lake can become an organization’s universal data delivery system” Architecting the Multi-Purpose Data Lake with Data Virtualization , Rick Van der Lans, April 2018
  • 10. Single access to all data assets, internal and external: ▪ Physical Data Lake (usually based on SQL-on- Hadoop systems) ▪ Other databases (EDW, ODS, applications, etc.) ▪ SaaS APIs (Salesforce, Google, social media, etc.) ▪ Files (local, S3, Azure, etc.) The Virtual Data Lake – Access to all Data Sources 10
  • 11. The physical Data Lake can also be used as Denodo’s cache This allows to quickly load any data accessible by Denodo to the Hadoop cluster Caching becomes an alternative to ingestion ELT processes that preserves lineage and governance Load process based on direct load to HDFS: 1. Creation of the target table in Cache system 2. Generation of Parquet files (in chunks) with Snappy compression in the local machine 3. Upload in parallel of Parquet files to HDFS The Virtual Data Lake – Ingesting and Caching 11
  • 12. Denodo optimizer provides native integration with MPP systems to provide one extra key capability: Query Acceleration Denodo can move, on demand, processing to the MPP during execution of a query • Parallel power for calculations in the virtual layer • Avoids slow processing in-disk when processing buffers don’t fit into Denodo’s memory (swapped data) The Virtual Data Lake – Using the Lake Processing Engine 12
  • 13. 13 The Virtual Data Lake – Putting the Pieces Together 2M rows (sales by customer) Current Sales 68 M rows 1. Partial Aggregation push down Maximizes source processing dramatically Reduces network traffic 3. On-demand data transfer Denodo automatically generates and upload Parquet files 4. Integration with local data The engine detects when data is cached or comes from a local table already in the MPP 2. Integrated with Cost Based Optimizer Based on data volume estimation and the cost of these particular operations, the CBO can decide to move all or part of the execution tree to the MPP 5. Fast parallel execution Support for Spark, Presto and Impala for fast analytical processing in inexpensive Hadoop-based solutions Hist. Sales 220 M rows Customer 2 M rows (Cached) join group by ZIP System Execution Time Optimization Techniques Others ~ 10 min Simple federation No MPP 43 sec Aggregation push-down With MPP 11 sec Aggregation push-down + MPP integration (Impala 8 nodes) group by Customer ID
  • 14. ▪ A Virtual Data Lake improves decision making and shortens development cycles • Surfaces all company data from multiple repositories without the need to replicate all data into the lake • Eliminates data silos: allows for on-demand combination of data from multiple sources ▪ A Virtual Data Lake broadens adoption of the lake and improves its ROI • Improves governance and metadata management to avoid “data swamps” • Allows controlled access to the lake to non-technical users ▪ A Virtual Data Lake offer performance for the Big Data World • Leverages the processing power of the existing cluster controlled by Denodo’s optimizer The Virtual Data Lake - Conclusions 14
  • 15. 15 Gartner, Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs, May 2018 When designed properly, DV can speed data integration, lower data latency, offer flexibility and reuse, and reduce data sprawl across dispersed data sources. Due to its many benefits, DV is often the first step for organizations evolving a traditional, repository- style data warehouse into a Logical Architecture”
  • 16. Product Demonstration A Multipurpose Data Lake with Data Virtualization 16 Sales Engineer, Denodo Michael Dickson
  • 17. 17 Demo Architecture What’s the impact of a new marketing campaign for each country? ▪ Historical sales data offloaded to Hadoop cluster for cheaper storage ▪ Marketing campaigns managed in an external cloud app ▪ Country is part of the customer details table, stored in the DW Sources Combine, Transfor m & Integrate Consume Base View Source Abstraction join group by state join Sales Campaign Customer
  • 20. Key Takeaways 20 FIRST Takeaway Hadoop-based Data Lakes are the standard approach to modern analytics within most organizations SECOND Takeaway Physical Data Lakes introduce many complexities (replication, synchronization, governance, etc.) that restrict their use THIRD Takeaway Logical Data Lakes allow users to access data from all sources – internal and external – to grow value of Data Lake approach FOURTH Takeaway Data Virtualization creates ‘multipurpose’ Data Lakes for all kinds of users – data scientists and business users FIFTH Takeaway Data Virtualization introduces governance and access controls to the Data Lake without impeding the ‘power users'
  • 21. Q&A
  • 22. Next steps Download Denodo Express: www.denodoexpress.com Access Denodo Platform in the Cloud! 30 day FREE trial available! Denodo for Azure: www.denodo.com/TrialAzure/PackedLunch Denodo for AWS: www.denodo.com/TrialAWS/PackedLunch
  • 23. Next session The Role of Data Virtualization in an API Economy Thursday, September 20, 2018 | 11:00 AM PT / 2:00 PM ET Paul Moxon VP Data Architectures & Chief Evangelist, Denodo
  • 24. Thank you! © Copyright Denodo Technologies. All rights reserved Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and microfilm, without prior the written authorization from Denodo Technologies.